1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
"""Testing for Gaussian process classification """
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause
import warnings
import numpy as np
import pytest
from scipy.optimize import approx_fprime
from sklearn.exceptions import ConvergenceWarning
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import (
RBF,
CompoundKernel,
WhiteKernel,
)
from sklearn.gaussian_process.kernels import (
ConstantKernel as C,
)
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
from sklearn.utils._testing import assert_almost_equal, assert_array_equal
def f(x):
return np.sin(x)
X = np.atleast_2d(np.linspace(0, 10, 30)).T
X2 = np.atleast_2d([2.0, 4.0, 5.5, 6.5, 7.5]).T
y = np.array(f(X).ravel() > 0, dtype=int)
fX = f(X).ravel()
y_mc = np.empty(y.shape, dtype=int) # multi-class
y_mc[fX < -0.35] = 0
y_mc[(fX >= -0.35) & (fX < 0.35)] = 1
y_mc[fX > 0.35] = 2
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
kernels = [
RBF(length_scale=0.1),
fixed_kernel,
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
]
non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel]
@pytest.mark.parametrize("kernel", kernels)
def test_predict_consistent(kernel):
# Check binary predict decision has also predicted probability above 0.5.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
def test_predict_consistent_structured():
# Check binary predict decision has also predicted probability above 0.5.
X = ["A", "AB", "B"]
y = np.array([True, False, True])
kernel = MiniSeqKernel(baseline_similarity_bounds="fixed")
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5)
@pytest.mark.parametrize("kernel", non_fixed_kernels)
def test_lml_improving(kernel):
# Test that hyperparameter-tuning improves log-marginal likelihood.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert gpc.log_marginal_likelihood(gpc.kernel_.theta) > gpc.log_marginal_likelihood(
kernel.theta
)
@pytest.mark.parametrize("kernel", kernels)
def test_lml_precomputed(kernel):
# Test that lml of optimized kernel is stored correctly.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_almost_equal(
gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7
)
@pytest.mark.parametrize("kernel", kernels)
def test_lml_without_cloning_kernel(kernel):
# Test that clone_kernel=False has side-effects of kernel.theta.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64)
gpc.log_marginal_likelihood(input_theta, clone_kernel=False)
assert_almost_equal(gpc.kernel_.theta, input_theta, 7)
@pytest.mark.parametrize("kernel", non_fixed_kernels)
def test_converged_to_local_maximum(kernel):
# Test that we are in local maximum after hyperparameter-optimization.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
lml, lml_gradient = gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
assert np.all(
(np.abs(lml_gradient) < 1e-4)
| (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0])
| (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1])
)
@pytest.mark.parametrize("kernel", kernels)
def test_lml_gradient(kernel):
# Compare analytic and numeric gradient of log marginal likelihood.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
lml_gradient_approx = approx_fprime(
kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10
)
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
def test_random_starts(global_random_seed):
# Test that an increasing number of random-starts of GP fitting only
# increases the log marginal likelihood of the chosen theta.
n_samples, n_features = 25, 2
rng = np.random.RandomState(global_random_seed)
X = rng.randn(n_samples, n_features) * 2 - 1
y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0
kernel = C(1.0, (1e-2, 1e2)) * RBF(
length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e2)] * n_features
)
last_lml = -np.inf
for n_restarts_optimizer in range(5):
gp = GaussianProcessClassifier(
kernel=kernel,
n_restarts_optimizer=n_restarts_optimizer,
random_state=global_random_seed,
).fit(X, y)
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
assert lml > last_lml - np.finfo(np.float32).eps
last_lml = lml
@pytest.mark.parametrize("kernel", non_fixed_kernels)
def test_custom_optimizer(kernel, global_random_seed):
# Test that GPC can use externally defined optimizers.
# Define a dummy optimizer that simply tests 10 random hyperparameters
def optimizer(obj_func, initial_theta, bounds):
rng = np.random.RandomState(global_random_seed)
theta_opt, func_min = initial_theta, obj_func(
initial_theta, eval_gradient=False
)
for _ in range(10):
theta = np.atleast_1d(
rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))
)
f = obj_func(theta, eval_gradient=False)
if f < func_min:
theta_opt, func_min = theta, f
return theta_opt, func_min
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
gpc.fit(X, y_mc)
# Checks that optimizer improved marginal likelihood
assert gpc.log_marginal_likelihood(
gpc.kernel_.theta
) >= gpc.log_marginal_likelihood(kernel.theta)
@pytest.mark.parametrize("kernel", kernels)
def test_multi_class(kernel):
# Test GPC for multi-class classification problems.
gpc = GaussianProcessClassifier(kernel=kernel)
gpc.fit(X, y_mc)
y_prob = gpc.predict_proba(X2)
assert_almost_equal(y_prob.sum(1), 1)
y_pred = gpc.predict(X2)
assert_array_equal(np.argmax(y_prob, 1), y_pred)
@pytest.mark.parametrize("kernel", kernels)
def test_multi_class_n_jobs(kernel):
# Test that multi-class GPC produces identical results with n_jobs>1.
gpc = GaussianProcessClassifier(kernel=kernel)
gpc.fit(X, y_mc)
gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
gpc_2.fit(X, y_mc)
y_prob = gpc.predict_proba(X2)
y_prob_2 = gpc_2.predict_proba(X2)
assert_almost_equal(y_prob, y_prob_2)
def test_warning_bounds():
kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
gpc = GaussianProcessClassifier(kernel=kernel)
warning_message = (
"The optimal value found for dimension 0 of parameter "
"length_scale is close to the specified upper bound "
"0.001. Increasing the bound and calling fit again may "
"find a better value."
)
with pytest.warns(ConvergenceWarning, match=warning_message):
gpc.fit(X, y)
kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
length_scale_bounds=[1e3, 1e5]
)
gpc_sum = GaussianProcessClassifier(kernel=kernel_sum)
with warnings.catch_warnings(record=True) as record:
warnings.simplefilter("always")
gpc_sum.fit(X, y)
assert len(record) == 2
assert issubclass(record[0].category, ConvergenceWarning)
assert (
record[0].message.args[0]
== "The optimal value found for "
"dimension 0 of parameter "
"k1__noise_level is close to the "
"specified upper bound 0.001. "
"Increasing the bound and calling "
"fit again may find a better value."
)
assert issubclass(record[1].category, ConvergenceWarning)
assert (
record[1].message.args[0]
== "The optimal value found for "
"dimension 0 of parameter "
"k2__length_scale is close to the "
"specified lower bound 1000.0. "
"Decreasing the bound and calling "
"fit again may find a better value."
)
X_tile = np.tile(X, 2)
kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
gpc_dims = GaussianProcessClassifier(kernel=kernel_dims)
with warnings.catch_warnings(record=True) as record:
warnings.simplefilter("always")
gpc_dims.fit(X_tile, y)
assert len(record) == 2
assert issubclass(record[0].category, ConvergenceWarning)
assert (
record[0].message.args[0]
== "The optimal value found for "
"dimension 0 of parameter "
"length_scale is close to the "
"specified upper bound 100.0. "
"Increasing the bound and calling "
"fit again may find a better value."
)
assert issubclass(record[1].category, ConvergenceWarning)
assert (
record[1].message.args[0]
== "The optimal value found for "
"dimension 1 of parameter "
"length_scale is close to the "
"specified upper bound 100.0. "
"Increasing the bound and calling "
"fit again may find a better value."
)
@pytest.mark.parametrize(
"params, error_type, err_msg",
[
(
{"kernel": CompoundKernel(0)},
ValueError,
"kernel cannot be a CompoundKernel",
)
],
)
def test_gpc_fit_error(params, error_type, err_msg):
"""Check that expected error are raised during fit."""
gpc = GaussianProcessClassifier(**params)
with pytest.raises(error_type, match=err_msg):
gpc.fit(X, y)
|