File: test_rfe.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (615 lines) | stat: -rw-r--r-- 20,881 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""
Testing Recursive feature elimination
"""

from operator import attrgetter

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal

from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.compose import TransformedTargetRegressor
from sklearn.cross_decomposition import CCA, PLSCanonical, PLSRegression
from sklearn.datasets import load_iris, make_friedman1
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE, RFECV
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import get_scorer, make_scorer, zero_one_loss
from sklearn.model_selection import GroupKFold, cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC, SVR, LinearSVR
from sklearn.utils import check_random_state
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.fixes import CSR_CONTAINERS


class MockClassifier:
    """
    Dummy classifier to test recursive feature elimination
    """

    def __init__(self, foo_param=0):
        self.foo_param = foo_param

    def fit(self, X, y):
        assert len(X) == len(y)
        self.coef_ = np.ones(X.shape[1], dtype=np.float64)
        return self

    def predict(self, T):
        return T.shape[0]

    predict_proba = predict
    decision_function = predict
    transform = predict

    def score(self, X=None, y=None):
        return 0.0

    def get_params(self, deep=True):
        return {"foo_param": self.foo_param}

    def set_params(self, **params):
        return self

    def _more_tags(self):
        return {"allow_nan": True}


def test_rfe_features_importance():
    generator = check_random_state(0)
    iris = load_iris()
    # Add some irrelevant features. Random seed is set to make sure that
    # irrelevant features are always irrelevant.
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    clf = RandomForestClassifier(n_estimators=20, random_state=generator, max_depth=2)
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    assert len(rfe.ranking_) == X.shape[1]

    clf_svc = SVC(kernel="linear")
    rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1)
    rfe_svc.fit(X, y)

    # Check if the supports are equal
    assert_array_equal(rfe.get_support(), rfe_svc.get_support())


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_rfe(csr_container):
    generator = check_random_state(0)
    iris = load_iris()
    # Add some irrelevant features. Random seed is set to make sure that
    # irrelevant features are always irrelevant.
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    X_sparse = csr_container(X)
    y = iris.target

    # dense model
    clf = SVC(kernel="linear")
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    X_r = rfe.transform(X)
    clf.fit(X_r, y)
    assert len(rfe.ranking_) == X.shape[1]

    # sparse model
    clf_sparse = SVC(kernel="linear")
    rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1)
    rfe_sparse.fit(X_sparse, y)
    X_r_sparse = rfe_sparse.transform(X_sparse)

    assert X_r.shape == iris.data.shape
    assert_array_almost_equal(X_r[:10], iris.data[:10])

    assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data))
    assert rfe.score(X, y) == clf.score(iris.data, iris.target)
    assert_array_almost_equal(X_r, X_r_sparse.toarray())


def test_RFE_fit_score_params():
    # Make sure RFE passes the metadata down to fit and score methods of the
    # underlying estimator
    class TestEstimator(BaseEstimator, ClassifierMixin):
        def fit(self, X, y, prop=None):
            if prop is None:
                raise ValueError("fit: prop cannot be None")
            self.svc_ = SVC(kernel="linear").fit(X, y)
            self.coef_ = self.svc_.coef_
            return self

        def score(self, X, y, prop=None):
            if prop is None:
                raise ValueError("score: prop cannot be None")
            return self.svc_.score(X, y)

    X, y = load_iris(return_X_y=True)
    with pytest.raises(ValueError, match="fit: prop cannot be None"):
        RFE(estimator=TestEstimator()).fit(X, y)
    with pytest.raises(ValueError, match="score: prop cannot be None"):
        RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y)

    RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y, prop="foo")


def test_rfe_percent_n_features():
    # test that the results are the same
    generator = check_random_state(0)
    iris = load_iris()
    # Add some irrelevant features. Random seed is set to make sure that
    # irrelevant features are always irrelevant.
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target
    # there are 10 features in the data. We select 40%.
    clf = SVC(kernel="linear")
    rfe_num = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe_num.fit(X, y)

    rfe_perc = RFE(estimator=clf, n_features_to_select=0.4, step=0.1)
    rfe_perc.fit(X, y)

    assert_array_equal(rfe_perc.ranking_, rfe_num.ranking_)
    assert_array_equal(rfe_perc.support_, rfe_num.support_)


def test_rfe_mockclassifier():
    generator = check_random_state(0)
    iris = load_iris()
    # Add some irrelevant features. Random seed is set to make sure that
    # irrelevant features are always irrelevant.
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    # dense model
    clf = MockClassifier()
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    X_r = rfe.transform(X)
    clf.fit(X_r, y)
    assert len(rfe.ranking_) == X.shape[1]
    assert X_r.shape == iris.data.shape


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_rfecv(csr_container):
    generator = check_random_state(0)
    iris = load_iris()
    # Add some irrelevant features. Random seed is set to make sure that
    # irrelevant features are always irrelevant.
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:

    for key in rfecv.cv_results_.keys():
        assert len(rfecv.cv_results_[key]) == X.shape[1]

    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)

    # All the noisy variable were filtered out
    assert_array_equal(X_r, iris.data)

    # same in sparse
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1)
    X_sparse = csr_container(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Test using a customized loss function
    scoring = make_scorer(zero_one_loss, greater_is_better=False)
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scoring)
    ignore_warnings(rfecv.fit)(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test using a scorer
    scorer = get_scorer("accuracy")
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scorer)
    rfecv.fit(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test fix on cv_results_
    def test_scorer(estimator, X, y):
        return 1.0

    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=test_scorer)
    rfecv.fit(X, y)

    # In the event of cross validation score ties, the expected behavior of
    # RFECV is to return the FEWEST features that maximize the CV score.
    # Because test_scorer always returns 1.0 in this example, RFECV should
    # reduce the dimensionality to a single feature (i.e. n_features_ = 1)
    assert rfecv.n_features_ == 1

    # Same as the first two tests, but with step=2
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=2)
    rfecv.fit(X, y)

    for key in rfecv.cv_results_.keys():
        assert len(rfecv.cv_results_[key]) == 6

    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2)
    X_sparse = csr_container(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Verifying that steps < 1 don't blow up.
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=0.2)
    X_sparse = csr_container(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)


def test_rfecv_mockclassifier():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=MockClassifier(), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:

    for key in rfecv.cv_results_.keys():
        assert len(rfecv.cv_results_[key]) == X.shape[1]

    assert len(rfecv.ranking_) == X.shape[1]


def test_rfecv_verbose_output():
    # Check verbose=1 is producing an output.
    import sys
    from io import StringIO

    sys.stdout = StringIO()

    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)

    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, verbose=1)
    rfecv.fit(X, y)

    verbose_output = sys.stdout
    verbose_output.seek(0)
    assert len(verbose_output.readline()) > 0


def test_rfecv_cv_results_size(global_random_seed):
    generator = check_random_state(global_random_seed)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Non-regression test for varying combinations of step and
    # min_features_to_select.
    for step, min_features_to_select in [[2, 1], [2, 2], [3, 3]]:
        rfecv = RFECV(
            estimator=MockClassifier(),
            step=step,
            min_features_to_select=min_features_to_select,
        )
        rfecv.fit(X, y)

        score_len = np.ceil((X.shape[1] - min_features_to_select) / step) + 1

        for key in rfecv.cv_results_.keys():
            assert len(rfecv.cv_results_[key]) == score_len

        assert len(rfecv.ranking_) == X.shape[1]
        assert rfecv.n_features_ >= min_features_to_select


def test_rfe_estimator_tags():
    rfe = RFE(SVC(kernel="linear"))
    assert rfe._estimator_type == "classifier"
    # make sure that cross-validation is stratified
    iris = load_iris()
    score = cross_val_score(rfe, iris.data, iris.target)
    assert score.min() > 0.7


def test_rfe_min_step(global_random_seed):
    n_features = 10
    X, y = make_friedman1(
        n_samples=50, n_features=n_features, random_state=global_random_seed
    )
    n_samples, n_features = X.shape
    estimator = SVR(kernel="linear")

    # Test when floor(step * n_features) <= 0
    selector = RFE(estimator, step=0.01)
    sel = selector.fit(X, y)
    assert sel.support_.sum() == n_features // 2

    # Test when step is between (0,1) and floor(step * n_features) > 0
    selector = RFE(estimator, step=0.20)
    sel = selector.fit(X, y)
    assert sel.support_.sum() == n_features // 2

    # Test when step is an integer
    selector = RFE(estimator, step=5)
    sel = selector.fit(X, y)
    assert sel.support_.sum() == n_features // 2


def test_number_of_subsets_of_features(global_random_seed):
    # In RFE, 'number_of_subsets_of_features'
    # = the number of iterations in '_fit'
    # = max(ranking_)
    # = 1 + (n_features + step - n_features_to_select - 1) // step
    # After optimization #4534, this number
    # = 1 + np.ceil((n_features - n_features_to_select) / float(step))
    # This test case is to test their equivalence, refer to #4534 and #3824

    def formula1(n_features, n_features_to_select, step):
        return 1 + ((n_features + step - n_features_to_select - 1) // step)

    def formula2(n_features, n_features_to_select, step):
        return 1 + np.ceil((n_features - n_features_to_select) / float(step))

    # RFE
    # Case 1, n_features - n_features_to_select is divisible by step
    # Case 2, n_features - n_features_to_select is not divisible by step
    n_features_list = [11, 11]
    n_features_to_select_list = [3, 3]
    step_list = [2, 3]
    for n_features, n_features_to_select, step in zip(
        n_features_list, n_features_to_select_list, step_list
    ):
        generator = check_random_state(global_random_seed)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfe = RFE(
            estimator=SVC(kernel="linear"),
            n_features_to_select=n_features_to_select,
            step=step,
        )
        rfe.fit(X, y)
        # this number also equals to the maximum of ranking_
        assert np.max(rfe.ranking_) == formula1(n_features, n_features_to_select, step)
        assert np.max(rfe.ranking_) == formula2(n_features, n_features_to_select, step)

    # In RFECV, 'fit' calls 'RFE._fit'
    # 'number_of_subsets_of_features' of RFE
    # = the size of each score in 'cv_results_' of RFECV
    # = the number of iterations of the for loop before optimization #4534

    # RFECV, n_features_to_select = 1
    # Case 1, n_features - 1 is divisible by step
    # Case 2, n_features - 1 is not divisible by step

    n_features_to_select = 1
    n_features_list = [11, 10]
    step_list = [2, 2]
    for n_features, step in zip(n_features_list, step_list):
        generator = check_random_state(global_random_seed)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfecv = RFECV(estimator=SVC(kernel="linear"), step=step)
        rfecv.fit(X, y)

        for key in rfecv.cv_results_.keys():
            assert len(rfecv.cv_results_[key]) == formula1(
                n_features, n_features_to_select, step
            )
            assert len(rfecv.cv_results_[key]) == formula2(
                n_features, n_features_to_select, step
            )


def test_rfe_cv_n_jobs(global_random_seed):
    generator = check_random_state(global_random_seed)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    rfecv = RFECV(estimator=SVC(kernel="linear"))
    rfecv.fit(X, y)
    rfecv_ranking = rfecv.ranking_

    rfecv_cv_results_ = rfecv.cv_results_

    rfecv.set_params(n_jobs=2)
    rfecv.fit(X, y)
    assert_array_almost_equal(rfecv.ranking_, rfecv_ranking)

    assert rfecv_cv_results_.keys() == rfecv.cv_results_.keys()
    for key in rfecv_cv_results_.keys():
        assert rfecv_cv_results_[key] == pytest.approx(rfecv.cv_results_[key])


def test_rfe_cv_groups():
    generator = check_random_state(0)
    iris = load_iris()
    number_groups = 4
    groups = np.floor(np.linspace(0, number_groups, len(iris.target)))
    X = iris.data
    y = (iris.target > 0).astype(int)

    est_groups = RFECV(
        estimator=RandomForestClassifier(random_state=generator),
        step=1,
        scoring="accuracy",
        cv=GroupKFold(n_splits=2),
    )
    est_groups.fit(X, y, groups=groups)
    assert est_groups.n_features_ > 0


@pytest.mark.parametrize(
    "importance_getter", [attrgetter("regressor_.coef_"), "regressor_.coef_"]
)
@pytest.mark.parametrize("selector, expected_n_features", [(RFE, 5), (RFECV, 4)])
def test_rfe_wrapped_estimator(importance_getter, selector, expected_n_features):
    # Non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/15312
    X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
    estimator = LinearSVR(dual="auto", random_state=0)

    log_estimator = TransformedTargetRegressor(
        regressor=estimator, func=np.log, inverse_func=np.exp
    )

    selector = selector(log_estimator, importance_getter=importance_getter)
    sel = selector.fit(X, y)
    assert sel.support_.sum() == expected_n_features


@pytest.mark.parametrize(
    "importance_getter, err_type",
    [
        ("auto", ValueError),
        ("random", AttributeError),
        (lambda x: x.importance, AttributeError),
    ],
)
@pytest.mark.parametrize("Selector", [RFE, RFECV])
def test_rfe_importance_getter_validation(importance_getter, err_type, Selector):
    X, y = make_friedman1(n_samples=50, n_features=10, random_state=42)
    estimator = LinearSVR(dual="auto")
    log_estimator = TransformedTargetRegressor(
        regressor=estimator, func=np.log, inverse_func=np.exp
    )

    with pytest.raises(err_type):
        model = Selector(log_estimator, importance_getter=importance_getter)
        model.fit(X, y)


@pytest.mark.parametrize("cv", [None, 5])
def test_rfe_allow_nan_inf_in_x(cv):
    iris = load_iris()
    X = iris.data
    y = iris.target

    # add nan and inf value to X
    X[0][0] = np.nan
    X[0][1] = np.inf

    clf = MockClassifier()
    if cv is not None:
        rfe = RFECV(estimator=clf, cv=cv)
    else:
        rfe = RFE(estimator=clf)
    rfe.fit(X, y)
    rfe.transform(X)


def test_w_pipeline_2d_coef_():
    pipeline = make_pipeline(StandardScaler(), LogisticRegression())

    data, y = load_iris(return_X_y=True)
    sfm = RFE(
        pipeline,
        n_features_to_select=2,
        importance_getter="named_steps.logisticregression.coef_",
    )

    sfm.fit(data, y)
    assert sfm.transform(data).shape[1] == 2


def test_rfecv_std_and_mean(global_random_seed):
    generator = check_random_state(global_random_seed)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    rfecv = RFECV(estimator=SVC(kernel="linear"))
    rfecv.fit(X, y)
    n_split_keys = len(rfecv.cv_results_) - 2
    split_keys = [f"split{i}_test_score" for i in range(n_split_keys)]

    cv_scores = np.asarray([rfecv.cv_results_[key] for key in split_keys])
    expected_mean = np.mean(cv_scores, axis=0)
    expected_std = np.std(cv_scores, axis=0)

    assert_allclose(rfecv.cv_results_["mean_test_score"], expected_mean)
    assert_allclose(rfecv.cv_results_["std_test_score"], expected_std)


@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
def test_multioutput(ClsRFE):
    X = np.random.normal(size=(10, 3))
    y = np.random.randint(2, size=(10, 2))
    clf = RandomForestClassifier(n_estimators=5)
    rfe_test = ClsRFE(clf)
    rfe_test.fit(X, y)


@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
def test_pipeline_with_nans(ClsRFE):
    """Check that RFE works with pipeline that accept nans.

    Non-regression test for gh-21743.
    """
    X, y = load_iris(return_X_y=True)
    X[0, 0] = np.nan

    pipe = make_pipeline(
        SimpleImputer(),
        StandardScaler(),
        LogisticRegression(),
    )

    fs = ClsRFE(
        estimator=pipe,
        importance_getter="named_steps.logisticregression.coef_",
    )
    fs.fit(X, y)


@pytest.mark.parametrize("ClsRFE", [RFE, RFECV])
@pytest.mark.parametrize("PLSEstimator", [CCA, PLSCanonical, PLSRegression])
def test_rfe_pls(ClsRFE, PLSEstimator):
    """Check the behaviour of RFE with PLS estimators.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/12410
    """
    X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
    estimator = PLSEstimator(n_components=1)
    selector = ClsRFE(estimator, step=1).fit(X, y)
    assert selector.score(X, y) > 0.5


def test_rfe_estimator_attribute_error():
    """Check that we raise the proper AttributeError when the estimator
    does not implement the `decision_function` method, which is decorated with
    `available_if`.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/28108
    """
    iris = load_iris()

    # `LinearRegression` does not implement 'decision_function' and should raise an
    # AttributeError
    rfe = RFE(estimator=LinearRegression())

    outer_msg = "This 'RFE' has no attribute 'decision_function'"
    inner_msg = "'LinearRegression' object has no attribute 'decision_function'"
    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        rfe.fit(iris.data, iris.target).decision_function(iris.data)
    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner_msg in str(exec_info.value.__cause__)