1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
import re
import warnings
from unittest.mock import Mock
import numpy as np
import pytest
from sklearn import datasets
from sklearn.base import BaseEstimator
from sklearn.cross_decomposition import CCA, PLSCanonical, PLSRegression
from sklearn.datasets import make_friedman1
from sklearn.decomposition import PCA
from sklearn.ensemble import HistGradientBoostingClassifier, RandomForestClassifier
from sklearn.exceptions import NotFittedError
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import (
ElasticNet,
ElasticNetCV,
Lasso,
LassoCV,
LinearRegression,
LogisticRegression,
PassiveAggressiveClassifier,
SGDClassifier,
)
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.utils._testing import (
MinimalClassifier,
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
skip_if_32bit,
)
class NaNTag(BaseEstimator):
def _more_tags(self):
return {"allow_nan": True}
class NoNaNTag(BaseEstimator):
def _more_tags(self):
return {"allow_nan": False}
class NaNTagRandomForest(RandomForestClassifier):
def _more_tags(self):
return {"allow_nan": True}
iris = datasets.load_iris()
data, y = iris.data, iris.target
rng = np.random.RandomState(0)
def test_invalid_input():
clf = SGDClassifier(
alpha=0.1, max_iter=10, shuffle=True, random_state=None, tol=None
)
for threshold in ["gobbledigook", ".5 * gobbledigook"]:
model = SelectFromModel(clf, threshold=threshold)
model.fit(data, y)
with pytest.raises(ValueError):
model.transform(data)
def test_input_estimator_unchanged():
# Test that SelectFromModel fits on a clone of the estimator.
est = RandomForestClassifier()
transformer = SelectFromModel(estimator=est)
transformer.fit(data, y)
assert transformer.estimator is est
@pytest.mark.parametrize(
"max_features, err_type, err_msg",
[
(
data.shape[1] + 1,
ValueError,
"max_features ==",
),
(
lambda X: 1.5,
TypeError,
"max_features must be an instance of int, not float.",
),
(
lambda X: data.shape[1] + 1,
ValueError,
"max_features ==",
),
(
lambda X: -1,
ValueError,
"max_features ==",
),
],
)
def test_max_features_error(max_features, err_type, err_msg):
err_msg = re.escape(err_msg)
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
with pytest.raises(err_type, match=err_msg):
transformer.fit(data, y)
@pytest.mark.parametrize("max_features", [0, 2, data.shape[1], None])
def test_inferred_max_features_integer(max_features):
"""Check max_features_ and output shape for integer max_features."""
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
X_trans = transformer.fit_transform(data, y)
if max_features is not None:
assert transformer.max_features_ == max_features
assert X_trans.shape[1] == transformer.max_features_
else:
assert not hasattr(transformer, "max_features_")
assert X_trans.shape[1] == data.shape[1]
@pytest.mark.parametrize(
"max_features",
[lambda X: 1, lambda X: X.shape[1], lambda X: min(X.shape[1], 10000)],
)
def test_inferred_max_features_callable(max_features):
"""Check max_features_ and output shape for callable max_features."""
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
X_trans = transformer.fit_transform(data, y)
assert transformer.max_features_ == max_features(data)
assert X_trans.shape[1] == transformer.max_features_
@pytest.mark.parametrize("max_features", [lambda X: round(len(X[0]) / 2), 2])
def test_max_features_array_like(max_features):
X = [
[0.87, -1.34, 0.31],
[-2.79, -0.02, -0.85],
[-1.34, -0.48, -2.55],
[1.92, 1.48, 0.65],
]
y = [0, 1, 0, 1]
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
X_trans = transformer.fit_transform(X, y)
assert X_trans.shape[1] == transformer.max_features_
@pytest.mark.parametrize(
"max_features",
[lambda X: min(X.shape[1], 10000), lambda X: X.shape[1], lambda X: 1],
)
def test_max_features_callable_data(max_features):
"""Tests that the callable passed to `fit` is called on X."""
clf = RandomForestClassifier(n_estimators=50, random_state=0)
m = Mock(side_effect=max_features)
transformer = SelectFromModel(estimator=clf, max_features=m, threshold=-np.inf)
transformer.fit_transform(data, y)
m.assert_called_with(data)
class FixedImportanceEstimator(BaseEstimator):
def __init__(self, importances):
self.importances = importances
def fit(self, X, y=None):
self.feature_importances_ = np.array(self.importances)
def test_max_features():
# Test max_features parameter using various values
X, y = datasets.make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
max_features = X.shape[1]
est = RandomForestClassifier(n_estimators=50, random_state=0)
transformer1 = SelectFromModel(estimator=est, threshold=-np.inf)
transformer2 = SelectFromModel(
estimator=est, max_features=max_features, threshold=-np.inf
)
X_new1 = transformer1.fit_transform(X, y)
X_new2 = transformer2.fit_transform(X, y)
assert_allclose(X_new1, X_new2)
# Test max_features against actual model.
transformer1 = SelectFromModel(estimator=Lasso(alpha=0.025, random_state=42))
X_new1 = transformer1.fit_transform(X, y)
scores1 = np.abs(transformer1.estimator_.coef_)
candidate_indices1 = np.argsort(-scores1, kind="mergesort")
for n_features in range(1, X_new1.shape[1] + 1):
transformer2 = SelectFromModel(
estimator=Lasso(alpha=0.025, random_state=42),
max_features=n_features,
threshold=-np.inf,
)
X_new2 = transformer2.fit_transform(X, y)
scores2 = np.abs(transformer2.estimator_.coef_)
candidate_indices2 = np.argsort(-scores2, kind="mergesort")
assert_allclose(
X[:, candidate_indices1[:n_features]], X[:, candidate_indices2[:n_features]]
)
assert_allclose(transformer1.estimator_.coef_, transformer2.estimator_.coef_)
def test_max_features_tiebreak():
# Test if max_features can break tie among feature importance
X, y = datasets.make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
max_features = X.shape[1]
feature_importances = np.array([4, 4, 4, 4, 3, 3, 3, 2, 2, 1])
for n_features in range(1, max_features + 1):
transformer = SelectFromModel(
FixedImportanceEstimator(feature_importances),
max_features=n_features,
threshold=-np.inf,
)
X_new = transformer.fit_transform(X, y)
selected_feature_indices = np.where(transformer._get_support_mask())[0]
assert_array_equal(selected_feature_indices, np.arange(n_features))
assert X_new.shape[1] == n_features
def test_threshold_and_max_features():
X, y = datasets.make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
est = RandomForestClassifier(n_estimators=50, random_state=0)
transformer1 = SelectFromModel(estimator=est, max_features=3, threshold=-np.inf)
X_new1 = transformer1.fit_transform(X, y)
transformer2 = SelectFromModel(estimator=est, threshold=0.04)
X_new2 = transformer2.fit_transform(X, y)
transformer3 = SelectFromModel(estimator=est, max_features=3, threshold=0.04)
X_new3 = transformer3.fit_transform(X, y)
assert X_new3.shape[1] == min(X_new1.shape[1], X_new2.shape[1])
selected_indices = transformer3.transform(np.arange(X.shape[1])[np.newaxis, :])
assert_allclose(X_new3, X[:, selected_indices[0]])
@skip_if_32bit
def test_feature_importances():
X, y = datasets.make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
est = RandomForestClassifier(n_estimators=50, random_state=0)
for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
transformer = SelectFromModel(estimator=est, threshold=threshold)
transformer.fit(X, y)
assert hasattr(transformer.estimator_, "feature_importances_")
X_new = transformer.transform(X)
assert X_new.shape[1] < X.shape[1]
importances = transformer.estimator_.feature_importances_
feature_mask = np.abs(importances) > func(importances)
assert_array_almost_equal(X_new, X[:, feature_mask])
def test_sample_weight():
# Ensure sample weights are passed to underlying estimator
X, y = datasets.make_classification(
n_samples=100,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
# Check with sample weights
sample_weight = np.ones(y.shape)
sample_weight[y == 1] *= 100
est = LogisticRegression(random_state=0, fit_intercept=False)
transformer = SelectFromModel(estimator=est)
transformer.fit(X, y, sample_weight=None)
mask = transformer._get_support_mask()
transformer.fit(X, y, sample_weight=sample_weight)
weighted_mask = transformer._get_support_mask()
assert not np.all(weighted_mask == mask)
transformer.fit(X, y, sample_weight=3 * sample_weight)
reweighted_mask = transformer._get_support_mask()
assert np.all(weighted_mask == reweighted_mask)
@pytest.mark.parametrize(
"estimator",
[
Lasso(alpha=0.1, random_state=42),
LassoCV(random_state=42),
ElasticNet(l1_ratio=1, random_state=42),
ElasticNetCV(l1_ratio=[1], random_state=42),
],
)
def test_coef_default_threshold(estimator):
X, y = datasets.make_classification(
n_samples=100,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
# For the Lasso and related models, the threshold defaults to 1e-5
transformer = SelectFromModel(estimator=estimator)
transformer.fit(X, y)
X_new = transformer.transform(X)
mask = np.abs(transformer.estimator_.coef_) > 1e-5
assert_array_almost_equal(X_new, X[:, mask])
@skip_if_32bit
def test_2d_coef():
X, y = datasets.make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
n_classes=4,
)
est = LogisticRegression()
for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
for order in [1, 2, np.inf]:
# Fit SelectFromModel a multi-class problem
transformer = SelectFromModel(
estimator=LogisticRegression(), threshold=threshold, norm_order=order
)
transformer.fit(X, y)
assert hasattr(transformer.estimator_, "coef_")
X_new = transformer.transform(X)
assert X_new.shape[1] < X.shape[1]
# Manually check that the norm is correctly performed
est.fit(X, y)
importances = np.linalg.norm(est.coef_, axis=0, ord=order)
feature_mask = importances > func(importances)
assert_array_almost_equal(X_new, X[:, feature_mask])
def test_partial_fit():
est = PassiveAggressiveClassifier(
random_state=0, shuffle=False, max_iter=5, tol=None
)
transformer = SelectFromModel(estimator=est)
transformer.partial_fit(data, y, classes=np.unique(y))
old_model = transformer.estimator_
transformer.partial_fit(data, y, classes=np.unique(y))
new_model = transformer.estimator_
assert old_model is new_model
X_transform = transformer.transform(data)
transformer.fit(np.vstack((data, data)), np.concatenate((y, y)))
assert_array_almost_equal(X_transform, transformer.transform(data))
# check that if est doesn't have partial_fit, neither does SelectFromModel
transformer = SelectFromModel(estimator=RandomForestClassifier())
assert not hasattr(transformer, "partial_fit")
def test_calling_fit_reinitializes():
est = LinearSVC(dual="auto", random_state=0)
transformer = SelectFromModel(estimator=est)
transformer.fit(data, y)
transformer.set_params(estimator__C=100)
transformer.fit(data, y)
assert transformer.estimator_.C == 100
def test_prefit():
# Test all possible combinations of the prefit parameter.
# Passing a prefit parameter with the selected model
# and fitting a unfit model with prefit=False should give same results.
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
model = SelectFromModel(clf)
model.fit(data, y)
X_transform = model.transform(data)
clf.fit(data, y)
model = SelectFromModel(clf, prefit=True)
assert_array_almost_equal(model.transform(data), X_transform)
model.fit(data, y)
assert model.estimator_ is not clf
# Check that the model is rewritten if prefit=False and a fitted model is
# passed
model = SelectFromModel(clf, prefit=False)
model.fit(data, y)
assert_array_almost_equal(model.transform(data), X_transform)
# Check that passing an unfitted estimator with `prefit=True` raises a
# `ValueError`
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
model = SelectFromModel(clf, prefit=True)
err_msg = "When `prefit=True`, `estimator` is expected to be a fitted estimator."
with pytest.raises(NotFittedError, match=err_msg):
model.fit(data, y)
with pytest.raises(NotFittedError, match=err_msg):
model.partial_fit(data, y)
with pytest.raises(NotFittedError, match=err_msg):
model.transform(data)
# Check that the internal parameters of prefitted model are not changed
# when calling `fit` or `partial_fit` with `prefit=True`
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, tol=None).fit(data, y)
model = SelectFromModel(clf, prefit=True)
model.fit(data, y)
assert_allclose(model.estimator_.coef_, clf.coef_)
model.partial_fit(data, y)
assert_allclose(model.estimator_.coef_, clf.coef_)
def test_prefit_max_features():
"""Check the interaction between `prefit` and `max_features`."""
# case 1: an error should be raised at `transform` if `fit` was not called to
# validate the attributes
estimator = RandomForestClassifier(n_estimators=5, random_state=0)
estimator.fit(data, y)
model = SelectFromModel(estimator, prefit=True, max_features=lambda X: X.shape[1])
err_msg = (
"When `prefit=True` and `max_features` is a callable, call `fit` "
"before calling `transform`."
)
with pytest.raises(NotFittedError, match=err_msg):
model.transform(data)
# case 2: `max_features` is not validated and different from an integer
# FIXME: we cannot validate the upper bound of the attribute at transform
# and we should force calling `fit` if we intend to force the attribute
# to have such an upper bound.
max_features = 2.5
model.set_params(max_features=max_features)
with pytest.raises(ValueError, match="`max_features` must be an integer"):
model.transform(data)
def test_prefit_get_feature_names_out():
"""Check the interaction between prefit and the feature names."""
clf = RandomForestClassifier(n_estimators=2, random_state=0)
clf.fit(data, y)
model = SelectFromModel(clf, prefit=True, max_features=1)
name = type(model).__name__
err_msg = (
f"This {name} instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this estimator."
)
with pytest.raises(NotFittedError, match=err_msg):
model.get_feature_names_out()
model.fit(data, y)
feature_names = model.get_feature_names_out()
assert feature_names == ["x3"]
def test_threshold_string():
est = RandomForestClassifier(n_estimators=50, random_state=0)
model = SelectFromModel(est, threshold="0.5*mean")
model.fit(data, y)
X_transform = model.transform(data)
# Calculate the threshold from the estimator directly.
est.fit(data, y)
threshold = 0.5 * np.mean(est.feature_importances_)
mask = est.feature_importances_ > threshold
assert_array_almost_equal(X_transform, data[:, mask])
def test_threshold_without_refitting():
# Test that the threshold can be set without refitting the model.
clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None)
model = SelectFromModel(clf, threshold="0.1 * mean")
model.fit(data, y)
X_transform = model.transform(data)
# Set a higher threshold to filter out more features.
model.threshold = "1.0 * mean"
assert X_transform.shape[1] > model.transform(data).shape[1]
def test_fit_accepts_nan_inf():
# Test that fit doesn't check for np.inf and np.nan values.
clf = HistGradientBoostingClassifier(random_state=0)
model = SelectFromModel(estimator=clf)
nan_data = data.copy()
nan_data[0] = np.nan
nan_data[1] = np.inf
model.fit(data, y)
def test_transform_accepts_nan_inf():
# Test that transform doesn't check for np.inf and np.nan values.
clf = NaNTagRandomForest(n_estimators=100, random_state=0)
nan_data = data.copy()
model = SelectFromModel(estimator=clf)
model.fit(nan_data, y)
nan_data[0] = np.nan
nan_data[1] = np.inf
model.transform(nan_data)
def test_allow_nan_tag_comes_from_estimator():
allow_nan_est = NaNTag()
model = SelectFromModel(estimator=allow_nan_est)
assert model._get_tags()["allow_nan"] is True
no_nan_est = NoNaNTag()
model = SelectFromModel(estimator=no_nan_est)
assert model._get_tags()["allow_nan"] is False
def _pca_importances(pca_estimator):
return np.abs(pca_estimator.explained_variance_)
@pytest.mark.parametrize(
"estimator, importance_getter",
[
(
make_pipeline(PCA(random_state=0), LogisticRegression()),
"named_steps.logisticregression.coef_",
),
(PCA(random_state=0), _pca_importances),
],
)
def test_importance_getter(estimator, importance_getter):
selector = SelectFromModel(
estimator, threshold="mean", importance_getter=importance_getter
)
selector.fit(data, y)
assert selector.transform(data).shape[1] == 1
@pytest.mark.parametrize("PLSEstimator", [CCA, PLSCanonical, PLSRegression])
def test_select_from_model_pls(PLSEstimator):
"""Check the behaviour of SelectFromModel with PLS estimators.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/12410
"""
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = PLSEstimator(n_components=1)
model = make_pipeline(SelectFromModel(estimator), estimator).fit(X, y)
assert model.score(X, y) > 0.5
def test_estimator_does_not_support_feature_names():
"""SelectFromModel works with estimators that do not support feature_names_in_.
Non-regression test for #21949.
"""
pytest.importorskip("pandas")
X, y = datasets.load_iris(as_frame=True, return_X_y=True)
all_feature_names = set(X.columns)
def importance_getter(estimator):
return np.arange(X.shape[1])
selector = SelectFromModel(
MinimalClassifier(), importance_getter=importance_getter
).fit(X, y)
# selector learns the feature names itself
assert_array_equal(selector.feature_names_in_, X.columns)
feature_names_out = set(selector.get_feature_names_out())
assert feature_names_out < all_feature_names
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
selector.transform(X.iloc[1:3])
@pytest.mark.parametrize(
"error, err_msg, max_features",
(
[ValueError, "max_features == 10, must be <= 4", 10],
[ValueError, "max_features == 5, must be <= 4", lambda x: x.shape[1] + 1],
),
)
def test_partial_fit_validate_max_features(error, err_msg, max_features):
"""Test that partial_fit from SelectFromModel validates `max_features`."""
X, y = datasets.make_classification(
n_samples=100,
n_features=4,
random_state=0,
)
with pytest.raises(error, match=err_msg):
SelectFromModel(
estimator=SGDClassifier(), max_features=max_features
).partial_fit(X, y, classes=[0, 1])
@pytest.mark.parametrize("as_frame", [True, False])
def test_partial_fit_validate_feature_names(as_frame):
"""Test that partial_fit from SelectFromModel validates `feature_names_in_`."""
pytest.importorskip("pandas")
X, y = datasets.load_iris(as_frame=as_frame, return_X_y=True)
selector = SelectFromModel(estimator=SGDClassifier(), max_features=4).partial_fit(
X, y, classes=[0, 1, 2]
)
if as_frame:
assert_array_equal(selector.feature_names_in_, X.columns)
else:
assert not hasattr(selector, "feature_names_in_")
def test_from_model_estimator_attribute_error():
"""Check that we raise the proper AttributeError when the estimator
does not implement the `partial_fit` method, which is decorated with
`available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
"""
# `LinearRegression` does not implement 'partial_fit' and should raise an
# AttributeError
from_model = SelectFromModel(estimator=LinearRegression())
outer_msg = "This 'SelectFromModel' has no attribute 'partial_fit'"
inner_msg = "'LinearRegression' object has no attribute 'partial_fit'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
from_model.fit(data, y).partial_fit(data)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
|