1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
import warnings
import numpy as np
import pytest
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.datasets import (
load_diabetes,
load_iris,
make_classification,
make_multilabel_classification,
)
from sklearn.ensemble import IsolationForest
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.inspection._plot.decision_boundary import _check_boundary_response_method
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import scale
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._testing import (
assert_allclose,
assert_array_equal,
)
# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
"ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
"matplotlib.*"
)
X, y = make_classification(
n_informative=1,
n_redundant=1,
n_clusters_per_class=1,
n_features=2,
random_state=42,
)
def load_iris_2d_scaled():
X, y = load_iris(return_X_y=True)
X = scale(X)[:, :2]
return X, y
@pytest.fixture(scope="module")
def fitted_clf():
return LogisticRegression().fit(X, y)
def test_input_data_dimension(pyplot):
"""Check that we raise an error when `X` does not have exactly 2 features."""
X, y = make_classification(n_samples=10, n_features=4, random_state=0)
clf = LogisticRegression().fit(X, y)
msg = "n_features must be equal to 2. Got 4 instead."
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(estimator=clf, X=X)
def test_check_boundary_response_method_error():
"""Check that we raise an error for the cases not supported by
`_check_boundary_response_method`.
"""
class MultiLabelClassifier:
classes_ = [np.array([0, 1]), np.array([0, 1])]
err_msg = "Multi-label and multi-output multi-class classifiers are not supported"
with pytest.raises(ValueError, match=err_msg):
_check_boundary_response_method(MultiLabelClassifier(), "predict", None)
class MulticlassClassifier:
classes_ = [0, 1, 2]
err_msg = "Multiclass classifiers are only supported when `response_method` is"
for response_method in ("predict_proba", "decision_function"):
with pytest.raises(ValueError, match=err_msg):
_check_boundary_response_method(
MulticlassClassifier(), response_method, None
)
@pytest.mark.parametrize(
"estimator, response_method, class_of_interest, expected_prediction_method",
[
(DecisionTreeRegressor(), "predict", None, "predict"),
(DecisionTreeRegressor(), "auto", None, "predict"),
(LogisticRegression().fit(*load_iris_2d_scaled()), "predict", None, "predict"),
(LogisticRegression().fit(*load_iris_2d_scaled()), "auto", None, "predict"),
(
LogisticRegression().fit(*load_iris_2d_scaled()),
"predict_proba",
0,
"predict_proba",
),
(
LogisticRegression().fit(*load_iris_2d_scaled()),
"decision_function",
0,
"decision_function",
),
(
LogisticRegression().fit(X, y),
"auto",
None,
["decision_function", "predict_proba", "predict"],
),
(LogisticRegression().fit(X, y), "predict", None, "predict"),
(
LogisticRegression().fit(X, y),
["predict_proba", "decision_function"],
None,
["predict_proba", "decision_function"],
),
],
)
def test_check_boundary_response_method(
estimator, response_method, class_of_interest, expected_prediction_method
):
"""Check the behaviour of `_check_boundary_response_method` for the supported
cases.
"""
prediction_method = _check_boundary_response_method(
estimator, response_method, class_of_interest
)
assert prediction_method == expected_prediction_method
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
def test_multiclass_error(pyplot, response_method):
"""Check multiclass errors."""
X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
X = X[:, [0, 1]]
lr = LogisticRegression().fit(X, y)
msg = (
"Multiclass classifiers are only supported when `response_method` is 'predict'"
" or 'auto'"
)
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(lr, X, response_method=response_method)
@pytest.mark.parametrize("response_method", ["auto", "predict"])
def test_multiclass(pyplot, response_method):
"""Check multiclass gives expected results."""
grid_resolution = 10
eps = 1.0
X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
X = X[:, [0, 1]]
lr = LogisticRegression(random_state=0).fit(X, y)
disp = DecisionBoundaryDisplay.from_estimator(
lr, X, response_method=response_method, grid_resolution=grid_resolution, eps=1.0
)
x0_min, x0_max = X[:, 0].min() - eps, X[:, 0].max() + eps
x1_min, x1_max = X[:, 1].min() - eps, X[:, 1].max() + eps
xx0, xx1 = np.meshgrid(
np.linspace(x0_min, x0_max, grid_resolution),
np.linspace(x1_min, x1_max, grid_resolution),
)
response = lr.predict(np.c_[xx0.ravel(), xx1.ravel()])
assert_allclose(disp.response, response.reshape(xx0.shape))
assert_allclose(disp.xx0, xx0)
assert_allclose(disp.xx1, xx1)
@pytest.mark.parametrize(
"kwargs, error_msg",
[
(
{"plot_method": "hello_world"},
r"plot_method must be one of contourf, contour, pcolormesh. Got hello_world"
r" instead.",
),
(
{"grid_resolution": 1},
r"grid_resolution must be greater than 1. Got 1 instead",
),
(
{"grid_resolution": -1},
r"grid_resolution must be greater than 1. Got -1 instead",
),
({"eps": -1.1}, r"eps must be greater than or equal to 0. Got -1.1 instead"),
],
)
def test_input_validation_errors(pyplot, kwargs, error_msg, fitted_clf):
"""Check input validation from_estimator."""
with pytest.raises(ValueError, match=error_msg):
DecisionBoundaryDisplay.from_estimator(fitted_clf, X, **kwargs)
def test_display_plot_input_error(pyplot, fitted_clf):
"""Check input validation for `plot`."""
disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, X, grid_resolution=5)
with pytest.raises(ValueError, match="plot_method must be 'contourf'"):
disp.plot(plot_method="hello_world")
@pytest.mark.parametrize(
"response_method", ["auto", "predict", "predict_proba", "decision_function"]
)
@pytest.mark.parametrize("plot_method", ["contourf", "contour"])
def test_decision_boundary_display_classifier(
pyplot, fitted_clf, response_method, plot_method
):
"""Check that decision boundary is correct."""
fig, ax = pyplot.subplots()
eps = 2.0
disp = DecisionBoundaryDisplay.from_estimator(
fitted_clf,
X,
grid_resolution=5,
response_method=response_method,
plot_method=plot_method,
eps=eps,
ax=ax,
)
assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
assert disp.ax_ == ax
assert disp.figure_ == fig
x0, x1 = X[:, 0], X[:, 1]
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
assert disp.xx0.min() == pytest.approx(x0_min)
assert disp.xx0.max() == pytest.approx(x0_max)
assert disp.xx1.min() == pytest.approx(x1_min)
assert disp.xx1.max() == pytest.approx(x1_max)
fig2, ax2 = pyplot.subplots()
# change plotting method for second plot
disp.plot(plot_method="pcolormesh", ax=ax2, shading="auto")
assert isinstance(disp.surface_, pyplot.matplotlib.collections.QuadMesh)
assert disp.ax_ == ax2
assert disp.figure_ == fig2
@pytest.mark.parametrize("response_method", ["auto", "predict", "decision_function"])
@pytest.mark.parametrize("plot_method", ["contourf", "contour"])
def test_decision_boundary_display_outlier_detector(
pyplot, response_method, plot_method
):
"""Check that decision boundary is correct for outlier detector."""
fig, ax = pyplot.subplots()
eps = 2.0
outlier_detector = IsolationForest(random_state=0).fit(X, y)
disp = DecisionBoundaryDisplay.from_estimator(
outlier_detector,
X,
grid_resolution=5,
response_method=response_method,
plot_method=plot_method,
eps=eps,
ax=ax,
)
assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
assert disp.ax_ == ax
assert disp.figure_ == fig
x0, x1 = X[:, 0], X[:, 1]
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
assert disp.xx0.min() == pytest.approx(x0_min)
assert disp.xx0.max() == pytest.approx(x0_max)
assert disp.xx1.min() == pytest.approx(x1_min)
assert disp.xx1.max() == pytest.approx(x1_max)
@pytest.mark.parametrize("response_method", ["auto", "predict"])
@pytest.mark.parametrize("plot_method", ["contourf", "contour"])
def test_decision_boundary_display_regressor(pyplot, response_method, plot_method):
"""Check that we can display the decision boundary for a regressor."""
X, y = load_diabetes(return_X_y=True)
X = X[:, :2]
tree = DecisionTreeRegressor().fit(X, y)
fig, ax = pyplot.subplots()
eps = 2.0
disp = DecisionBoundaryDisplay.from_estimator(
tree,
X,
response_method=response_method,
ax=ax,
eps=eps,
plot_method=plot_method,
)
assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
assert disp.ax_ == ax
assert disp.figure_ == fig
x0, x1 = X[:, 0], X[:, 1]
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
assert disp.xx0.min() == pytest.approx(x0_min)
assert disp.xx0.max() == pytest.approx(x0_max)
assert disp.xx1.min() == pytest.approx(x1_min)
assert disp.xx1.max() == pytest.approx(x1_max)
fig2, ax2 = pyplot.subplots()
# change plotting method for second plot
disp.plot(plot_method="pcolormesh", ax=ax2, shading="auto")
assert isinstance(disp.surface_, pyplot.matplotlib.collections.QuadMesh)
assert disp.ax_ == ax2
assert disp.figure_ == fig2
@pytest.mark.parametrize(
"response_method, msg",
[
(
"predict_proba",
"MyClassifier has none of the following attributes: predict_proba",
),
(
"decision_function",
"MyClassifier has none of the following attributes: decision_function",
),
(
"auto",
(
"MyClassifier has none of the following attributes: decision_function, "
"predict_proba, predict"
),
),
(
"bad_method",
"MyClassifier has none of the following attributes: bad_method",
),
],
)
def test_error_bad_response(pyplot, response_method, msg):
"""Check errors for bad response."""
class MyClassifier(BaseEstimator, ClassifierMixin):
def fit(self, X, y):
self.fitted_ = True
self.classes_ = [0, 1]
return self
clf = MyClassifier().fit(X, y)
with pytest.raises(AttributeError, match=msg):
DecisionBoundaryDisplay.from_estimator(clf, X, response_method=response_method)
@pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
def test_multilabel_classifier_error(pyplot, response_method):
"""Check that multilabel classifier raises correct error."""
X, y = make_multilabel_classification(random_state=0)
X = X[:, :2]
tree = DecisionTreeClassifier().fit(X, y)
msg = "Multi-label and multi-output multi-class classifiers are not supported"
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(
tree,
X,
response_method=response_method,
)
@pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
def test_multi_output_multi_class_classifier_error(pyplot, response_method):
"""Check that multi-output multi-class classifier raises correct error."""
X = np.asarray([[0, 1], [1, 2]])
y = np.asarray([["tree", "cat"], ["cat", "tree"]])
tree = DecisionTreeClassifier().fit(X, y)
msg = "Multi-label and multi-output multi-class classifiers are not supported"
with pytest.raises(ValueError, match=msg):
DecisionBoundaryDisplay.from_estimator(
tree,
X,
response_method=response_method,
)
def test_multioutput_regressor_error(pyplot):
"""Check that multioutput regressor raises correct error."""
X = np.asarray([[0, 1], [1, 2]])
y = np.asarray([[0, 1], [4, 1]])
tree = DecisionTreeRegressor().fit(X, y)
with pytest.raises(ValueError, match="Multi-output regressors are not supported"):
DecisionBoundaryDisplay.from_estimator(tree, X, response_method="predict")
@pytest.mark.parametrize(
"response_method",
["predict_proba", "decision_function", ["predict_proba", "predict"]],
)
def test_regressor_unsupported_response(pyplot, response_method):
"""Check that we can display the decision boundary for a regressor."""
X, y = load_diabetes(return_X_y=True)
X = X[:, :2]
tree = DecisionTreeRegressor().fit(X, y)
err_msg = "should either be a classifier to be used with response_method"
with pytest.raises(ValueError, match=err_msg):
DecisionBoundaryDisplay.from_estimator(tree, X, response_method=response_method)
@pytest.mark.filterwarnings(
# We expect to raise the following warning because the classifier is fit on a
# NumPy array
"ignore:X has feature names, but LogisticRegression was fitted without"
)
def test_dataframe_labels_used(pyplot, fitted_clf):
"""Check that column names are used for pandas."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(X, columns=["col_x", "col_y"])
# pandas column names are used by default
_, ax = pyplot.subplots()
disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, df, ax=ax)
assert ax.get_xlabel() == "col_x"
assert ax.get_ylabel() == "col_y"
# second call to plot will have the names
fig, ax = pyplot.subplots()
disp.plot(ax=ax)
assert ax.get_xlabel() == "col_x"
assert ax.get_ylabel() == "col_y"
# axes with a label will not get overridden
fig, ax = pyplot.subplots()
ax.set(xlabel="hello", ylabel="world")
disp.plot(ax=ax)
assert ax.get_xlabel() == "hello"
assert ax.get_ylabel() == "world"
# labels get overridden only if provided to the `plot` method
disp.plot(ax=ax, xlabel="overwritten_x", ylabel="overwritten_y")
assert ax.get_xlabel() == "overwritten_x"
assert ax.get_ylabel() == "overwritten_y"
# labels do not get inferred if provided to `from_estimator`
_, ax = pyplot.subplots()
disp = DecisionBoundaryDisplay.from_estimator(
fitted_clf, df, ax=ax, xlabel="overwritten_x", ylabel="overwritten_y"
)
assert ax.get_xlabel() == "overwritten_x"
assert ax.get_ylabel() == "overwritten_y"
def test_string_target(pyplot):
"""Check that decision boundary works with classifiers trained on string labels."""
iris = load_iris()
X = iris.data[:, [0, 1]]
# Use strings as target
y = iris.target_names[iris.target]
log_reg = LogisticRegression().fit(X, y)
# Does not raise
DecisionBoundaryDisplay.from_estimator(
log_reg,
X,
grid_resolution=5,
response_method="predict",
)
def test_dataframe_support(pyplot):
"""Check that passing a dataframe at fit and to the Display does not
raise warnings.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/23311
"""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(X, columns=["col_x", "col_y"])
estimator = LogisticRegression().fit(df, y)
with warnings.catch_warnings():
# no warnings linked to feature names validation should be raised
warnings.simplefilter("error", UserWarning)
DecisionBoundaryDisplay.from_estimator(estimator, df, response_method="predict")
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
def test_class_of_interest_binary(pyplot, response_method):
"""Check the behaviour of passing `class_of_interest` for plotting the output of
`predict_proba` and `decision_function` in the binary case.
"""
iris = load_iris()
X = iris.data[:100, :2]
y = iris.target[:100]
assert_array_equal(np.unique(y), [0, 1])
estimator = LogisticRegression().fit(X, y)
# We will check that `class_of_interest=None` is equivalent to
# `class_of_interest=estimator.classes_[1]`
disp_default = DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=None,
)
disp_class_1 = DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=estimator.classes_[1],
)
assert_allclose(disp_default.response, disp_class_1.response)
# we can check that `_get_response_values` modifies the response when targeting
# the other class, i.e. 1 - p(y=1|x) for `predict_proba` and -decision_function
# for `decision_function`.
disp_class_0 = DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=estimator.classes_[0],
)
if response_method == "predict_proba":
assert_allclose(disp_default.response, 1 - disp_class_0.response)
else:
assert response_method == "decision_function"
assert_allclose(disp_default.response, -disp_class_0.response)
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
def test_class_of_interest_multiclass(pyplot, response_method):
"""Check the behaviour of passing `class_of_interest` for plotting the output of
`predict_proba` and `decision_function` in the multiclass case.
"""
iris = load_iris()
X = iris.data[:, :2]
y = iris.target # the target are numerical labels
class_of_interest_idx = 2
estimator = LogisticRegression().fit(X, y)
disp = DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=class_of_interest_idx,
)
# we will check that we plot the expected values as response
grid = np.concatenate([disp.xx0.reshape(-1, 1), disp.xx1.reshape(-1, 1)], axis=1)
response = getattr(estimator, response_method)(grid)[:, class_of_interest_idx]
assert_allclose(response.reshape(*disp.response.shape), disp.response)
# make the same test but this time using target as strings
y = iris.target_names[iris.target]
estimator = LogisticRegression().fit(X, y)
disp = DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=iris.target_names[class_of_interest_idx],
)
grid = np.concatenate([disp.xx0.reshape(-1, 1), disp.xx1.reshape(-1, 1)], axis=1)
response = getattr(estimator, response_method)(grid)[:, class_of_interest_idx]
assert_allclose(response.reshape(*disp.response.shape), disp.response)
# check that we raise an error for unknown labels
# this test should already be handled in `_get_response_values` but we can have this
# test here as well
err_msg = "class_of_interest=2 is not a valid label: It should be one of"
with pytest.raises(ValueError, match=err_msg):
DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=class_of_interest_idx,
)
# TODO: remove this test when we handle multiclass with class_of_interest=None
# by showing the max of the decision function or the max of the predicted
# probabilities.
err_msg = "Multiclass classifiers are only supported"
with pytest.raises(ValueError, match=err_msg):
DecisionBoundaryDisplay.from_estimator(
estimator,
X,
response_method=response_method,
class_of_interest=None,
)
def test_subclass_named_constructors_return_type_is_subclass(pyplot):
"""Check that named constructors return the correct type when subclassed.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/27675
"""
clf = LogisticRegression().fit(X, y)
class SubclassOfDisplay(DecisionBoundaryDisplay):
pass
curve = SubclassOfDisplay.from_estimator(estimator=clf, X=X)
assert isinstance(curve, SubclassOfDisplay)
|