File: _coordinate_descent.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (3182 lines) | stat: -rw-r--r-- 109,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Gael Varoquaux <gael.varoquaux@inria.fr>
#
# License: BSD 3 clause

import numbers
import sys
import warnings
from abc import ABC, abstractmethod
from functools import partial
from numbers import Integral, Real

import numpy as np
from joblib import effective_n_jobs
from scipy import sparse

from ..base import MultiOutputMixin, RegressorMixin, _fit_context
from ..model_selection import check_cv
from ..utils import Bunch, check_array, check_scalar
from ..utils._metadata_requests import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    get_routing_for_object,
)
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.extmath import safe_sparse_dot
from ..utils.metadata_routing import (
    _routing_enabled,
    process_routing,
)
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
    _check_sample_weight,
    check_consistent_length,
    check_is_fitted,
    check_random_state,
    column_or_1d,
    has_fit_parameter,
)

# mypy error: Module 'sklearn.linear_model' has no attribute '_cd_fast'
from . import _cd_fast as cd_fast  # type: ignore
from ._base import LinearModel, _pre_fit, _preprocess_data


def _set_order(X, y, order="C"):
    """Change the order of X and y if necessary.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Target values.

    order : {None, 'C', 'F'}
        If 'C', dense arrays are returned as C-ordered, sparse matrices in csr
        format. If 'F', dense arrays are return as F-ordered, sparse matrices
        in csc format.

    Returns
    -------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data with guaranteed order.

    y : ndarray of shape (n_samples,)
        Target values with guaranteed order.
    """
    if order not in [None, "C", "F"]:
        raise ValueError(
            "Unknown value for order. Got {} instead of None, 'C' or 'F'.".format(order)
        )
    sparse_X = sparse.issparse(X)
    sparse_y = sparse.issparse(y)
    if order is not None:
        sparse_format = "csc" if order == "F" else "csr"
        if sparse_X:
            X = X.asformat(sparse_format, copy=False)
        else:
            X = np.asarray(X, order=order)
        if sparse_y:
            y = y.asformat(sparse_format)
        else:
            y = np.asarray(y, order=order)
    return X, y


###############################################################################
# Paths functions


def _alpha_grid(
    X,
    y,
    Xy=None,
    l1_ratio=1.0,
    fit_intercept=True,
    eps=1e-3,
    n_alphas=100,
    copy_X=True,
):
    """Compute the grid of alpha values for elastic net parameter search

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data. Pass directly as Fortran-contiguous data to avoid
        unnecessary memory duplication

    y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
        Target values

    Xy : array-like of shape (n_features,) or (n_features, n_outputs),\
         default=None
        Xy = np.dot(X.T, y) that can be precomputed.

    l1_ratio : float, default=1.0
        The elastic net mixing parameter, with ``0 < l1_ratio <= 1``.
        For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not
        supported) ``For l1_ratio = 1`` it is an L1 penalty. For
        ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2.

    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``

    n_alphas : int, default=100
        Number of alphas along the regularization path

    fit_intercept : bool, default=True
        Whether to fit an intercept or not

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.
    """
    if l1_ratio == 0:
        raise ValueError(
            "Automatic alpha grid generation is not supported for"
            " l1_ratio=0. Please supply a grid by providing "
            "your estimator with the appropriate `alphas=` "
            "argument."
        )
    n_samples = len(y)

    sparse_center = False
    if Xy is None:
        X_sparse = sparse.issparse(X)
        sparse_center = X_sparse and fit_intercept
        X = check_array(
            X, accept_sparse="csc", copy=(copy_X and fit_intercept and not X_sparse)
        )
        if not X_sparse:
            # X can be touched inplace thanks to the above line
            X, y, _, _, _ = _preprocess_data(
                X, y, fit_intercept=fit_intercept, copy=False
            )
        Xy = safe_sparse_dot(X.T, y, dense_output=True)

        if sparse_center:
            # Workaround to find alpha_max for sparse matrices.
            # since we should not destroy the sparsity of such matrices.
            _, _, X_offset, _, X_scale = _preprocess_data(
                X, y, fit_intercept=fit_intercept
            )
            mean_dot = X_offset * np.sum(y)

    if Xy.ndim == 1:
        Xy = Xy[:, np.newaxis]

    if sparse_center:
        if fit_intercept:
            Xy -= mean_dot[:, np.newaxis]

    alpha_max = np.sqrt(np.sum(Xy**2, axis=1)).max() / (n_samples * l1_ratio)

    if alpha_max <= np.finfo(float).resolution:
        alphas = np.empty(n_alphas)
        alphas.fill(np.finfo(float).resolution)
        return alphas

    return np.geomspace(alpha_max, alpha_max * eps, num=n_alphas)


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", "sparse matrix"],
        "eps": [Interval(Real, 0, None, closed="neither")],
        "n_alphas": [Interval(Integral, 1, None, closed="left")],
        "alphas": ["array-like", None],
        "precompute": [StrOptions({"auto"}), "boolean", "array-like"],
        "Xy": ["array-like", None],
        "copy_X": ["boolean"],
        "coef_init": ["array-like", None],
        "verbose": ["verbose"],
        "return_n_iter": ["boolean"],
        "positive": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def lasso_path(
    X,
    y,
    *,
    eps=1e-3,
    n_alphas=100,
    alphas=None,
    precompute="auto",
    Xy=None,
    copy_X=True,
    coef_init=None,
    verbose=False,
    return_n_iter=False,
    positive=False,
    **params,
):
    """Compute Lasso path with coordinate descent.

    The Lasso optimization function varies for mono and multi-outputs.

    For mono-output tasks it is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    For multi-output tasks it is::

        (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

    Where::

        ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}

    i.e. the sum of norm of each row.

    Read more in the :ref:`User Guide <lasso>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data. Pass directly as Fortran-contiguous data to avoid
        unnecessary memory duplication. If ``y`` is mono-output then ``X``
        can be sparse.

    y : {array-like, sparse matrix} of shape (n_samples,) or \
        (n_samples, n_targets)
        Target values.

    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If ``None`` alphas are set automatically.

    precompute : 'auto', bool or array-like of shape \
            (n_features, n_features), default='auto'
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to ``'auto'`` let us decide. The Gram
        matrix can also be passed as argument.

    Xy : array-like of shape (n_features,) or (n_features, n_targets),\
         default=None
        Xy = np.dot(X.T, y) that can be precomputed. It is useful
        only when the Gram matrix is precomputed.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    coef_init : array-like of shape (n_features, ), default=None
        The initial values of the coefficients.

    verbose : bool or int, default=False
        Amount of verbosity.

    return_n_iter : bool, default=False
        Whether to return the number of iterations or not.

    positive : bool, default=False
        If set to True, forces coefficients to be positive.
        (Only allowed when ``y.ndim == 1``).

    **params : kwargs
        Keyword arguments passed to the coordinate descent solver.

    Returns
    -------
    alphas : ndarray of shape (n_alphas,)
        The alphas along the path where models are computed.

    coefs : ndarray of shape (n_features, n_alphas) or \
            (n_targets, n_features, n_alphas)
        Coefficients along the path.

    dual_gaps : ndarray of shape (n_alphas,)
        The dual gaps at the end of the optimization for each alpha.

    n_iters : list of int
        The number of iterations taken by the coordinate descent optimizer to
        reach the specified tolerance for each alpha.

    See Also
    --------
    lars_path : Compute Least Angle Regression or Lasso path using LARS
        algorithm.
    Lasso : The Lasso is a linear model that estimates sparse coefficients.
    LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
    LassoCV : Lasso linear model with iterative fitting along a regularization
        path.
    LassoLarsCV : Cross-validated Lasso using the LARS algorithm.
    sklearn.decomposition.sparse_encode : Estimator that can be used to
        transform signals into sparse linear combination of atoms from a fixed.

    Notes
    -----
    For an example, see
    :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py
    <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a Fortran-contiguous numpy array.

    Note that in certain cases, the Lars solver may be significantly
    faster to implement this functionality. In particular, linear
    interpolation can be used to retrieve model coefficients between the
    values output by lars_path

    Examples
    --------

    Comparing lasso_path and lars_path with interpolation:

    >>> import numpy as np
    >>> from sklearn.linear_model import lasso_path
    >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
    >>> y = np.array([1, 2, 3.1])
    >>> # Use lasso_path to compute a coefficient path
    >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
    >>> print(coef_path)
    [[0.         0.         0.46874778]
     [0.2159048  0.4425765  0.23689075]]

    >>> # Now use lars_path and 1D linear interpolation to compute the
    >>> # same path
    >>> from sklearn.linear_model import lars_path
    >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
    >>> from scipy import interpolate
    >>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
    ...                                             coef_path_lars[:, ::-1])
    >>> print(coef_path_continuous([5., 1., .5]))
    [[0.         0.         0.46915237]
     [0.2159048  0.4425765  0.23668876]]
    """
    return enet_path(
        X,
        y,
        l1_ratio=1.0,
        eps=eps,
        n_alphas=n_alphas,
        alphas=alphas,
        precompute=precompute,
        Xy=Xy,
        copy_X=copy_X,
        coef_init=coef_init,
        verbose=verbose,
        positive=positive,
        return_n_iter=return_n_iter,
        **params,
    )


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like", "sparse matrix"],
        "l1_ratio": [Interval(Real, 0.0, 1.0, closed="both")],
        "eps": [Interval(Real, 0.0, None, closed="neither")],
        "n_alphas": [Interval(Integral, 1, None, closed="left")],
        "alphas": ["array-like", None],
        "precompute": [StrOptions({"auto"}), "boolean", "array-like"],
        "Xy": ["array-like", None],
        "copy_X": ["boolean"],
        "coef_init": ["array-like", None],
        "verbose": ["verbose"],
        "return_n_iter": ["boolean"],
        "positive": ["boolean"],
        "check_input": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def enet_path(
    X,
    y,
    *,
    l1_ratio=0.5,
    eps=1e-3,
    n_alphas=100,
    alphas=None,
    precompute="auto",
    Xy=None,
    copy_X=True,
    coef_init=None,
    verbose=False,
    return_n_iter=False,
    positive=False,
    check_input=True,
    **params,
):
    """Compute elastic net path with coordinate descent.

    The elastic net optimization function varies for mono and multi-outputs.

    For mono-output tasks it is::

        1 / (2 * n_samples) * ||y - Xw||^2_2
        + alpha * l1_ratio * ||w||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

    For multi-output tasks it is::

        (1 / (2 * n_samples)) * ||Y - XW||_Fro^2
        + alpha * l1_ratio * ||W||_21
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

    Where::

        ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}

    i.e. the sum of norm of each row.

    Read more in the :ref:`User Guide <elastic_net>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data. Pass directly as Fortran-contiguous data to avoid
        unnecessary memory duplication. If ``y`` is mono-output then ``X``
        can be sparse.

    y : {array-like, sparse matrix} of shape (n_samples,) or \
        (n_samples, n_targets)
        Target values.

    l1_ratio : float, default=0.5
        Number between 0 and 1 passed to elastic net (scaling between
        l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso.

    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If None alphas are set automatically.

    precompute : 'auto', bool or array-like of shape \
            (n_features, n_features), default='auto'
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to ``'auto'`` let us decide. The Gram
        matrix can also be passed as argument.

    Xy : array-like of shape (n_features,) or (n_features, n_targets),\
         default=None
        Xy = np.dot(X.T, y) that can be precomputed. It is useful
        only when the Gram matrix is precomputed.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    coef_init : array-like of shape (n_features, ), default=None
        The initial values of the coefficients.

    verbose : bool or int, default=False
        Amount of verbosity.

    return_n_iter : bool, default=False
        Whether to return the number of iterations or not.

    positive : bool, default=False
        If set to True, forces coefficients to be positive.
        (Only allowed when ``y.ndim == 1``).

    check_input : bool, default=True
        If set to False, the input validation checks are skipped (including the
        Gram matrix when provided). It is assumed that they are handled
        by the caller.

    **params : kwargs
        Keyword arguments passed to the coordinate descent solver.

    Returns
    -------
    alphas : ndarray of shape (n_alphas,)
        The alphas along the path where models are computed.

    coefs : ndarray of shape (n_features, n_alphas) or \
            (n_targets, n_features, n_alphas)
        Coefficients along the path.

    dual_gaps : ndarray of shape (n_alphas,)
        The dual gaps at the end of the optimization for each alpha.

    n_iters : list of int
        The number of iterations taken by the coordinate descent optimizer to
        reach the specified tolerance for each alpha.
        (Is returned when ``return_n_iter`` is set to True).

    See Also
    --------
    MultiTaskElasticNet : Multi-task ElasticNet model trained with L1/L2 mixed-norm \
    as regularizer.
    MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in cross-validation.
    ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.
    ElasticNetCV : Elastic Net model with iterative fitting along a regularization path.

    Notes
    -----
    For an example, see
    :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py
    <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`.
    """
    X_offset_param = params.pop("X_offset", None)
    X_scale_param = params.pop("X_scale", None)
    sample_weight = params.pop("sample_weight", None)
    tol = params.pop("tol", 1e-4)
    max_iter = params.pop("max_iter", 1000)
    random_state = params.pop("random_state", None)
    selection = params.pop("selection", "cyclic")

    if len(params) > 0:
        raise ValueError("Unexpected parameters in params", params.keys())

    # We expect X and y to be already Fortran ordered when bypassing
    # checks
    if check_input:
        X = check_array(
            X,
            accept_sparse="csc",
            dtype=[np.float64, np.float32],
            order="F",
            copy=copy_X,
        )
        y = check_array(
            y,
            accept_sparse="csc",
            dtype=X.dtype.type,
            order="F",
            copy=False,
            ensure_2d=False,
        )
        if Xy is not None:
            # Xy should be a 1d contiguous array or a 2D C ordered array
            Xy = check_array(
                Xy, dtype=X.dtype.type, order="C", copy=False, ensure_2d=False
            )

    n_samples, n_features = X.shape

    multi_output = False
    if y.ndim != 1:
        multi_output = True
        n_targets = y.shape[1]

    if multi_output and positive:
        raise ValueError("positive=True is not allowed for multi-output (y.ndim != 1)")

    # MultiTaskElasticNet does not support sparse matrices
    if not multi_output and sparse.issparse(X):
        if X_offset_param is not None:
            # As sparse matrices are not actually centered we need this to be passed to
            # the CD solver.
            X_sparse_scaling = X_offset_param / X_scale_param
            X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype)
        else:
            X_sparse_scaling = np.zeros(n_features, dtype=X.dtype)

    # X should have been passed through _pre_fit already if function is called
    # from ElasticNet.fit
    if check_input:
        X, y, _, _, _, precompute, Xy = _pre_fit(
            X,
            y,
            Xy,
            precompute,
            fit_intercept=False,
            copy=False,
            check_input=check_input,
        )
    if alphas is None:
        # No need to normalize of fit_intercept: it has been done
        # above
        alphas = _alpha_grid(
            X,
            y,
            Xy=Xy,
            l1_ratio=l1_ratio,
            fit_intercept=False,
            eps=eps,
            n_alphas=n_alphas,
            copy_X=False,
        )
    elif len(alphas) > 1:
        alphas = np.sort(alphas)[::-1]  # make sure alphas are properly ordered

    n_alphas = len(alphas)
    dual_gaps = np.empty(n_alphas)
    n_iters = []

    rng = check_random_state(random_state)
    if selection not in ["random", "cyclic"]:
        raise ValueError("selection should be either random or cyclic.")
    random = selection == "random"

    if not multi_output:
        coefs = np.empty((n_features, n_alphas), dtype=X.dtype)
    else:
        coefs = np.empty((n_targets, n_features, n_alphas), dtype=X.dtype)

    if coef_init is None:
        coef_ = np.zeros(coefs.shape[:-1], dtype=X.dtype, order="F")
    else:
        coef_ = np.asfortranarray(coef_init, dtype=X.dtype)

    for i, alpha in enumerate(alphas):
        # account for n_samples scaling in objectives between here and cd_fast
        l1_reg = alpha * l1_ratio * n_samples
        l2_reg = alpha * (1.0 - l1_ratio) * n_samples
        if not multi_output and sparse.issparse(X):
            model = cd_fast.sparse_enet_coordinate_descent(
                w=coef_,
                alpha=l1_reg,
                beta=l2_reg,
                X_data=X.data,
                X_indices=X.indices,
                X_indptr=X.indptr,
                y=y,
                sample_weight=sample_weight,
                X_mean=X_sparse_scaling,
                max_iter=max_iter,
                tol=tol,
                rng=rng,
                random=random,
                positive=positive,
            )
        elif multi_output:
            model = cd_fast.enet_coordinate_descent_multi_task(
                coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random
            )
        elif isinstance(precompute, np.ndarray):
            # We expect precompute to be already Fortran ordered when bypassing
            # checks
            if check_input:
                precompute = check_array(precompute, dtype=X.dtype.type, order="C")
            model = cd_fast.enet_coordinate_descent_gram(
                coef_,
                l1_reg,
                l2_reg,
                precompute,
                Xy,
                y,
                max_iter,
                tol,
                rng,
                random,
                positive,
            )
        elif precompute is False:
            model = cd_fast.enet_coordinate_descent(
                coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive
            )
        else:
            raise ValueError(
                "Precompute should be one of True, False, 'auto' or array-like. Got %r"
                % precompute
            )
        coef_, dual_gap_, eps_, n_iter_ = model
        coefs[..., i] = coef_
        # we correct the scale of the returned dual gap, as the objective
        # in cd_fast is n_samples * the objective in this docstring.
        dual_gaps[i] = dual_gap_ / n_samples
        n_iters.append(n_iter_)

        if verbose:
            if verbose > 2:
                print(model)
            elif verbose > 1:
                print("Path: %03i out of %03i" % (i, n_alphas))
            else:
                sys.stderr.write(".")

    if return_n_iter:
        return alphas, coefs, dual_gaps, n_iters
    return alphas, coefs, dual_gaps


###############################################################################
# ElasticNet model


class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):
    """Linear regression with combined L1 and L2 priors as regularizer.

    Minimizes the objective function::

            1 / (2 * n_samples) * ||y - Xw||^2_2
            + alpha * l1_ratio * ||w||_1
            + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

    If you are interested in controlling the L1 and L2 penalty
    separately, keep in mind that this is equivalent to::

            a * ||w||_1 + 0.5 * b * ||w||_2^2

    where::

            alpha = a + b and l1_ratio = a / (a + b)

    The parameter l1_ratio corresponds to alpha in the glmnet R package while
    alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio
    = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
    unless you supply your own sequence of alpha.

    Read more in the :ref:`User Guide <elastic_net>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Constant that multiplies the penalty terms. Defaults to 1.0.
        See the notes for the exact mathematical meaning of this
        parameter. ``alpha = 0`` is equivalent to an ordinary least square,
        solved by the :class:`LinearRegression` object. For numerical
        reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised.
        Given this, you should use the :class:`LinearRegression` object.

    l1_ratio : float, default=0.5
        The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For
        ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it
        is an L1 penalty.  For ``0 < l1_ratio < 1``, the penalty is a
        combination of L1 and L2.

    fit_intercept : bool, default=True
        Whether the intercept should be estimated or not. If ``False``, the
        data is assumed to be already centered.

    precompute : bool or array-like of shape (n_features, n_features),\
                 default=False
        Whether to use a precomputed Gram matrix to speed up
        calculations. The Gram matrix can also be passed as argument.
        For sparse input this option is always ``False`` to preserve sparsity.

    max_iter : int, default=1000
        The maximum number of iterations.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``, see Notes below.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the cost function formula).

    sparse_coef_ : sparse matrix of shape (n_features,) or \
            (n_targets, n_features)
        Sparse representation of the `coef_`.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function.

    n_iter_ : list of int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance.

    dual_gap_ : float or ndarray of shape (n_targets,)
        Given param alpha, the dual gaps at the end of the optimization,
        same shape as each observation of y.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    ElasticNetCV : Elastic net model with best model selection by
        cross-validation.
    SGDRegressor : Implements elastic net regression with incremental training.
    SGDClassifier : Implements logistic regression with elastic net penalty
        (``SGDClassifier(loss="log_loss", penalty="elasticnet")``).

    Notes
    -----
    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a Fortran-contiguous numpy array.

    The precise stopping criteria based on `tol` are the following: First, check that
    that maximum coordinate update, i.e. :math:`\\max_j |w_j^{new} - w_j^{old}|`
    is smaller than `tol` times the maximum absolute coefficient, :math:`\\max_j |w_j|`.
    If so, then additionally check whether the dual gap is smaller than `tol` times
    :math:`||y||_2^2 / n_{\text{samples}}`.

    Examples
    --------
    >>> from sklearn.linear_model import ElasticNet
    >>> from sklearn.datasets import make_regression

    >>> X, y = make_regression(n_features=2, random_state=0)
    >>> regr = ElasticNet(random_state=0)
    >>> regr.fit(X, y)
    ElasticNet(random_state=0)
    >>> print(regr.coef_)
    [18.83816048 64.55968825]
    >>> print(regr.intercept_)
    1.451...
    >>> print(regr.predict([[0, 0]]))
    [1.451...]
    """

    _parameter_constraints: dict = {
        "alpha": [Interval(Real, 0, None, closed="left")],
        "l1_ratio": [Interval(Real, 0, 1, closed="both")],
        "fit_intercept": ["boolean"],
        "precompute": ["boolean", "array-like"],
        "max_iter": [Interval(Integral, 1, None, closed="left"), None],
        "copy_X": ["boolean"],
        "tol": [Interval(Real, 0, None, closed="left")],
        "warm_start": ["boolean"],
        "positive": ["boolean"],
        "random_state": ["random_state"],
        "selection": [StrOptions({"cyclic", "random"})],
    }

    path = staticmethod(enet_path)

    def __init__(
        self,
        alpha=1.0,
        *,
        l1_ratio=0.5,
        fit_intercept=True,
        precompute=False,
        max_iter=1000,
        copy_X=True,
        tol=1e-4,
        warm_start=False,
        positive=False,
        random_state=None,
        selection="cyclic",
    ):
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.fit_intercept = fit_intercept
        self.precompute = precompute
        self.max_iter = max_iter
        self.copy_X = copy_X
        self.tol = tol
        self.warm_start = warm_start
        self.positive = positive
        self.random_state = random_state
        self.selection = selection

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Fit model with coordinate descent.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of (n_samples, n_features)
            Data.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target. Will be cast to X's dtype if necessary.

        sample_weight : float or array-like of shape (n_samples,), default=None
            Sample weights. Internally, the `sample_weight` vector will be
            rescaled to sum to `n_samples`.

            .. versionadded:: 0.23

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        Coordinate descent is an algorithm that considers each column of
        data at a time hence it will automatically convert the X input
        as a Fortran-contiguous numpy array if necessary.

        To avoid memory re-allocation it is advised to allocate the
        initial data in memory directly using that format.
        """
        if self.alpha == 0:
            warnings.warn(
                (
                    "With alpha=0, this algorithm does not converge "
                    "well. You are advised to use the LinearRegression "
                    "estimator"
                ),
                stacklevel=2,
            )

        # Remember if X is copied
        X_copied = False
        # We expect X and y to be float64 or float32 Fortran ordered arrays
        # when bypassing checks
        if check_input:
            X_copied = self.copy_X and self.fit_intercept
            X, y = self._validate_data(
                X,
                y,
                accept_sparse="csc",
                order="F",
                dtype=[np.float64, np.float32],
                copy=X_copied,
                multi_output=True,
                y_numeric=True,
            )
            y = check_array(
                y, order="F", copy=False, dtype=X.dtype.type, ensure_2d=False
            )

        n_samples, n_features = X.shape
        alpha = self.alpha

        if isinstance(sample_weight, numbers.Number):
            sample_weight = None
        if sample_weight is not None:
            if check_input:
                sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
            # TLDR: Rescale sw to sum up to n_samples.
            # Long: The objective function of Enet
            #
            #    1/2 * np.average(squared error, weights=sw)
            #    + alpha * penalty                                             (1)
            #
            # is invariant under rescaling of sw.
            # But enet_path coordinate descent minimizes
            #
            #     1/2 * sum(squared error) + alpha' * penalty                  (2)
            #
            # and therefore sets
            #
            #     alpha' = n_samples * alpha                                   (3)
            #
            # inside its function body, which results in objective (2) being
            # equivalent to (1) in case of no sw.
            # With sw, however, enet_path should set
            #
            #     alpha' = sum(sw) * alpha                                     (4)
            #
            # Therefore, we use the freedom of Eq. (1) to rescale sw before
            # calling enet_path, i.e.
            #
            #     sw *= n_samples / sum(sw)
            #
            # such that sum(sw) = n_samples. This way, (3) and (4) are the same.
            sample_weight = sample_weight * (n_samples / np.sum(sample_weight))
            # Note: Alternatively, we could also have rescaled alpha instead
            # of sample_weight:
            #
            #     alpha *= np.sum(sample_weight) / n_samples

        # Ensure copying happens only once, don't do it again if done above.
        # X and y will be rescaled if sample_weight is not None, order='F'
        # ensures that the returned X and y are still F-contiguous.
        should_copy = self.copy_X and not X_copied
        X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(
            X,
            y,
            None,
            self.precompute,
            fit_intercept=self.fit_intercept,
            copy=should_copy,
            check_input=check_input,
            sample_weight=sample_weight,
        )
        # coordinate descent needs F-ordered arrays and _pre_fit might have
        # called _rescale_data
        if check_input or sample_weight is not None:
            X, y = _set_order(X, y, order="F")
        if y.ndim == 1:
            y = y[:, np.newaxis]
        if Xy is not None and Xy.ndim == 1:
            Xy = Xy[:, np.newaxis]

        n_targets = y.shape[1]

        if not self.warm_start or not hasattr(self, "coef_"):
            coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order="F")
        else:
            coef_ = self.coef_
            if coef_.ndim == 1:
                coef_ = coef_[np.newaxis, :]

        dual_gaps_ = np.zeros(n_targets, dtype=X.dtype)
        self.n_iter_ = []

        for k in range(n_targets):
            if Xy is not None:
                this_Xy = Xy[:, k]
            else:
                this_Xy = None
            _, this_coef, this_dual_gap, this_iter = self.path(
                X,
                y[:, k],
                l1_ratio=self.l1_ratio,
                eps=None,
                n_alphas=None,
                alphas=[alpha],
                precompute=precompute,
                Xy=this_Xy,
                copy_X=True,
                coef_init=coef_[k],
                verbose=False,
                return_n_iter=True,
                positive=self.positive,
                check_input=False,
                # from here on **params
                tol=self.tol,
                X_offset=X_offset,
                X_scale=X_scale,
                max_iter=self.max_iter,
                random_state=self.random_state,
                selection=self.selection,
                sample_weight=sample_weight,
            )
            coef_[k] = this_coef[:, 0]
            dual_gaps_[k] = this_dual_gap[0]
            self.n_iter_.append(this_iter[0])

        if n_targets == 1:
            self.n_iter_ = self.n_iter_[0]
            self.coef_ = coef_[0]
            self.dual_gap_ = dual_gaps_[0]
        else:
            self.coef_ = coef_
            self.dual_gap_ = dual_gaps_

        self._set_intercept(X_offset, y_offset, X_scale)

        # check for finiteness of coefficients
        if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]):
            raise ValueError(
                "Coordinate descent iterations resulted in non-finite parameter"
                " values. The input data may contain large values and need to"
                " be preprocessed."
            )

        # return self for chaining fit and predict calls
        return self

    @property
    def sparse_coef_(self):
        """Sparse representation of the fitted `coef_`."""
        return sparse.csr_matrix(self.coef_)

    def _decision_function(self, X):
        """Decision function of the linear model.

        Parameters
        ----------
        X : numpy array or scipy.sparse matrix of shape (n_samples, n_features)

        Returns
        -------
        T : ndarray of shape (n_samples,)
            The predicted decision function.
        """
        check_is_fitted(self)
        if sparse.issparse(X):
            return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_
        else:
            return super()._decision_function(X)


###############################################################################
# Lasso model


class Lasso(ElasticNet):
    """Linear Model trained with L1 prior as regularizer (aka the Lasso).

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    Technically the Lasso model is optimizing the same objective function as
    the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).

    Read more in the :ref:`User Guide <lasso>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Constant that multiplies the L1 term, controlling regularization
        strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.

        When `alpha = 0`, the objective is equivalent to ordinary least
        squares, solved by the :class:`LinearRegression` object. For numerical
        reasons, using `alpha = 0` with the `Lasso` object is not advised.
        Instead, you should use the :class:`LinearRegression` object.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to False, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    precompute : bool or array-like of shape (n_features, n_features),\
                 default=False
        Whether to use a precomputed Gram matrix to speed up
        calculations. The Gram matrix can also be passed as argument.
        For sparse input this option is always ``False`` to preserve sparsity.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``, see Notes below.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the cost function formula).

    dual_gap_ : float or ndarray of shape (n_targets,)
        Given param alpha, the dual gaps at the end of the optimization,
        same shape as each observation of y.

    sparse_coef_ : sparse matrix of shape (n_features, 1) or \
            (n_targets, n_features)
        Readonly property derived from ``coef_``.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function.

    n_iter_ : int or list of int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    lars_path : Regularization path using LARS.
    lasso_path : Regularization path using Lasso.
    LassoLars : Lasso Path along the regularization parameter using LARS algorithm.
    LassoCV : Lasso alpha parameter by cross-validation.
    LassoLarsCV : Lasso least angle parameter algorithm by cross-validation.
    sklearn.decomposition.sparse_encode : Sparse coding array estimator.

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a Fortran-contiguous numpy array.

    Regularization improves the conditioning of the problem and
    reduces the variance of the estimates. Larger values specify stronger
    regularization. Alpha corresponds to `1 / (2C)` in other linear
    models such as :class:`~sklearn.linear_model.LogisticRegression` or
    :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
    assumed to be specific to the targets. Hence they must correspond in
    number.

    The precise stopping criteria based on `tol` are the following: First, check that
    that maximum coordinate update, i.e. :math:`\\max_j |w_j^{new} - w_j^{old}|`
    is smaller than `tol` times the maximum absolute coefficient, :math:`\\max_j |w_j|`.
    If so, then additionally check whether the dual gap is smaller than `tol` times
    :math:`||y||_2^2 / n_{\\text{samples}}`.

    The target can be a 2-dimensional array, resulting in the optimization of the
    following objective::

        (1 / (2 * n_samples)) * ||Y - XW||^2_F + alpha * ||W||_11

    where :math:`||W||_{1,1}` is the sum of the magnitude of the matrix coefficients.
    It should not be confused with :class:`~sklearn.linear_model.MultiTaskLasso` which
    instead penalizes the :math:`L_{2,1}` norm of the coefficients, yielding row-wise
    sparsity in the coefficients.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.Lasso(alpha=0.1)
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    Lasso(alpha=0.1)
    >>> print(clf.coef_)
    [0.85 0.  ]
    >>> print(clf.intercept_)
    0.15...
    """

    _parameter_constraints: dict = {
        **ElasticNet._parameter_constraints,
    }
    _parameter_constraints.pop("l1_ratio")

    path = staticmethod(enet_path)

    def __init__(
        self,
        alpha=1.0,
        *,
        fit_intercept=True,
        precompute=False,
        copy_X=True,
        max_iter=1000,
        tol=1e-4,
        warm_start=False,
        positive=False,
        random_state=None,
        selection="cyclic",
    ):
        super().__init__(
            alpha=alpha,
            l1_ratio=1.0,
            fit_intercept=fit_intercept,
            precompute=precompute,
            copy_X=copy_X,
            max_iter=max_iter,
            tol=tol,
            warm_start=warm_start,
            positive=positive,
            random_state=random_state,
            selection=selection,
        )


###############################################################################
# Functions for CV with paths functions


def _path_residuals(
    X,
    y,
    sample_weight,
    train,
    test,
    fit_intercept,
    path,
    path_params,
    alphas=None,
    l1_ratio=1,
    X_order=None,
    dtype=None,
):
    """Returns the MSE for the models computed by 'path'.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values.

    sample_weight : None or array-like of shape (n_samples,)
        Sample weights.

    train : list of indices
        The indices of the train set.

    test : list of indices
        The indices of the test set.

    path : callable
        Function returning a list of models on the path. See
        enet_path for an example of signature.

    path_params : dictionary
        Parameters passed to the path function.

    alphas : array-like, default=None
        Array of float that is used for cross-validation. If not
        provided, computed using 'path'.

    l1_ratio : float, default=1
        float between 0 and 1 passed to ElasticNet (scaling between
        l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an
        L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0
        < l1_ratio < 1``, the penalty is a combination of L1 and L2.

    X_order : {'F', 'C'}, default=None
        The order of the arrays expected by the path function to
        avoid memory copies.

    dtype : a numpy dtype, default=None
        The dtype of the arrays expected by the path function to
        avoid memory copies.
    """
    X_train = X[train]
    y_train = y[train]
    X_test = X[test]
    y_test = y[test]
    if sample_weight is None:
        sw_train, sw_test = None, None
    else:
        sw_train = sample_weight[train]
        sw_test = sample_weight[test]
        n_samples = X_train.shape[0]
        # TLDR: Rescale sw_train to sum up to n_samples on the training set.
        # See TLDR and long comment inside ElasticNet.fit.
        sw_train *= n_samples / np.sum(sw_train)
        # Note: Alternatively, we could also have rescaled alpha instead
        # of sample_weight:
        #
        #     alpha *= np.sum(sample_weight) / n_samples

    if not sparse.issparse(X):
        for array, array_input in (
            (X_train, X),
            (y_train, y),
            (X_test, X),
            (y_test, y),
        ):
            if array.base is not array_input and not array.flags["WRITEABLE"]:
                # fancy indexing should create a writable copy but it doesn't
                # for read-only memmaps (cf. numpy#14132).
                array.setflags(write=True)

    if y.ndim == 1:
        precompute = path_params["precompute"]
    else:
        # No Gram variant of multi-task exists right now.
        # Fall back to default enet_multitask
        precompute = False

    X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(
        X_train,
        y_train,
        None,
        precompute,
        fit_intercept=fit_intercept,
        copy=False,
        sample_weight=sw_train,
    )

    path_params = path_params.copy()
    path_params["Xy"] = Xy
    path_params["X_offset"] = X_offset
    path_params["X_scale"] = X_scale
    path_params["precompute"] = precompute
    path_params["copy_X"] = False
    path_params["alphas"] = alphas
    # needed for sparse cd solver
    path_params["sample_weight"] = sw_train

    if "l1_ratio" in path_params:
        path_params["l1_ratio"] = l1_ratio

    # Do the ordering and type casting here, as if it is done in the path,
    # X is copied and a reference is kept here
    X_train = check_array(X_train, accept_sparse="csc", dtype=dtype, order=X_order)
    alphas, coefs, _ = path(X_train, y_train, **path_params)
    del X_train, y_train

    if y.ndim == 1:
        # Doing this so that it becomes coherent with multioutput.
        coefs = coefs[np.newaxis, :, :]
        y_offset = np.atleast_1d(y_offset)
        y_test = y_test[:, np.newaxis]

    intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs)
    X_test_coefs = safe_sparse_dot(X_test, coefs)
    residues = X_test_coefs - y_test[:, :, np.newaxis]
    residues += intercepts
    if sample_weight is None:
        this_mse = (residues**2).mean(axis=0)
    else:
        this_mse = np.average(residues**2, weights=sw_test, axis=0)

    return this_mse.mean(axis=0)


class LinearModelCV(MultiOutputMixin, LinearModel, ABC):
    """Base class for iterative model fitting along a regularization path."""

    _parameter_constraints: dict = {
        "eps": [Interval(Real, 0, None, closed="neither")],
        "n_alphas": [Interval(Integral, 1, None, closed="left")],
        "alphas": ["array-like", None],
        "fit_intercept": ["boolean"],
        "precompute": [StrOptions({"auto"}), "array-like", "boolean"],
        "max_iter": [Interval(Integral, 1, None, closed="left")],
        "tol": [Interval(Real, 0, None, closed="left")],
        "copy_X": ["boolean"],
        "cv": ["cv_object"],
        "verbose": ["verbose"],
        "n_jobs": [Integral, None],
        "positive": ["boolean"],
        "random_state": ["random_state"],
        "selection": [StrOptions({"cyclic", "random"})],
    }

    @abstractmethod
    def __init__(
        self,
        eps=1e-3,
        n_alphas=100,
        alphas=None,
        fit_intercept=True,
        precompute="auto",
        max_iter=1000,
        tol=1e-4,
        copy_X=True,
        cv=None,
        verbose=False,
        n_jobs=None,
        positive=False,
        random_state=None,
        selection="cyclic",
    ):
        self.eps = eps
        self.n_alphas = n_alphas
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.precompute = precompute
        self.max_iter = max_iter
        self.tol = tol
        self.copy_X = copy_X
        self.cv = cv
        self.verbose = verbose
        self.n_jobs = n_jobs
        self.positive = positive
        self.random_state = random_state
        self.selection = selection

    @abstractmethod
    def _get_estimator(self):
        """Model to be fitted after the best alpha has been determined."""

    @abstractmethod
    def _is_multitask(self):
        """Bool indicating if class is meant for multidimensional target."""

    @staticmethod
    @abstractmethod
    def path(X, y, **kwargs):
        """Compute path with coordinate descent."""

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, **params):
        """Fit linear model with coordinate descent.

        Fit is on grid of alphas and best alpha estimated by cross-validation.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data. Pass directly as Fortran-contiguous data
            to avoid unnecessary memory duplication. If y is mono-output,
            X can be sparse.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values.

        sample_weight : float or array-like of shape (n_samples,), \
                default=None
            Sample weights used for fitting and evaluation of the weighted
            mean squared error of each cv-fold. Note that the cross validated
            MSE that is finally used to find the best model is the unweighted
            mean over the (weighted) MSEs of each test fold.

        **params : dict, default=None
            Parameters to be passed to the CV splitter.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Returns an instance of fitted model.
        """
        _raise_for_params(params, self, "fit")

        # This makes sure that there is no duplication in memory.
        # Dealing right with copy_X is important in the following:
        # Multiple functions touch X and subsamples of X and can induce a
        # lot of duplication of memory
        copy_X = self.copy_X and self.fit_intercept

        check_y_params = dict(
            copy=False, dtype=[np.float64, np.float32], ensure_2d=False
        )
        if isinstance(X, np.ndarray) or sparse.issparse(X):
            # Keep a reference to X
            reference_to_old_X = X
            # Let us not impose fortran ordering so far: it is
            # not useful for the cross-validation loop and will be done
            # by the model fitting itself

            # Need to validate separately here.
            # We can't pass multi_output=True because that would allow y to be
            # csr. We also want to allow y to be 64 or 32 but check_X_y only
            # allows to convert for 64.
            check_X_params = dict(
                accept_sparse="csc", dtype=[np.float64, np.float32], copy=False
            )
            X, y = self._validate_data(
                X, y, validate_separately=(check_X_params, check_y_params)
            )
            if sparse.issparse(X):
                if hasattr(reference_to_old_X, "data") and not np.may_share_memory(
                    reference_to_old_X.data, X.data
                ):
                    # X is a sparse matrix and has been copied
                    copy_X = False
            elif not np.may_share_memory(reference_to_old_X, X):
                # X has been copied
                copy_X = False
            del reference_to_old_X
        else:
            # Need to validate separately here.
            # We can't pass multi_output=True because that would allow y to be
            # csr. We also want to allow y to be 64 or 32 but check_X_y only
            # allows to convert for 64.
            check_X_params = dict(
                accept_sparse="csc",
                dtype=[np.float64, np.float32],
                order="F",
                copy=copy_X,
            )
            X, y = self._validate_data(
                X, y, validate_separately=(check_X_params, check_y_params)
            )
            copy_X = False

        check_consistent_length(X, y)

        if not self._is_multitask():
            if y.ndim > 1 and y.shape[1] > 1:
                raise ValueError(
                    "For multi-task outputs, use MultiTask%s" % self.__class__.__name__
                )
            y = column_or_1d(y, warn=True)
        else:
            if sparse.issparse(X):
                raise TypeError("X should be dense but a sparse matrix waspassed")
            elif y.ndim == 1:
                raise ValueError(
                    "For mono-task outputs, use %sCV" % self.__class__.__name__[9:]
                )

        if isinstance(sample_weight, numbers.Number):
            sample_weight = None
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        model = self._get_estimator()

        # All LinearModelCV parameters except 'cv' are acceptable
        path_params = self.get_params()

        # Pop `intercept` that is not parameter of the path function
        path_params.pop("fit_intercept", None)

        if "l1_ratio" in path_params:
            l1_ratios = np.atleast_1d(path_params["l1_ratio"])
            # For the first path, we need to set l1_ratio
            path_params["l1_ratio"] = l1_ratios[0]
        else:
            l1_ratios = [
                1,
            ]
        path_params.pop("cv", None)
        path_params.pop("n_jobs", None)

        alphas = self.alphas
        n_l1_ratio = len(l1_ratios)

        check_scalar_alpha = partial(
            check_scalar,
            target_type=Real,
            min_val=0.0,
            include_boundaries="left",
        )

        if alphas is None:
            alphas = [
                _alpha_grid(
                    X,
                    y,
                    l1_ratio=l1_ratio,
                    fit_intercept=self.fit_intercept,
                    eps=self.eps,
                    n_alphas=self.n_alphas,
                    copy_X=self.copy_X,
                )
                for l1_ratio in l1_ratios
            ]
        else:
            # Making sure alphas entries are scalars.
            for index, alpha in enumerate(alphas):
                check_scalar_alpha(alpha, f"alphas[{index}]")
            # Making sure alphas is properly ordered.
            alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1))

        # We want n_alphas to be the number of alphas used for each l1_ratio.
        n_alphas = len(alphas[0])
        path_params.update({"n_alphas": n_alphas})

        path_params["copy_X"] = copy_X
        # We are not computing in parallel, we can modify X
        # inplace in the folds
        if effective_n_jobs(self.n_jobs) > 1:
            path_params["copy_X"] = False

        # init cross-validation generator
        cv = check_cv(self.cv)

        if _routing_enabled():
            splitter_supports_sample_weight = get_routing_for_object(cv).consumes(
                method="split", params=["sample_weight"]
            )
            if (
                sample_weight is not None
                and not splitter_supports_sample_weight
                and not has_fit_parameter(self, "sample_weight")
            ):
                raise ValueError(
                    "The CV splitter and underlying estimator do not support"
                    " sample weights."
                )

            if splitter_supports_sample_weight:
                params["sample_weight"] = sample_weight

            routed_params = process_routing(self, "fit", **params)

            if sample_weight is not None and not has_fit_parameter(
                self, "sample_weight"
            ):
                # MultiTaskElasticNetCV does not (yet) support sample_weight
                sample_weight = None
        else:
            routed_params = Bunch()
            routed_params.splitter = Bunch(split=Bunch())

        # Compute path for all folds and compute MSE to get the best alpha
        folds = list(cv.split(X, y, **routed_params.splitter.split))
        best_mse = np.inf

        # We do a double for loop folded in one, in order to be able to
        # iterate in parallel on l1_ratio and folds
        jobs = (
            delayed(_path_residuals)(
                X,
                y,
                sample_weight,
                train,
                test,
                self.fit_intercept,
                self.path,
                path_params,
                alphas=this_alphas,
                l1_ratio=this_l1_ratio,
                X_order="F",
                dtype=X.dtype.type,
            )
            for this_l1_ratio, this_alphas in zip(l1_ratios, alphas)
            for train, test in folds
        )
        mse_paths = Parallel(
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            prefer="threads",
        )(jobs)
        mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1))
        # The mean is computed over folds.
        mean_mse = np.mean(mse_paths, axis=1)
        self.mse_path_ = np.squeeze(np.moveaxis(mse_paths, 2, 1))
        for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse):
            i_best_alpha = np.argmin(mse_alphas)
            this_best_mse = mse_alphas[i_best_alpha]
            if this_best_mse < best_mse:
                best_alpha = l1_alphas[i_best_alpha]
                best_l1_ratio = l1_ratio
                best_mse = this_best_mse

        self.l1_ratio_ = best_l1_ratio
        self.alpha_ = best_alpha
        if self.alphas is None:
            self.alphas_ = np.asarray(alphas)
            if n_l1_ratio == 1:
                self.alphas_ = self.alphas_[0]
        # Remove duplicate alphas in case alphas is provided.
        else:
            self.alphas_ = np.asarray(alphas[0])

        # Refit the model with the parameters selected
        common_params = {
            name: value
            for name, value in self.get_params().items()
            if name in model.get_params()
        }
        model.set_params(**common_params)
        model.alpha = best_alpha
        model.l1_ratio = best_l1_ratio
        model.copy_X = copy_X
        precompute = getattr(self, "precompute", None)
        if isinstance(precompute, str) and precompute == "auto":
            model.precompute = False

        if sample_weight is None:
            # MultiTaskElasticNetCV does not (yet) support sample_weight, even
            # not sample_weight=None.
            model.fit(X, y)
        else:
            model.fit(X, y, sample_weight=sample_weight)
        if not hasattr(self, "l1_ratio"):
            del self.l1_ratio_
        self.coef_ = model.coef_
        self.intercept_ = model.intercept_
        self.dual_gap_ = model.dual_gap_
        self.n_iter_ = model.n_iter_
        return self

    def _more_tags(self):
        # Note: check_sample_weights_invariance(kind='ones') should work, but
        # currently we can only mark a whole test as xfail.
        return {
            "_xfail_checks": {
                "check_sample_weights_invariance": (
                    "zero sample_weight is not equivalent to removing samples"
                ),
            }
        }

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.4

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = (
            MetadataRouter(owner=self.__class__.__name__)
            .add_self_request(self)
            .add(
                splitter=check_cv(self.cv),
                method_mapping=MethodMapping().add(callee="split", caller="fit"),
            )
        )
        return router


class LassoCV(RegressorMixin, LinearModelCV):
    """Lasso linear model with iterative fitting along a regularization path.

    See glossary entry for :term:`cross-validation estimator`.

    The best model is selected by cross-validation.

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    Read more in the :ref:`User Guide <lasso>`.

    Parameters
    ----------
    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If ``None`` alphas are set automatically.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    precompute : 'auto', bool or array-like of shape \
            (n_features, n_features), default='auto'
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to ``'auto'`` let us decide. The Gram
        matrix can also be passed as argument.

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - int, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    verbose : bool or int, default=False
        Amount of verbosity.

    n_jobs : int, default=None
        Number of CPUs to use during the cross validation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    positive : bool, default=False
        If positive, restrict regression coefficients to be positive.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    alpha_ : float
        The amount of penalization chosen by cross validation.

    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the cost function formula).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function.

    mse_path_ : ndarray of shape (n_alphas, n_folds)
        Mean square error for the test set on each fold, varying alpha.

    alphas_ : ndarray of shape (n_alphas,)
        The grid of alphas used for fitting.

    dual_gap_ : float or ndarray of shape (n_targets,)
        The dual gap at the end of the optimization for the optimal alpha
        (``alpha_``).

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance for the optimal alpha.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    lars_path : Compute Least Angle Regression or Lasso path using LARS
        algorithm.
    lasso_path : Compute Lasso path with coordinate descent.
    Lasso : The Lasso is a linear model that estimates sparse coefficients.
    LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
    LassoCV : Lasso linear model with iterative fitting along a regularization
        path.
    LassoLarsCV : Cross-validated Lasso using the LARS algorithm.

    Notes
    -----
    In `fit`, once the best parameter `alpha` is found through
    cross-validation, the model is fit again using the entire training set.

    To avoid unnecessary memory duplication the `X` argument of the `fit`
    method should be directly passed as a Fortran-contiguous numpy array.

     For an example, see
     :ref:`examples/linear_model/plot_lasso_model_selection.py
     <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`.

    :class:`LassoCV` leads to different results than a hyperparameter
    search using :class:`~sklearn.model_selection.GridSearchCV` with a
    :class:`Lasso` model. In :class:`LassoCV`, a model for a given
    penalty `alpha` is warm started using the coefficients of the
    closest model (trained at the previous iteration) on the
    regularization path. It tends to speed up the hyperparameter
    search.

    Examples
    --------
    >>> from sklearn.linear_model import LassoCV
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(noise=4, random_state=0)
    >>> reg = LassoCV(cv=5, random_state=0).fit(X, y)
    >>> reg.score(X, y)
    0.9993...
    >>> reg.predict(X[:1,])
    array([-78.4951...])
    """

    path = staticmethod(lasso_path)

    def __init__(
        self,
        *,
        eps=1e-3,
        n_alphas=100,
        alphas=None,
        fit_intercept=True,
        precompute="auto",
        max_iter=1000,
        tol=1e-4,
        copy_X=True,
        cv=None,
        verbose=False,
        n_jobs=None,
        positive=False,
        random_state=None,
        selection="cyclic",
    ):
        super().__init__(
            eps=eps,
            n_alphas=n_alphas,
            alphas=alphas,
            fit_intercept=fit_intercept,
            precompute=precompute,
            max_iter=max_iter,
            tol=tol,
            copy_X=copy_X,
            cv=cv,
            verbose=verbose,
            n_jobs=n_jobs,
            positive=positive,
            random_state=random_state,
            selection=selection,
        )

    def _get_estimator(self):
        return Lasso()

    def _is_multitask(self):
        return False

    def _more_tags(self):
        return {"multioutput": False}


class ElasticNetCV(RegressorMixin, LinearModelCV):
    """Elastic Net model with iterative fitting along a regularization path.

    See glossary entry for :term:`cross-validation estimator`.

    Read more in the :ref:`User Guide <elastic_net>`.

    Parameters
    ----------
    l1_ratio : float or list of float, default=0.5
        Float between 0 and 1 passed to ElasticNet (scaling between
        l1 and l2 penalties). For ``l1_ratio = 0``
        the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty.
        For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2
        This parameter can be a list, in which case the different
        values are tested by cross-validation and the one giving the best
        prediction score is used. Note that a good choice of list of
        values for l1_ratio is often to put more values close to 1
        (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
        .9, .95, .99, 1]``.

    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path, used for each l1_ratio.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If None alphas are set automatically.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    precompute : 'auto', bool or array-like of shape \
            (n_features, n_features), default='auto'
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to ``'auto'`` let us decide. The Gram
        matrix can also be passed as argument.

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - int, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    verbose : bool or int, default=0
        Amount of verbosity.

    n_jobs : int, default=None
        Number of CPUs to use during the cross validation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    alpha_ : float
        The amount of penalization chosen by cross validation.

    l1_ratio_ : float
        The compromise between l1 and l2 penalization chosen by
        cross validation.

    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the cost function formula).

    intercept_ : float or ndarray of shape (n_targets, n_features)
        Independent term in the decision function.

    mse_path_ : ndarray of shape (n_l1_ratio, n_alpha, n_folds)
        Mean square error for the test set on each fold, varying l1_ratio and
        alpha.

    alphas_ : ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)
        The grid of alphas used for fitting, for each l1_ratio.

    dual_gap_ : float
        The dual gaps at the end of the optimization for the optimal alpha.

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance for the optimal alpha.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    enet_path : Compute elastic net path with coordinate descent.
    ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.

    Notes
    -----
    In `fit`, once the best parameters `l1_ratio` and `alpha` are found through
    cross-validation, the model is fit again using the entire training set.

    To avoid unnecessary memory duplication the `X` argument of the `fit`
    method should be directly passed as a Fortran-contiguous numpy array.

    The parameter `l1_ratio` corresponds to alpha in the glmnet R package
    while alpha corresponds to the lambda parameter in glmnet.
    More specifically, the optimization objective is::

        1 / (2 * n_samples) * ||y - Xw||^2_2
        + alpha * l1_ratio * ||w||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

    If you are interested in controlling the L1 and L2 penalty
    separately, keep in mind that this is equivalent to::

        a * L1 + b * L2

    for::

        alpha = a + b and l1_ratio = a / (a + b).

    For an example, see
    :ref:`examples/linear_model/plot_lasso_model_selection.py
    <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`.

    Examples
    --------
    >>> from sklearn.linear_model import ElasticNetCV
    >>> from sklearn.datasets import make_regression

    >>> X, y = make_regression(n_features=2, random_state=0)
    >>> regr = ElasticNetCV(cv=5, random_state=0)
    >>> regr.fit(X, y)
    ElasticNetCV(cv=5, random_state=0)
    >>> print(regr.alpha_)
    0.199...
    >>> print(regr.intercept_)
    0.398...
    >>> print(regr.predict([[0, 0]]))
    [0.398...]
    """

    _parameter_constraints: dict = {
        **LinearModelCV._parameter_constraints,
        "l1_ratio": [Interval(Real, 0, 1, closed="both"), "array-like"],
    }

    path = staticmethod(enet_path)

    def __init__(
        self,
        *,
        l1_ratio=0.5,
        eps=1e-3,
        n_alphas=100,
        alphas=None,
        fit_intercept=True,
        precompute="auto",
        max_iter=1000,
        tol=1e-4,
        cv=None,
        copy_X=True,
        verbose=0,
        n_jobs=None,
        positive=False,
        random_state=None,
        selection="cyclic",
    ):
        self.l1_ratio = l1_ratio
        self.eps = eps
        self.n_alphas = n_alphas
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.precompute = precompute
        self.max_iter = max_iter
        self.tol = tol
        self.cv = cv
        self.copy_X = copy_X
        self.verbose = verbose
        self.n_jobs = n_jobs
        self.positive = positive
        self.random_state = random_state
        self.selection = selection

    def _get_estimator(self):
        return ElasticNet()

    def _is_multitask(self):
        return False

    def _more_tags(self):
        return {"multioutput": False}


###############################################################################
# Multi Task ElasticNet and Lasso models (with joint feature selection)


class MultiTaskElasticNet(Lasso):
    """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.

    The optimization objective for MultiTaskElasticNet is::

        (1 / (2 * n_samples)) * ||Y - XW||_Fro^2
        + alpha * l1_ratio * ||W||_21
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

    Where::

        ||W||_21 = sum_i sqrt(sum_j W_ij ^ 2)

    i.e. the sum of norms of each row.

    Read more in the :ref:`User Guide <multi_task_elastic_net>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Constant that multiplies the L1/L2 term. Defaults to 1.0.

    l1_ratio : float, default=0.5
        The ElasticNet mixing parameter, with 0 < l1_ratio <= 1.
        For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it
        is an L2 penalty.
        For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    intercept_ : ndarray of shape (n_targets,)
        Independent term in decision function.

    coef_ : ndarray of shape (n_targets, n_features)
        Parameter vector (W in the cost function formula). If a 1D y is
        passed in at fit (non multi-task usage), ``coef_`` is then a 1D array.
        Note that ``coef_`` stores the transpose of ``W``, ``W.T``.

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance.

    dual_gap_ : float
        The dual gaps at the end of the optimization.

    eps_ : float
        The tolerance scaled scaled by the variance of the target `y`.

    sparse_coef_ : sparse matrix of shape (n_features,) or \
            (n_targets, n_features)
        Sparse representation of the `coef_`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in
        cross-validation.
    ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.
    MultiTaskLasso : Multi-task Lasso model trained with L1/L2
        mixed-norm as regularizer.

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    To avoid unnecessary memory duplication the X and y arguments of the fit
    method should be directly passed as Fortran-contiguous numpy arrays.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1)
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
    MultiTaskElasticNet(alpha=0.1)
    >>> print(clf.coef_)
    [[0.45663524 0.45612256]
     [0.45663524 0.45612256]]
    >>> print(clf.intercept_)
    [0.0872422 0.0872422]
    """

    _parameter_constraints: dict = {
        **ElasticNet._parameter_constraints,
    }
    for param in ("precompute", "positive"):
        _parameter_constraints.pop(param)

    def __init__(
        self,
        alpha=1.0,
        *,
        l1_ratio=0.5,
        fit_intercept=True,
        copy_X=True,
        max_iter=1000,
        tol=1e-4,
        warm_start=False,
        random_state=None,
        selection="cyclic",
    ):
        self.l1_ratio = l1_ratio
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.max_iter = max_iter
        self.copy_X = copy_X
        self.tol = tol
        self.warm_start = warm_start
        self.random_state = random_state
        self.selection = selection

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y):
        """Fit MultiTaskElasticNet model with coordinate descent.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Data.
        y : ndarray of shape (n_samples, n_targets)
            Target. Will be cast to X's dtype if necessary.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        Coordinate descent is an algorithm that considers each column of
        data at a time hence it will automatically convert the X input
        as a Fortran-contiguous numpy array if necessary.

        To avoid memory re-allocation it is advised to allocate the
        initial data in memory directly using that format.
        """
        # Need to validate separately here.
        # We can't pass multi_output=True because that would allow y to be csr.
        check_X_params = dict(
            dtype=[np.float64, np.float32],
            order="F",
            copy=self.copy_X and self.fit_intercept,
        )
        check_y_params = dict(ensure_2d=False, order="F")
        X, y = self._validate_data(
            X, y, validate_separately=(check_X_params, check_y_params)
        )
        check_consistent_length(X, y)
        y = y.astype(X.dtype)

        if hasattr(self, "l1_ratio"):
            model_str = "ElasticNet"
        else:
            model_str = "Lasso"
        if y.ndim == 1:
            raise ValueError("For mono-task outputs, use %s" % model_str)

        n_samples, n_features = X.shape
        n_targets = y.shape[1]

        X, y, X_offset, y_offset, X_scale = _preprocess_data(
            X, y, fit_intercept=self.fit_intercept, copy=False
        )

        if not self.warm_start or not hasattr(self, "coef_"):
            self.coef_ = np.zeros(
                (n_targets, n_features), dtype=X.dtype.type, order="F"
            )

        l1_reg = self.alpha * self.l1_ratio * n_samples
        l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples

        self.coef_ = np.asfortranarray(self.coef_)  # coef contiguous in memory

        random = self.selection == "random"

        (
            self.coef_,
            self.dual_gap_,
            self.eps_,
            self.n_iter_,
        ) = cd_fast.enet_coordinate_descent_multi_task(
            self.coef_,
            l1_reg,
            l2_reg,
            X,
            y,
            self.max_iter,
            self.tol,
            check_random_state(self.random_state),
            random,
        )

        # account for different objective scaling here and in cd_fast
        self.dual_gap_ /= n_samples

        self._set_intercept(X_offset, y_offset, X_scale)

        # return self for chaining fit and predict calls
        return self

    def _more_tags(self):
        return {"multioutput_only": True}


class MultiTaskLasso(MultiTaskElasticNet):
    """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

    Where::

        ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}

    i.e. the sum of norm of each row.

    Read more in the :ref:`User Guide <multi_task_lasso>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Constant that multiplies the L1/L2 term. Defaults to 1.0.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    coef_ : ndarray of shape (n_targets, n_features)
        Parameter vector (W in the cost function formula).
        Note that ``coef_`` stores the transpose of ``W``, ``W.T``.

    intercept_ : ndarray of shape (n_targets,)
        Independent term in decision function.

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance.

    dual_gap_ : ndarray of shape (n_alphas,)
        The dual gaps at the end of the optimization for each alpha.

    eps_ : float
        The tolerance scaled scaled by the variance of the target `y`.

    sparse_coef_ : sparse matrix of shape (n_features,) or \
            (n_targets, n_features)
        Sparse representation of the `coef_`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso).
    MultiTaskLassoCV: Multi-task L1 regularized linear model with built-in
        cross-validation.
    MultiTaskElasticNetCV: Multi-task L1/L2 ElasticNet with built-in cross-validation.

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    To avoid unnecessary memory duplication the X and y arguments of the fit
    method should be directly passed as Fortran-contiguous numpy arrays.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.MultiTaskLasso(alpha=0.1)
    >>> clf.fit([[0, 1], [1, 2], [2, 4]], [[0, 0], [1, 1], [2, 3]])
    MultiTaskLasso(alpha=0.1)
    >>> print(clf.coef_)
    [[0.         0.60809415]
    [0.         0.94592424]]
    >>> print(clf.intercept_)
    [-0.41888636 -0.87382323]
    """

    _parameter_constraints: dict = {
        **MultiTaskElasticNet._parameter_constraints,
    }
    _parameter_constraints.pop("l1_ratio")

    def __init__(
        self,
        alpha=1.0,
        *,
        fit_intercept=True,
        copy_X=True,
        max_iter=1000,
        tol=1e-4,
        warm_start=False,
        random_state=None,
        selection="cyclic",
    ):
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.max_iter = max_iter
        self.copy_X = copy_X
        self.tol = tol
        self.warm_start = warm_start
        self.l1_ratio = 1.0
        self.random_state = random_state
        self.selection = selection


class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
    """Multi-task L1/L2 ElasticNet with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    The optimization objective for MultiTaskElasticNet is::

        (1 / (2 * n_samples)) * ||Y - XW||^Fro_2
        + alpha * l1_ratio * ||W||_21
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

    Where::

        ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}

    i.e. the sum of norm of each row.

    Read more in the :ref:`User Guide <multi_task_elastic_net>`.

    .. versionadded:: 0.15

    Parameters
    ----------
    l1_ratio : float or list of float, default=0.5
        The ElasticNet mixing parameter, with 0 < l1_ratio <= 1.
        For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it
        is an L2 penalty.
        For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2.
        This parameter can be a list, in which case the different
        values are tested by cross-validation and the one giving the best
        prediction score is used. Note that a good choice of list of
        values for l1_ratio is often to put more values close to 1
        (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
        .9, .95, .99, 1]``.

    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If not provided, set automatically.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - int, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    verbose : bool or int, default=0
        Amount of verbosity.

    n_jobs : int, default=None
        Number of CPUs to use during the cross validation. Note that this is
        used only if multiple values for l1_ratio are given.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    intercept_ : ndarray of shape (n_targets,)
        Independent term in decision function.

    coef_ : ndarray of shape (n_targets, n_features)
        Parameter vector (W in the cost function formula).
        Note that ``coef_`` stores the transpose of ``W``, ``W.T``.

    alpha_ : float
        The amount of penalization chosen by cross validation.

    mse_path_ : ndarray of shape (n_alphas, n_folds) or \
                (n_l1_ratio, n_alphas, n_folds)
        Mean square error for the test set on each fold, varying alpha.

    alphas_ : ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)
        The grid of alphas used for fitting, for each l1_ratio.

    l1_ratio_ : float
        Best l1_ratio obtained by cross-validation.

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance for the optimal alpha.

    dual_gap_ : float
        The dual gap at the end of the optimization for the optimal alpha.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    MultiTaskElasticNet : Multi-task L1/L2 ElasticNet with built-in cross-validation.
    ElasticNetCV : Elastic net model with best model selection by
        cross-validation.
    MultiTaskLassoCV : Multi-task Lasso model trained with L1 norm
        as regularizer and built-in cross-validation.

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    In `fit`, once the best parameters `l1_ratio` and `alpha` are found through
    cross-validation, the model is fit again using the entire training set.

    To avoid unnecessary memory duplication the `X` and `y` arguments of the
    `fit` method should be directly passed as Fortran-contiguous numpy arrays.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.MultiTaskElasticNetCV(cv=3)
    >>> clf.fit([[0,0], [1, 1], [2, 2]],
    ...         [[0, 0], [1, 1], [2, 2]])
    MultiTaskElasticNetCV(cv=3)
    >>> print(clf.coef_)
    [[0.52875032 0.46958558]
     [0.52875032 0.46958558]]
    >>> print(clf.intercept_)
    [0.00166409 0.00166409]
    """

    _parameter_constraints: dict = {
        **LinearModelCV._parameter_constraints,
        "l1_ratio": [Interval(Real, 0, 1, closed="both"), "array-like"],
    }
    _parameter_constraints.pop("precompute")
    _parameter_constraints.pop("positive")

    path = staticmethod(enet_path)

    def __init__(
        self,
        *,
        l1_ratio=0.5,
        eps=1e-3,
        n_alphas=100,
        alphas=None,
        fit_intercept=True,
        max_iter=1000,
        tol=1e-4,
        cv=None,
        copy_X=True,
        verbose=0,
        n_jobs=None,
        random_state=None,
        selection="cyclic",
    ):
        self.l1_ratio = l1_ratio
        self.eps = eps
        self.n_alphas = n_alphas
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.max_iter = max_iter
        self.tol = tol
        self.cv = cv
        self.copy_X = copy_X
        self.verbose = verbose
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.selection = selection

    def _get_estimator(self):
        return MultiTaskElasticNet()

    def _is_multitask(self):
        return True

    def _more_tags(self):
        return {"multioutput_only": True}

    # This is necessary as LinearModelCV now supports sample_weight while
    # MultiTaskElasticNet does not (yet).
    def fit(self, X, y, **params):
        """Fit MultiTaskElasticNet model with coordinate descent.

        Fit is on grid of alphas and best alpha estimated by cross-validation.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training data.
        y : ndarray of shape (n_samples, n_targets)
            Training target variable. Will be cast to X's dtype if necessary.

        **params : dict, default=None
            Parameters to be passed to the CV splitter.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Returns MultiTaskElasticNet instance.
        """
        return super().fit(X, y, **params)


class MultiTaskLassoCV(RegressorMixin, LinearModelCV):
    """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

    See glossary entry for :term:`cross-validation estimator`.

    The optimization objective for MultiTaskLasso is::

        (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

    Where::

        ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}

    i.e. the sum of norm of each row.

    Read more in the :ref:`User Guide <multi_task_lasso>`.

    .. versionadded:: 0.15

    Parameters
    ----------
    eps : float, default=1e-3
        Length of the path. ``eps=1e-3`` means that
        ``alpha_min / alpha_max = 1e-3``.

    n_alphas : int, default=100
        Number of alphas along the regularization path.

    alphas : array-like, default=None
        List of alphas where to compute the models.
        If not provided, set automatically.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    max_iter : int, default=1000
        The maximum number of iterations.

    tol : float, default=1e-4
        The tolerance for the optimization: if the updates are
        smaller than ``tol``, the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than ``tol``.

    copy_X : bool, default=True
        If ``True``, X will be copied; else, it may be overwritten.

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - int, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    verbose : bool or int, default=False
        Amount of verbosity.

    n_jobs : int, default=None
        Number of CPUs to use during the cross validation. Note that this is
        used only if multiple values for l1_ratio are given.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    random_state : int, RandomState instance, default=None
        The seed of the pseudo random number generator that selects a random
        feature to update. Used when ``selection`` == 'random'.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    selection : {'cyclic', 'random'}, default='cyclic'
        If set to 'random', a random coefficient is updated every iteration
        rather than looping over features sequentially by default. This
        (setting to 'random') often leads to significantly faster convergence
        especially when tol is higher than 1e-4.

    Attributes
    ----------
    intercept_ : ndarray of shape (n_targets,)
        Independent term in decision function.

    coef_ : ndarray of shape (n_targets, n_features)
        Parameter vector (W in the cost function formula).
        Note that ``coef_`` stores the transpose of ``W``, ``W.T``.

    alpha_ : float
        The amount of penalization chosen by cross validation.

    mse_path_ : ndarray of shape (n_alphas, n_folds)
        Mean square error for the test set on each fold, varying alpha.

    alphas_ : ndarray of shape (n_alphas,)
        The grid of alphas used for fitting.

    n_iter_ : int
        Number of iterations run by the coordinate descent solver to reach
        the specified tolerance for the optimal alpha.

    dual_gap_ : float
        The dual gap at the end of the optimization for the optimal alpha.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    MultiTaskElasticNet : Multi-task ElasticNet model trained with L1/L2
        mixed-norm as regularizer.
    ElasticNetCV : Elastic net model with best model selection by
        cross-validation.
    MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in
        cross-validation.

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    In `fit`, once the best parameter `alpha` is found through
    cross-validation, the model is fit again using the entire training set.

    To avoid unnecessary memory duplication the `X` and `y` arguments of the
    `fit` method should be directly passed as Fortran-contiguous numpy arrays.

    Examples
    --------
    >>> from sklearn.linear_model import MultiTaskLassoCV
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.metrics import r2_score
    >>> X, y = make_regression(n_targets=2, noise=4, random_state=0)
    >>> reg = MultiTaskLassoCV(cv=5, random_state=0).fit(X, y)
    >>> r2_score(y, reg.predict(X))
    0.9994...
    >>> reg.alpha_
    0.5713...
    >>> reg.predict(X[:1,])
    array([[153.7971...,  94.9015...]])
    """

    _parameter_constraints: dict = {
        **LinearModelCV._parameter_constraints,
    }
    _parameter_constraints.pop("precompute")
    _parameter_constraints.pop("positive")

    path = staticmethod(lasso_path)

    def __init__(
        self,
        *,
        eps=1e-3,
        n_alphas=100,
        alphas=None,
        fit_intercept=True,
        max_iter=1000,
        tol=1e-4,
        copy_X=True,
        cv=None,
        verbose=False,
        n_jobs=None,
        random_state=None,
        selection="cyclic",
    ):
        super().__init__(
            eps=eps,
            n_alphas=n_alphas,
            alphas=alphas,
            fit_intercept=fit_intercept,
            max_iter=max_iter,
            tol=tol,
            copy_X=copy_X,
            cv=cv,
            verbose=verbose,
            n_jobs=n_jobs,
            random_state=random_state,
            selection=selection,
        )

    def _get_estimator(self):
        return MultiTaskLasso()

    def _is_multitask(self):
        return True

    def _more_tags(self):
        return {"multioutput_only": True}

    # This is necessary as LinearModelCV now supports sample_weight while
    # MultiTaskElasticNet does not (yet).
    def fit(self, X, y, **params):
        """Fit MultiTaskLasso model with coordinate descent.

        Fit is on grid of alphas and best alpha estimated by cross-validation.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Data.
        y : ndarray of shape (n_samples, n_targets)
            Target. Will be cast to X's dtype if necessary.

        **params : dict, default=None
            Parameters to be passed to the CV splitter.

            .. versionadded:: 1.4
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Returns an instance of fitted model.
        """
        return super().fit(X, y, **params)