File: test_partial_dependence.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (958 lines) | stat: -rw-r--r-- 33,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
"""
Testing for the partial dependence module.
"""
import warnings

import numpy as np
import pytest

import sklearn
from sklearn.base import BaseEstimator, ClassifierMixin, clone, is_regressor
from sklearn.cluster import KMeans
from sklearn.compose import make_column_transformer
from sklearn.datasets import load_iris, make_classification, make_regression
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import (
    GradientBoostingClassifier,
    GradientBoostingRegressor,
    HistGradientBoostingClassifier,
    HistGradientBoostingRegressor,
    RandomForestRegressor,
)
from sklearn.exceptions import NotFittedError
from sklearn.inspection import partial_dependence
from sklearn.inspection._partial_dependence import (
    _grid_from_X,
    _partial_dependence_brute,
    _partial_dependence_recursion,
)
from sklearn.linear_model import LinearRegression, LogisticRegression, MultiTaskLasso
from sklearn.metrics import r2_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
    PolynomialFeatures,
    RobustScaler,
    StandardScaler,
    scale,
)
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree.tests.test_tree import assert_is_subtree
from sklearn.utils import _IS_32BIT
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.validation import check_random_state

# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]


# (X, y), n_targets  <-- as expected in the output of partial_dep()
binary_classification_data = (make_classification(n_samples=50, random_state=0), 1)
multiclass_classification_data = (
    make_classification(
        n_samples=50, n_classes=3, n_clusters_per_class=1, random_state=0
    ),
    3,
)
regression_data = (make_regression(n_samples=50, random_state=0), 1)
multioutput_regression_data = (
    make_regression(n_samples=50, n_targets=2, random_state=0),
    2,
)

# iris
iris = load_iris()


@pytest.mark.parametrize(
    "Estimator, method, data",
    [
        (GradientBoostingClassifier, "auto", binary_classification_data),
        (GradientBoostingClassifier, "auto", multiclass_classification_data),
        (GradientBoostingClassifier, "brute", binary_classification_data),
        (GradientBoostingClassifier, "brute", multiclass_classification_data),
        (GradientBoostingRegressor, "auto", regression_data),
        (GradientBoostingRegressor, "brute", regression_data),
        (DecisionTreeRegressor, "brute", regression_data),
        (LinearRegression, "brute", regression_data),
        (LinearRegression, "brute", multioutput_regression_data),
        (LogisticRegression, "brute", binary_classification_data),
        (LogisticRegression, "brute", multiclass_classification_data),
        (MultiTaskLasso, "brute", multioutput_regression_data),
    ],
)
@pytest.mark.parametrize("grid_resolution", (5, 10))
@pytest.mark.parametrize("features", ([1], [1, 2]))
@pytest.mark.parametrize("kind", ("average", "individual", "both"))
def test_output_shape(Estimator, method, data, grid_resolution, features, kind):
    # Check that partial_dependence has consistent output shape for different
    # kinds of estimators:
    # - classifiers with binary and multiclass settings
    # - regressors
    # - multi-task regressors

    est = Estimator()
    if hasattr(est, "n_estimators"):
        est.set_params(n_estimators=2)  # speed-up computations

    # n_target corresponds to the number of classes (1 for binary classif) or
    # the number of tasks / outputs in multi task settings. It's equal to 1 for
    # classical regression_data.
    (X, y), n_targets = data
    n_instances = X.shape[0]

    est.fit(X, y)
    result = partial_dependence(
        est,
        X=X,
        features=features,
        method=method,
        kind=kind,
        grid_resolution=grid_resolution,
    )
    pdp, axes = result, result["grid_values"]

    expected_pdp_shape = (n_targets, *[grid_resolution for _ in range(len(features))])
    expected_ice_shape = (
        n_targets,
        n_instances,
        *[grid_resolution for _ in range(len(features))],
    )
    if kind == "average":
        assert pdp.average.shape == expected_pdp_shape
    elif kind == "individual":
        assert pdp.individual.shape == expected_ice_shape
    else:  # 'both'
        assert pdp.average.shape == expected_pdp_shape
        assert pdp.individual.shape == expected_ice_shape

    expected_axes_shape = (len(features), grid_resolution)
    assert axes is not None
    assert np.asarray(axes).shape == expected_axes_shape


def test_grid_from_X():
    # tests for _grid_from_X: sanity check for output, and for shapes.

    # Make sure that the grid is a cartesian product of the input (it will use
    # the unique values instead of the percentiles)
    percentiles = (0.05, 0.95)
    grid_resolution = 100
    is_categorical = [False, False]
    X = np.asarray([[1, 2], [3, 4]])
    grid, axes = _grid_from_X(X, percentiles, is_categorical, grid_resolution)
    assert_array_equal(grid, [[1, 2], [1, 4], [3, 2], [3, 4]])
    assert_array_equal(axes, X.T)

    # test shapes of returned objects depending on the number of unique values
    # for a feature.
    rng = np.random.RandomState(0)
    grid_resolution = 15

    # n_unique_values > grid_resolution
    X = rng.normal(size=(20, 2))
    grid, axes = _grid_from_X(
        X, percentiles, is_categorical, grid_resolution=grid_resolution
    )
    assert grid.shape == (grid_resolution * grid_resolution, X.shape[1])
    assert np.asarray(axes).shape == (2, grid_resolution)

    # n_unique_values < grid_resolution, will use actual values
    n_unique_values = 12
    X[n_unique_values - 1 :, 0] = 12345
    rng.shuffle(X)  # just to make sure the order is irrelevant
    grid, axes = _grid_from_X(
        X, percentiles, is_categorical, grid_resolution=grid_resolution
    )
    assert grid.shape == (n_unique_values * grid_resolution, X.shape[1])
    # axes is a list of arrays of different shapes
    assert axes[0].shape == (n_unique_values,)
    assert axes[1].shape == (grid_resolution,)


@pytest.mark.parametrize(
    "grid_resolution",
    [
        2,  # since n_categories > 2, we should not use quantiles resampling
        100,
    ],
)
def test_grid_from_X_with_categorical(grid_resolution):
    """Check that `_grid_from_X` always sample from categories and does not
    depend from the percentiles.
    """
    pd = pytest.importorskip("pandas")
    percentiles = (0.05, 0.95)
    is_categorical = [True]
    X = pd.DataFrame({"cat_feature": ["A", "B", "C", "A", "B", "D", "E"]})
    grid, axes = _grid_from_X(
        X, percentiles, is_categorical, grid_resolution=grid_resolution
    )
    assert grid.shape == (5, X.shape[1])
    assert axes[0].shape == (5,)


@pytest.mark.parametrize("grid_resolution", [3, 100])
def test_grid_from_X_heterogeneous_type(grid_resolution):
    """Check that `_grid_from_X` always sample from categories and does not
    depend from the percentiles.
    """
    pd = pytest.importorskip("pandas")
    percentiles = (0.05, 0.95)
    is_categorical = [True, False]
    X = pd.DataFrame(
        {
            "cat": ["A", "B", "C", "A", "B", "D", "E", "A", "B", "D"],
            "num": [1, 1, 1, 2, 5, 6, 6, 6, 6, 8],
        }
    )
    nunique = X.nunique()

    grid, axes = _grid_from_X(
        X, percentiles, is_categorical, grid_resolution=grid_resolution
    )
    if grid_resolution == 3:
        assert grid.shape == (15, 2)
        assert axes[0].shape[0] == nunique["num"]
        assert axes[1].shape[0] == grid_resolution
    else:
        assert grid.shape == (25, 2)
        assert axes[0].shape[0] == nunique["cat"]
        assert axes[1].shape[0] == nunique["cat"]


@pytest.mark.parametrize(
    "grid_resolution, percentiles, err_msg",
    [
        (2, (0, 0.0001), "percentiles are too close"),
        (100, (1, 2, 3, 4), "'percentiles' must be a sequence of 2 elements"),
        (100, 12345, "'percentiles' must be a sequence of 2 elements"),
        (100, (-1, 0.95), r"'percentiles' values must be in \[0, 1\]"),
        (100, (0.05, 2), r"'percentiles' values must be in \[0, 1\]"),
        (100, (0.9, 0.1), r"percentiles\[0\] must be strictly less than"),
        (1, (0.05, 0.95), "'grid_resolution' must be strictly greater than 1"),
    ],
)
def test_grid_from_X_error(grid_resolution, percentiles, err_msg):
    X = np.asarray([[1, 2], [3, 4]])
    is_categorical = [False]
    with pytest.raises(ValueError, match=err_msg):
        _grid_from_X(X, percentiles, is_categorical, grid_resolution)


@pytest.mark.parametrize("target_feature", range(5))
@pytest.mark.parametrize(
    "est, method",
    [
        (LinearRegression(), "brute"),
        (GradientBoostingRegressor(random_state=0), "brute"),
        (GradientBoostingRegressor(random_state=0), "recursion"),
        (HistGradientBoostingRegressor(random_state=0), "brute"),
        (HistGradientBoostingRegressor(random_state=0), "recursion"),
    ],
)
def test_partial_dependence_helpers(est, method, target_feature):
    # Check that what is returned by _partial_dependence_brute or
    # _partial_dependence_recursion is equivalent to manually setting a target
    # feature to a given value, and computing the average prediction over all
    # samples.
    # This also checks that the brute and recursion methods give the same
    # output.
    # Note that even on the trainset, the brute and the recursion methods
    # aren't always strictly equivalent, in particular when the slow method
    # generates unrealistic samples that have low mass in the joint
    # distribution of the input features, and when some of the features are
    # dependent. Hence the high tolerance on the checks.

    X, y = make_regression(random_state=0, n_features=5, n_informative=5)
    # The 'init' estimator for GBDT (here the average prediction) isn't taken
    # into account with the recursion method, for technical reasons. We set
    # the mean to 0 to that this 'bug' doesn't have any effect.
    y = y - y.mean()
    est.fit(X, y)

    # target feature will be set to .5 and then to 123
    features = np.array([target_feature], dtype=np.int32)
    grid = np.array([[0.5], [123]])

    if method == "brute":
        pdp, predictions = _partial_dependence_brute(
            est, grid, features, X, response_method="auto"
        )
    else:
        pdp = _partial_dependence_recursion(est, grid, features)

    mean_predictions = []
    for val in (0.5, 123):
        X_ = X.copy()
        X_[:, target_feature] = val
        mean_predictions.append(est.predict(X_).mean())

    pdp = pdp[0]  # (shape is (1, 2) so make it (2,))

    # allow for greater margin for error with recursion method
    rtol = 1e-1 if method == "recursion" else 1e-3
    assert np.allclose(pdp, mean_predictions, rtol=rtol)


@pytest.mark.parametrize("seed", range(1))
def test_recursion_decision_tree_vs_forest_and_gbdt(seed):
    # Make sure that the recursion method gives the same results on a
    # DecisionTreeRegressor and a GradientBoostingRegressor or a
    # RandomForestRegressor with 1 tree and equivalent parameters.

    rng = np.random.RandomState(seed)

    # Purely random dataset to avoid correlated features
    n_samples = 1000
    n_features = 5
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples) * 10

    # The 'init' estimator for GBDT (here the average prediction) isn't taken
    # into account with the recursion method, for technical reasons. We set
    # the mean to 0 to that this 'bug' doesn't have any effect.
    y = y - y.mean()

    # set max_depth not too high to avoid splits with same gain but different
    # features
    max_depth = 5

    tree_seed = 0
    forest = RandomForestRegressor(
        n_estimators=1,
        max_features=None,
        bootstrap=False,
        max_depth=max_depth,
        random_state=tree_seed,
    )
    # The forest will use ensemble.base._set_random_states to set the
    # random_state of the tree sub-estimator. We simulate this here to have
    # equivalent estimators.
    equiv_random_state = check_random_state(tree_seed).randint(np.iinfo(np.int32).max)
    gbdt = GradientBoostingRegressor(
        n_estimators=1,
        learning_rate=1,
        criterion="squared_error",
        max_depth=max_depth,
        random_state=equiv_random_state,
    )
    tree = DecisionTreeRegressor(max_depth=max_depth, random_state=equiv_random_state)

    forest.fit(X, y)
    gbdt.fit(X, y)
    tree.fit(X, y)

    # sanity check: if the trees aren't the same, the PD values won't be equal
    try:
        assert_is_subtree(tree.tree_, gbdt[0, 0].tree_)
        assert_is_subtree(tree.tree_, forest[0].tree_)
    except AssertionError:
        # For some reason the trees aren't exactly equal on 32bits, so the PDs
        # cannot be equal either. See
        # https://github.com/scikit-learn/scikit-learn/issues/8853
        assert _IS_32BIT, "this should only fail on 32 bit platforms"
        return

    grid = rng.randn(50).reshape(-1, 1)
    for f in range(n_features):
        features = np.array([f], dtype=np.int32)

        pdp_forest = _partial_dependence_recursion(forest, grid, features)
        pdp_gbdt = _partial_dependence_recursion(gbdt, grid, features)
        pdp_tree = _partial_dependence_recursion(tree, grid, features)

        np.testing.assert_allclose(pdp_gbdt, pdp_tree)
        np.testing.assert_allclose(pdp_forest, pdp_tree)


@pytest.mark.parametrize(
    "est",
    (
        GradientBoostingClassifier(random_state=0),
        HistGradientBoostingClassifier(random_state=0),
    ),
)
@pytest.mark.parametrize("target_feature", (0, 1, 2, 3, 4, 5))
def test_recursion_decision_function(est, target_feature):
    # Make sure the recursion method (implicitly uses decision_function) has
    # the same result as using brute method with
    # response_method=decision_function

    X, y = make_classification(n_classes=2, n_clusters_per_class=1, random_state=1)
    assert np.mean(y) == 0.5  # make sure the init estimator predicts 0 anyway

    est.fit(X, y)

    preds_1 = partial_dependence(
        est,
        X,
        [target_feature],
        response_method="decision_function",
        method="recursion",
        kind="average",
    )
    preds_2 = partial_dependence(
        est,
        X,
        [target_feature],
        response_method="decision_function",
        method="brute",
        kind="average",
    )

    assert_allclose(preds_1["average"], preds_2["average"], atol=1e-7)


@pytest.mark.parametrize(
    "est",
    (
        LinearRegression(),
        GradientBoostingRegressor(random_state=0),
        HistGradientBoostingRegressor(
            random_state=0, min_samples_leaf=1, max_leaf_nodes=None, max_iter=1
        ),
        DecisionTreeRegressor(random_state=0),
    ),
)
@pytest.mark.parametrize("power", (1, 2))
def test_partial_dependence_easy_target(est, power):
    # If the target y only depends on one feature in an obvious way (linear or
    # quadratic) then the partial dependence for that feature should reflect
    # it.
    # We here fit a linear regression_data model (with polynomial features if
    # needed) and compute r_squared to check that the partial dependence
    # correctly reflects the target.

    rng = np.random.RandomState(0)
    n_samples = 200
    target_variable = 2
    X = rng.normal(size=(n_samples, 5))
    y = X[:, target_variable] ** power

    est.fit(X, y)

    pdp = partial_dependence(
        est, features=[target_variable], X=X, grid_resolution=1000, kind="average"
    )

    new_X = pdp["grid_values"][0].reshape(-1, 1)
    new_y = pdp["average"][0]
    # add polynomial features if needed
    new_X = PolynomialFeatures(degree=power).fit_transform(new_X)

    lr = LinearRegression().fit(new_X, new_y)
    r2 = r2_score(new_y, lr.predict(new_X))

    assert r2 > 0.99


@pytest.mark.parametrize(
    "Estimator",
    (
        sklearn.tree.DecisionTreeClassifier,
        sklearn.tree.ExtraTreeClassifier,
        sklearn.ensemble.ExtraTreesClassifier,
        sklearn.neighbors.KNeighborsClassifier,
        sklearn.neighbors.RadiusNeighborsClassifier,
        sklearn.ensemble.RandomForestClassifier,
    ),
)
def test_multiclass_multioutput(Estimator):
    # Make sure error is raised for multiclass-multioutput classifiers

    # make multiclass-multioutput dataset
    X, y = make_classification(n_classes=3, n_clusters_per_class=1, random_state=0)
    y = np.array([y, y]).T

    est = Estimator()
    est.fit(X, y)

    with pytest.raises(
        ValueError, match="Multiclass-multioutput estimators are not supported"
    ):
        partial_dependence(est, X, [0])


class NoPredictProbaNoDecisionFunction(ClassifierMixin, BaseEstimator):
    def fit(self, X, y):
        # simulate that we have some classes
        self.classes_ = [0, 1]
        return self


@pytest.mark.filterwarnings("ignore:A Bunch will be returned")
@pytest.mark.parametrize(
    "estimator, params, err_msg",
    [
        (
            KMeans(random_state=0, n_init="auto"),
            {"features": [0]},
            "'estimator' must be a fitted regressor or classifier",
        ),
        (
            LinearRegression(),
            {"features": [0], "response_method": "predict_proba"},
            "The response_method parameter is ignored for regressors",
        ),
        (
            GradientBoostingClassifier(random_state=0),
            {
                "features": [0],
                "response_method": "predict_proba",
                "method": "recursion",
            },
            "'recursion' method, the response_method must be 'decision_function'",
        ),
        (
            GradientBoostingClassifier(random_state=0),
            {"features": [0], "response_method": "predict_proba", "method": "auto"},
            "'recursion' method, the response_method must be 'decision_function'",
        ),
        (
            LinearRegression(),
            {"features": [0], "method": "recursion", "kind": "individual"},
            "The 'recursion' method only applies when 'kind' is set to 'average'",
        ),
        (
            LinearRegression(),
            {"features": [0], "method": "recursion", "kind": "both"},
            "The 'recursion' method only applies when 'kind' is set to 'average'",
        ),
        (
            LinearRegression(),
            {"features": [0], "method": "recursion"},
            "Only the following estimators support the 'recursion' method:",
        ),
    ],
)
def test_partial_dependence_error(estimator, params, err_msg):
    X, y = make_classification(random_state=0)
    estimator.fit(X, y)

    with pytest.raises(ValueError, match=err_msg):
        partial_dependence(estimator, X, **params)


@pytest.mark.parametrize(
    "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
)
@pytest.mark.parametrize("features", [-1, 10000])
def test_partial_dependence_unknown_feature_indices(estimator, features):
    X, y = make_classification(random_state=0)
    estimator.fit(X, y)

    err_msg = "all features must be in"
    with pytest.raises(ValueError, match=err_msg):
        partial_dependence(estimator, X, [features])


@pytest.mark.parametrize(
    "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
)
def test_partial_dependence_unknown_feature_string(estimator):
    pd = pytest.importorskip("pandas")
    X, y = make_classification(random_state=0)
    df = pd.DataFrame(X)
    estimator.fit(df, y)

    features = ["random"]
    err_msg = "A given column is not a column of the dataframe"
    with pytest.raises(ValueError, match=err_msg):
        partial_dependence(estimator, df, features)


@pytest.mark.parametrize(
    "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
)
def test_partial_dependence_X_list(estimator):
    # check that array-like objects are accepted
    X, y = make_classification(random_state=0)
    estimator.fit(X, y)
    partial_dependence(estimator, list(X), [0], kind="average")


def test_warning_recursion_non_constant_init():
    # make sure that passing a non-constant init parameter to a GBDT and using
    # recursion method yields a warning.

    gbc = GradientBoostingClassifier(init=DummyClassifier(), random_state=0)
    gbc.fit(X, y)

    with pytest.warns(
        UserWarning, match="Using recursion method with a non-constant init predictor"
    ):
        partial_dependence(gbc, X, [0], method="recursion", kind="average")

    with pytest.warns(
        UserWarning, match="Using recursion method with a non-constant init predictor"
    ):
        partial_dependence(gbc, X, [0], method="recursion", kind="average")


def test_partial_dependence_sample_weight_of_fitted_estimator():
    # Test near perfect correlation between partial dependence and diagonal
    # when sample weights emphasize y = x predictions
    # non-regression test for #13193
    # TODO: extend to HistGradientBoosting once sample_weight is supported
    N = 1000
    rng = np.random.RandomState(123456)
    mask = rng.randint(2, size=N, dtype=bool)

    x = rng.rand(N)
    # set y = x on mask and y = -x outside
    y = x.copy()
    y[~mask] = -y[~mask]
    X = np.c_[mask, x]
    # sample weights to emphasize data points where y = x
    sample_weight = np.ones(N)
    sample_weight[mask] = 1000.0

    clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
    clf.fit(X, y, sample_weight=sample_weight)

    pdp = partial_dependence(clf, X, features=[1], kind="average")

    assert np.corrcoef(pdp["average"], pdp["grid_values"])[0, 1] > 0.99


def test_hist_gbdt_sw_not_supported():
    # TODO: remove/fix when PDP supports HGBT with sample weights
    clf = HistGradientBoostingRegressor(random_state=1)
    clf.fit(X, y, sample_weight=np.ones(len(X)))

    with pytest.raises(
        NotImplementedError, match="does not support partial dependence"
    ):
        partial_dependence(clf, X, features=[1])


def test_partial_dependence_pipeline():
    # check that the partial dependence support pipeline
    iris = load_iris()

    scaler = StandardScaler()
    clf = DummyClassifier(random_state=42)
    pipe = make_pipeline(scaler, clf)

    clf.fit(scaler.fit_transform(iris.data), iris.target)
    pipe.fit(iris.data, iris.target)

    features = 0
    pdp_pipe = partial_dependence(
        pipe, iris.data, features=[features], grid_resolution=10, kind="average"
    )
    pdp_clf = partial_dependence(
        clf,
        scaler.transform(iris.data),
        features=[features],
        grid_resolution=10,
        kind="average",
    )
    assert_allclose(pdp_pipe["average"], pdp_clf["average"])
    assert_allclose(
        pdp_pipe["grid_values"][0],
        pdp_clf["grid_values"][0] * scaler.scale_[features] + scaler.mean_[features],
    )


@pytest.mark.parametrize(
    "estimator",
    [
        LogisticRegression(max_iter=1000, random_state=0),
        GradientBoostingClassifier(random_state=0, n_estimators=5),
    ],
    ids=["estimator-brute", "estimator-recursion"],
)
@pytest.mark.parametrize(
    "preprocessor",
    [
        None,
        make_column_transformer(
            (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
            (RobustScaler(), [iris.feature_names[i] for i in (1, 3)]),
        ),
        make_column_transformer(
            (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
            remainder="passthrough",
        ),
    ],
    ids=["None", "column-transformer", "column-transformer-passthrough"],
)
@pytest.mark.parametrize(
    "features",
    [[0, 2], [iris.feature_names[i] for i in (0, 2)]],
    ids=["features-integer", "features-string"],
)
def test_partial_dependence_dataframe(estimator, preprocessor, features):
    # check that the partial dependence support dataframe and pipeline
    # including a column transformer
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame(scale(iris.data), columns=iris.feature_names)

    pipe = make_pipeline(preprocessor, estimator)
    pipe.fit(df, iris.target)
    pdp_pipe = partial_dependence(
        pipe, df, features=features, grid_resolution=10, kind="average"
    )

    # the column transformer will reorder the column when transforming
    # we mixed the index to be sure that we are computing the partial
    # dependence of the right columns
    if preprocessor is not None:
        X_proc = clone(preprocessor).fit_transform(df)
        features_clf = [0, 1]
    else:
        X_proc = df
        features_clf = [0, 2]

    clf = clone(estimator).fit(X_proc, iris.target)
    pdp_clf = partial_dependence(
        clf,
        X_proc,
        features=features_clf,
        method="brute",
        grid_resolution=10,
        kind="average",
    )

    assert_allclose(pdp_pipe["average"], pdp_clf["average"])
    if preprocessor is not None:
        scaler = preprocessor.named_transformers_["standardscaler"]
        assert_allclose(
            pdp_pipe["grid_values"][1],
            pdp_clf["grid_values"][1] * scaler.scale_[1] + scaler.mean_[1],
        )
    else:
        assert_allclose(pdp_pipe["grid_values"][1], pdp_clf["grid_values"][1])


@pytest.mark.parametrize(
    "features, expected_pd_shape",
    [
        (0, (3, 10)),
        (iris.feature_names[0], (3, 10)),
        ([0, 2], (3, 10, 10)),
        ([iris.feature_names[i] for i in (0, 2)], (3, 10, 10)),
        ([True, False, True, False], (3, 10, 10)),
    ],
    ids=["scalar-int", "scalar-str", "list-int", "list-str", "mask"],
)
def test_partial_dependence_feature_type(features, expected_pd_shape):
    # check all possible features type supported in PDP
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame(iris.data, columns=iris.feature_names)

    preprocessor = make_column_transformer(
        (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
        (RobustScaler(), [iris.feature_names[i] for i in (1, 3)]),
    )
    pipe = make_pipeline(
        preprocessor, LogisticRegression(max_iter=1000, random_state=0)
    )
    pipe.fit(df, iris.target)
    pdp_pipe = partial_dependence(
        pipe, df, features=features, grid_resolution=10, kind="average"
    )
    assert pdp_pipe["average"].shape == expected_pd_shape
    assert len(pdp_pipe["grid_values"]) == len(pdp_pipe["average"].shape) - 1


@pytest.mark.parametrize(
    "estimator",
    [
        LinearRegression(),
        LogisticRegression(),
        GradientBoostingRegressor(),
        GradientBoostingClassifier(),
    ],
)
def test_partial_dependence_unfitted(estimator):
    X = iris.data
    preprocessor = make_column_transformer(
        (StandardScaler(), [0, 2]), (RobustScaler(), [1, 3])
    )
    pipe = make_pipeline(preprocessor, estimator)
    with pytest.raises(NotFittedError, match="is not fitted yet"):
        partial_dependence(pipe, X, features=[0, 2], grid_resolution=10)
    with pytest.raises(NotFittedError, match="is not fitted yet"):
        partial_dependence(estimator, X, features=[0, 2], grid_resolution=10)


@pytest.mark.parametrize(
    "Estimator, data",
    [
        (LinearRegression, multioutput_regression_data),
        (LogisticRegression, binary_classification_data),
    ],
)
def test_kind_average_and_average_of_individual(Estimator, data):
    est = Estimator()
    (X, y), n_targets = data
    est.fit(X, y)

    pdp_avg = partial_dependence(est, X=X, features=[1, 2], kind="average")
    pdp_ind = partial_dependence(est, X=X, features=[1, 2], kind="individual")
    avg_ind = np.mean(pdp_ind["individual"], axis=1)
    assert_allclose(avg_ind, pdp_avg["average"])


@pytest.mark.parametrize(
    "Estimator, data",
    [
        (LinearRegression, multioutput_regression_data),
        (LogisticRegression, binary_classification_data),
    ],
)
def test_partial_dependence_kind_individual_ignores_sample_weight(Estimator, data):
    """Check that `sample_weight` does not have any effect on reported ICE."""
    est = Estimator()
    (X, y), n_targets = data
    sample_weight = np.arange(X.shape[0])
    est.fit(X, y)

    pdp_nsw = partial_dependence(est, X=X, features=[1, 2], kind="individual")
    pdp_sw = partial_dependence(
        est, X=X, features=[1, 2], kind="individual", sample_weight=sample_weight
    )
    assert_allclose(pdp_nsw["individual"], pdp_sw["individual"])
    assert_allclose(pdp_nsw["grid_values"], pdp_sw["grid_values"])


@pytest.mark.parametrize(
    "estimator",
    [
        LinearRegression(),
        LogisticRegression(),
        RandomForestRegressor(),
        GradientBoostingClassifier(),
    ],
)
@pytest.mark.parametrize("non_null_weight_idx", [0, 1, -1])
def test_partial_dependence_non_null_weight_idx(estimator, non_null_weight_idx):
    """Check that if we pass a `sample_weight` of zeros with only one index with
    sample weight equals one, then the average `partial_dependence` with this
    `sample_weight` is equal to the individual `partial_dependence` of the
    corresponding index.
    """
    X, y = iris.data, iris.target
    preprocessor = make_column_transformer(
        (StandardScaler(), [0, 2]), (RobustScaler(), [1, 3])
    )
    pipe = make_pipeline(preprocessor, estimator).fit(X, y)

    sample_weight = np.zeros_like(y)
    sample_weight[non_null_weight_idx] = 1
    pdp_sw = partial_dependence(
        pipe,
        X,
        [2, 3],
        kind="average",
        sample_weight=sample_weight,
        grid_resolution=10,
    )
    pdp_ind = partial_dependence(pipe, X, [2, 3], kind="individual", grid_resolution=10)
    output_dim = 1 if is_regressor(pipe) else len(np.unique(y))
    for i in range(output_dim):
        assert_allclose(
            pdp_ind["individual"][i][non_null_weight_idx],
            pdp_sw["average"][i],
        )


@pytest.mark.parametrize(
    "Estimator, data",
    [
        (LinearRegression, multioutput_regression_data),
        (LogisticRegression, binary_classification_data),
    ],
)
def test_partial_dependence_equivalence_equal_sample_weight(Estimator, data):
    """Check that `sample_weight=None` is equivalent to having equal weights."""

    est = Estimator()
    (X, y), n_targets = data
    est.fit(X, y)

    sample_weight, params = None, {"X": X, "features": [1, 2], "kind": "average"}
    pdp_sw_none = partial_dependence(est, **params, sample_weight=sample_weight)
    sample_weight = np.ones(len(y))
    pdp_sw_unit = partial_dependence(est, **params, sample_weight=sample_weight)
    assert_allclose(pdp_sw_none["average"], pdp_sw_unit["average"])
    sample_weight = 2 * np.ones(len(y))
    pdp_sw_doubling = partial_dependence(est, **params, sample_weight=sample_weight)
    assert_allclose(pdp_sw_none["average"], pdp_sw_doubling["average"])


def test_partial_dependence_sample_weight_size_error():
    """Check that we raise an error when the size of `sample_weight` is not
    consistent with `X` and `y`.
    """
    est = LogisticRegression()
    (X, y), n_targets = binary_classification_data
    sample_weight = np.ones_like(y)
    est.fit(X, y)

    with pytest.raises(ValueError, match="sample_weight.shape =="):
        partial_dependence(
            est, X, features=[0], sample_weight=sample_weight[1:], grid_resolution=10
        )


def test_partial_dependence_sample_weight_with_recursion():
    """Check that we raise an error when `sample_weight` is provided with
    `"recursion"` method.
    """
    est = RandomForestRegressor()
    (X, y), n_targets = regression_data
    sample_weight = np.ones_like(y)
    est.fit(X, y, sample_weight=sample_weight)

    with pytest.raises(ValueError, match="'recursion' method can only be applied when"):
        partial_dependence(
            est, X, features=[0], method="recursion", sample_weight=sample_weight
        )


# TODO(1.5): Remove when bunch values is deprecated in 1.5
def test_partial_dependence_bunch_values_deprecated():
    """Test that deprecation warning is raised when values is accessed."""

    est = LogisticRegression()
    (X, y), _ = binary_classification_data
    est.fit(X, y)

    pdp_avg = partial_dependence(est, X=X, features=[1, 2], kind="average")

    msg = (
        "Key: 'values', is deprecated in 1.3 and will be "
        "removed in 1.5. Please use 'grid_values' instead"
    )

    with warnings.catch_warnings():
        # Does not raise warnings with "grid_values"
        warnings.simplefilter("error", FutureWarning)
        grid_values = pdp_avg["grid_values"]

    with pytest.warns(FutureWarning, match=msg):
        # Warns for "values"
        values = pdp_avg["values"]

    # "values" and "grid_values" are the same object
    assert values is grid_values


def test_mixed_type_categorical():
    """Check that we raise a proper error when a column has mixed types and
    the sorting of `np.unique` will fail."""
    X = np.array(["A", "B", "C", np.nan], dtype=object).reshape(-1, 1)
    y = np.array([0, 1, 0, 1])

    from sklearn.preprocessing import OrdinalEncoder

    clf = make_pipeline(
        OrdinalEncoder(encoded_missing_value=-1),
        LogisticRegression(),
    ).fit(X, y)
    with pytest.raises(ValueError, match="The column #0 contains mixed data types"):
        partial_dependence(clf, X, features=[0])