1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Gael Varoquaux <gael.varoquaux@inria.fr>
#
# License: BSD 3 clause
import numbers
import sys
import warnings
from abc import ABC, abstractmethod
from functools import partial
from numbers import Integral, Real
import numpy as np
from joblib import effective_n_jobs
from scipy import sparse
from ..base import MultiOutputMixin, RegressorMixin, _fit_context
from ..model_selection import check_cv
from ..utils import Bunch, check_array, check_scalar
from ..utils._metadata_requests import (
MetadataRouter,
MethodMapping,
_raise_for_params,
get_routing_for_object,
)
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.extmath import safe_sparse_dot
from ..utils.metadata_routing import (
_routing_enabled,
process_routing,
)
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
_check_sample_weight,
check_consistent_length,
check_is_fitted,
check_random_state,
column_or_1d,
has_fit_parameter,
)
# mypy error: Module 'sklearn.linear_model' has no attribute '_cd_fast'
from . import _cd_fast as cd_fast # type: ignore
from ._base import LinearModel, _pre_fit, _preprocess_data
def _set_order(X, y, order="C"):
"""Change the order of X and y if necessary.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values.
order : {None, 'C', 'F'}
If 'C', dense arrays are returned as C-ordered, sparse matrices in csr
format. If 'F', dense arrays are return as F-ordered, sparse matrices
in csc format.
Returns
-------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data with guaranteed order.
y : ndarray of shape (n_samples,)
Target values with guaranteed order.
"""
if order not in [None, "C", "F"]:
raise ValueError(
"Unknown value for order. Got {} instead of None, 'C' or 'F'.".format(order)
)
sparse_X = sparse.issparse(X)
sparse_y = sparse.issparse(y)
if order is not None:
sparse_format = "csc" if order == "F" else "csr"
if sparse_X:
X = X.asformat(sparse_format, copy=False)
else:
X = np.asarray(X, order=order)
if sparse_y:
y = y.asformat(sparse_format)
else:
y = np.asarray(y, order=order)
return X, y
###############################################################################
# Paths functions
def _alpha_grid(
X,
y,
Xy=None,
l1_ratio=1.0,
fit_intercept=True,
eps=1e-3,
n_alphas=100,
copy_X=True,
):
"""Compute the grid of alpha values for elastic net parameter search
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid
unnecessary memory duplication
y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
Target values
Xy : array-like of shape (n_features,) or (n_features, n_outputs),\
default=None
Xy = np.dot(X.T, y) that can be precomputed.
l1_ratio : float, default=1.0
The elastic net mixing parameter, with ``0 < l1_ratio <= 1``.
For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not
supported) ``For l1_ratio = 1`` it is an L1 penalty. For
``0 < l1_ratio <1``, the penalty is a combination of L1 and L2.
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``
n_alphas : int, default=100
Number of alphas along the regularization path
fit_intercept : bool, default=True
Whether to fit an intercept or not
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
"""
if l1_ratio == 0:
raise ValueError(
"Automatic alpha grid generation is not supported for"
" l1_ratio=0. Please supply a grid by providing "
"your estimator with the appropriate `alphas=` "
"argument."
)
n_samples = len(y)
sparse_center = False
if Xy is None:
X_sparse = sparse.issparse(X)
sparse_center = X_sparse and fit_intercept
X = check_array(
X, accept_sparse="csc", copy=(copy_X and fit_intercept and not X_sparse)
)
if not X_sparse:
# X can be touched inplace thanks to the above line
X, y, _, _, _ = _preprocess_data(
X, y, fit_intercept=fit_intercept, copy=False
)
Xy = safe_sparse_dot(X.T, y, dense_output=True)
if sparse_center:
# Workaround to find alpha_max for sparse matrices.
# since we should not destroy the sparsity of such matrices.
_, _, X_offset, _, X_scale = _preprocess_data(
X, y, fit_intercept=fit_intercept
)
mean_dot = X_offset * np.sum(y)
if Xy.ndim == 1:
Xy = Xy[:, np.newaxis]
if sparse_center:
if fit_intercept:
Xy -= mean_dot[:, np.newaxis]
alpha_max = np.sqrt(np.sum(Xy**2, axis=1)).max() / (n_samples * l1_ratio)
if alpha_max <= np.finfo(float).resolution:
alphas = np.empty(n_alphas)
alphas.fill(np.finfo(float).resolution)
return alphas
return np.geomspace(alpha_max, alpha_max * eps, num=n_alphas)
@validate_params(
{
"X": ["array-like", "sparse matrix"],
"y": ["array-like", "sparse matrix"],
"eps": [Interval(Real, 0, None, closed="neither")],
"n_alphas": [Interval(Integral, 1, None, closed="left")],
"alphas": ["array-like", None],
"precompute": [StrOptions({"auto"}), "boolean", "array-like"],
"Xy": ["array-like", None],
"copy_X": ["boolean"],
"coef_init": ["array-like", None],
"verbose": ["verbose"],
"return_n_iter": ["boolean"],
"positive": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def lasso_path(
X,
y,
*,
eps=1e-3,
n_alphas=100,
alphas=None,
precompute="auto",
Xy=None,
copy_X=True,
coef_init=None,
verbose=False,
return_n_iter=False,
positive=False,
**params,
):
"""Compute Lasso path with coordinate descent.
The Lasso optimization function varies for mono and multi-outputs.
For mono-output tasks it is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
For multi-output tasks it is::
(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21
Where::
||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <lasso>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid
unnecessary memory duplication. If ``y`` is mono-output then ``X``
can be sparse.
y : {array-like, sparse matrix} of shape (n_samples,) or \
(n_samples, n_targets)
Target values.
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path.
alphas : array-like, default=None
List of alphas where to compute the models.
If ``None`` alphas are set automatically.
precompute : 'auto', bool or array-like of shape \
(n_features, n_features), default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
Xy : array-like of shape (n_features,) or (n_features, n_targets),\
default=None
Xy = np.dot(X.T, y) that can be precomputed. It is useful
only when the Gram matrix is precomputed.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
coef_init : array-like of shape (n_features, ), default=None
The initial values of the coefficients.
verbose : bool or int, default=False
Amount of verbosity.
return_n_iter : bool, default=False
Whether to return the number of iterations or not.
positive : bool, default=False
If set to True, forces coefficients to be positive.
(Only allowed when ``y.ndim == 1``).
**params : kwargs
Keyword arguments passed to the coordinate descent solver.
Returns
-------
alphas : ndarray of shape (n_alphas,)
The alphas along the path where models are computed.
coefs : ndarray of shape (n_features, n_alphas) or \
(n_targets, n_features, n_alphas)
Coefficients along the path.
dual_gaps : ndarray of shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
n_iters : list of int
The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha.
See Also
--------
lars_path : Compute Least Angle Regression or Lasso path using LARS
algorithm.
Lasso : The Lasso is a linear model that estimates sparse coefficients.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
LassoCV : Lasso linear model with iterative fitting along a regularization
path.
LassoLarsCV : Cross-validated Lasso using the LARS algorithm.
sklearn.decomposition.sparse_encode : Estimator that can be used to
transform signals into sparse linear combination of atoms from a fixed.
Notes
-----
For an example, see
:ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py
<sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`.
To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.
Note that in certain cases, the Lars solver may be significantly
faster to implement this functionality. In particular, linear
interpolation can be used to retrieve model coefficients between the
values output by lars_path
Examples
--------
Comparing lasso_path and lars_path with interpolation:
>>> import numpy as np
>>> from sklearn.linear_model import lasso_path
>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[0. 0. 0.46874778]
[0.2159048 0.4425765 0.23689075]]
>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[0. 0. 0.46915237]
[0.2159048 0.4425765 0.23668876]]
"""
return enet_path(
X,
y,
l1_ratio=1.0,
eps=eps,
n_alphas=n_alphas,
alphas=alphas,
precompute=precompute,
Xy=Xy,
copy_X=copy_X,
coef_init=coef_init,
verbose=verbose,
positive=positive,
return_n_iter=return_n_iter,
**params,
)
@validate_params(
{
"X": ["array-like", "sparse matrix"],
"y": ["array-like", "sparse matrix"],
"l1_ratio": [Interval(Real, 0.0, 1.0, closed="both")],
"eps": [Interval(Real, 0.0, None, closed="neither")],
"n_alphas": [Interval(Integral, 1, None, closed="left")],
"alphas": ["array-like", None],
"precompute": [StrOptions({"auto"}), "boolean", "array-like"],
"Xy": ["array-like", None],
"copy_X": ["boolean"],
"coef_init": ["array-like", None],
"verbose": ["verbose"],
"return_n_iter": ["boolean"],
"positive": ["boolean"],
"check_input": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def enet_path(
X,
y,
*,
l1_ratio=0.5,
eps=1e-3,
n_alphas=100,
alphas=None,
precompute="auto",
Xy=None,
copy_X=True,
coef_init=None,
verbose=False,
return_n_iter=False,
positive=False,
check_input=True,
**params,
):
"""Compute elastic net path with coordinate descent.
The elastic net optimization function varies for mono and multi-outputs.
For mono-output tasks it is::
1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
For multi-output tasks it is::
(1 / (2 * n_samples)) * ||Y - XW||_Fro^2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where::
||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <elastic_net>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid
unnecessary memory duplication. If ``y`` is mono-output then ``X``
can be sparse.
y : {array-like, sparse matrix} of shape (n_samples,) or \
(n_samples, n_targets)
Target values.
l1_ratio : float, default=0.5
Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso.
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path.
alphas : array-like, default=None
List of alphas where to compute the models.
If None alphas are set automatically.
precompute : 'auto', bool or array-like of shape \
(n_features, n_features), default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
Xy : array-like of shape (n_features,) or (n_features, n_targets),\
default=None
Xy = np.dot(X.T, y) that can be precomputed. It is useful
only when the Gram matrix is precomputed.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
coef_init : array-like of shape (n_features, ), default=None
The initial values of the coefficients.
verbose : bool or int, default=False
Amount of verbosity.
return_n_iter : bool, default=False
Whether to return the number of iterations or not.
positive : bool, default=False
If set to True, forces coefficients to be positive.
(Only allowed when ``y.ndim == 1``).
check_input : bool, default=True
If set to False, the input validation checks are skipped (including the
Gram matrix when provided). It is assumed that they are handled
by the caller.
**params : kwargs
Keyword arguments passed to the coordinate descent solver.
Returns
-------
alphas : ndarray of shape (n_alphas,)
The alphas along the path where models are computed.
coefs : ndarray of shape (n_features, n_alphas) or \
(n_targets, n_features, n_alphas)
Coefficients along the path.
dual_gaps : ndarray of shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
n_iters : list of int
The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha.
(Is returned when ``return_n_iter`` is set to True).
See Also
--------
MultiTaskElasticNet : Multi-task ElasticNet model trained with L1/L2 mixed-norm \
as regularizer.
MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in cross-validation.
ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.
ElasticNetCV : Elastic Net model with iterative fitting along a regularization path.
Notes
-----
For an example, see
:ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py
<sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`.
"""
X_offset_param = params.pop("X_offset", None)
X_scale_param = params.pop("X_scale", None)
sample_weight = params.pop("sample_weight", None)
tol = params.pop("tol", 1e-4)
max_iter = params.pop("max_iter", 1000)
random_state = params.pop("random_state", None)
selection = params.pop("selection", "cyclic")
if len(params) > 0:
raise ValueError("Unexpected parameters in params", params.keys())
# We expect X and y to be already Fortran ordered when bypassing
# checks
if check_input:
X = check_array(
X,
accept_sparse="csc",
dtype=[np.float64, np.float32],
order="F",
copy=copy_X,
)
y = check_array(
y,
accept_sparse="csc",
dtype=X.dtype.type,
order="F",
copy=False,
ensure_2d=False,
)
if Xy is not None:
# Xy should be a 1d contiguous array or a 2D C ordered array
Xy = check_array(
Xy, dtype=X.dtype.type, order="C", copy=False, ensure_2d=False
)
n_samples, n_features = X.shape
multi_output = False
if y.ndim != 1:
multi_output = True
n_targets = y.shape[1]
if multi_output and positive:
raise ValueError("positive=True is not allowed for multi-output (y.ndim != 1)")
# MultiTaskElasticNet does not support sparse matrices
if not multi_output and sparse.issparse(X):
if X_offset_param is not None:
# As sparse matrices are not actually centered we need this to be passed to
# the CD solver.
X_sparse_scaling = X_offset_param / X_scale_param
X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype)
else:
X_sparse_scaling = np.zeros(n_features, dtype=X.dtype)
# X should have been passed through _pre_fit already if function is called
# from ElasticNet.fit
if check_input:
X, y, _, _, _, precompute, Xy = _pre_fit(
X,
y,
Xy,
precompute,
fit_intercept=False,
copy=False,
check_input=check_input,
)
if alphas is None:
# No need to normalize of fit_intercept: it has been done
# above
alphas = _alpha_grid(
X,
y,
Xy=Xy,
l1_ratio=l1_ratio,
fit_intercept=False,
eps=eps,
n_alphas=n_alphas,
copy_X=False,
)
elif len(alphas) > 1:
alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered
n_alphas = len(alphas)
dual_gaps = np.empty(n_alphas)
n_iters = []
rng = check_random_state(random_state)
if selection not in ["random", "cyclic"]:
raise ValueError("selection should be either random or cyclic.")
random = selection == "random"
if not multi_output:
coefs = np.empty((n_features, n_alphas), dtype=X.dtype)
else:
coefs = np.empty((n_targets, n_features, n_alphas), dtype=X.dtype)
if coef_init is None:
coef_ = np.zeros(coefs.shape[:-1], dtype=X.dtype, order="F")
else:
coef_ = np.asfortranarray(coef_init, dtype=X.dtype)
for i, alpha in enumerate(alphas):
# account for n_samples scaling in objectives between here and cd_fast
l1_reg = alpha * l1_ratio * n_samples
l2_reg = alpha * (1.0 - l1_ratio) * n_samples
if not multi_output and sparse.issparse(X):
model = cd_fast.sparse_enet_coordinate_descent(
w=coef_,
alpha=l1_reg,
beta=l2_reg,
X_data=X.data,
X_indices=X.indices,
X_indptr=X.indptr,
y=y,
sample_weight=sample_weight,
X_mean=X_sparse_scaling,
max_iter=max_iter,
tol=tol,
rng=rng,
random=random,
positive=positive,
)
elif multi_output:
model = cd_fast.enet_coordinate_descent_multi_task(
coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random
)
elif isinstance(precompute, np.ndarray):
# We expect precompute to be already Fortran ordered when bypassing
# checks
if check_input:
precompute = check_array(precompute, dtype=X.dtype.type, order="C")
model = cd_fast.enet_coordinate_descent_gram(
coef_,
l1_reg,
l2_reg,
precompute,
Xy,
y,
max_iter,
tol,
rng,
random,
positive,
)
elif precompute is False:
model = cd_fast.enet_coordinate_descent(
coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive
)
else:
raise ValueError(
"Precompute should be one of True, False, 'auto' or array-like. Got %r"
% precompute
)
coef_, dual_gap_, eps_, n_iter_ = model
coefs[..., i] = coef_
# we correct the scale of the returned dual gap, as the objective
# in cd_fast is n_samples * the objective in this docstring.
dual_gaps[i] = dual_gap_ / n_samples
n_iters.append(n_iter_)
if verbose:
if verbose > 2:
print(model)
elif verbose > 1:
print("Path: %03i out of %03i" % (i, n_alphas))
else:
sys.stderr.write(".")
if return_n_iter:
return alphas, coefs, dual_gaps, n_iters
return alphas, coefs, dual_gaps
###############################################################################
# ElasticNet model
class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):
"""Linear regression with combined L1 and L2 priors as regularizer.
Minimizes the objective function::
1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::
a * ||w||_1 + 0.5 * b * ||w||_2^2
where::
alpha = a + b and l1_ratio = a / (a + b)
The parameter l1_ratio corresponds to alpha in the glmnet R package while
alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio
= 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.
Read more in the :ref:`User Guide <elastic_net>`.
Parameters
----------
alpha : float, default=1.0
Constant that multiplies the penalty terms. Defaults to 1.0.
See the notes for the exact mathematical meaning of this
parameter. ``alpha = 0`` is equivalent to an ordinary least square,
solved by the :class:`LinearRegression` object. For numerical
reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised.
Given this, you should use the :class:`LinearRegression` object.
l1_ratio : float, default=0.5
The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For
``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it
is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a
combination of L1 and L2.
fit_intercept : bool, default=True
Whether the intercept should be estimated or not. If ``False``, the
data is assumed to be already centered.
precompute : bool or array-like of shape (n_features, n_features),\
default=False
Whether to use a precomputed Gram matrix to speed up
calculations. The Gram matrix can also be passed as argument.
For sparse input this option is always ``False`` to preserve sparsity.
max_iter : int, default=1000
The maximum number of iterations.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``, see Notes below.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the cost function formula).
sparse_coef_ : sparse matrix of shape (n_features,) or \
(n_targets, n_features)
Sparse representation of the `coef_`.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function.
n_iter_ : list of int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance.
dual_gap_ : float or ndarray of shape (n_targets,)
Given param alpha, the dual gaps at the end of the optimization,
same shape as each observation of y.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
ElasticNetCV : Elastic net model with best model selection by
cross-validation.
SGDRegressor : Implements elastic net regression with incremental training.
SGDClassifier : Implements logistic regression with elastic net penalty
(``SGDClassifier(loss="log_loss", penalty="elasticnet")``).
Notes
-----
To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.
The precise stopping criteria based on `tol` are the following: First, check that
that maximum coordinate update, i.e. :math:`\\max_j |w_j^{new} - w_j^{old}|`
is smaller than `tol` times the maximum absolute coefficient, :math:`\\max_j |w_j|`.
If so, then additionally check whether the dual gap is smaller than `tol` times
:math:`||y||_2^2 / n_{\text{samples}}`.
Examples
--------
>>> from sklearn.linear_model import ElasticNet
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNet(random_state=0)
>>> regr.fit(X, y)
ElasticNet(random_state=0)
>>> print(regr.coef_)
[18.83816048 64.55968825]
>>> print(regr.intercept_)
1.451...
>>> print(regr.predict([[0, 0]]))
[1.451...]
"""
_parameter_constraints: dict = {
"alpha": [Interval(Real, 0, None, closed="left")],
"l1_ratio": [Interval(Real, 0, 1, closed="both")],
"fit_intercept": ["boolean"],
"precompute": ["boolean", "array-like"],
"max_iter": [Interval(Integral, 1, None, closed="left"), None],
"copy_X": ["boolean"],
"tol": [Interval(Real, 0, None, closed="left")],
"warm_start": ["boolean"],
"positive": ["boolean"],
"random_state": ["random_state"],
"selection": [StrOptions({"cyclic", "random"})],
}
path = staticmethod(enet_path)
def __init__(
self,
alpha=1.0,
*,
l1_ratio=0.5,
fit_intercept=True,
precompute=False,
max_iter=1000,
copy_X=True,
tol=1e-4,
warm_start=False,
positive=False,
random_state=None,
selection="cyclic",
):
self.alpha = alpha
self.l1_ratio = l1_ratio
self.fit_intercept = fit_intercept
self.precompute = precompute
self.max_iter = max_iter
self.copy_X = copy_X
self.tol = tol
self.warm_start = warm_start
self.positive = positive
self.random_state = random_state
self.selection = selection
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, check_input=True):
"""Fit model with coordinate descent.
Parameters
----------
X : {ndarray, sparse matrix} of (n_samples, n_features)
Data.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target. Will be cast to X's dtype if necessary.
sample_weight : float or array-like of shape (n_samples,), default=None
Sample weights. Internally, the `sample_weight` vector will be
rescaled to sum to `n_samples`.
.. versionadded:: 0.23
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you do.
Returns
-------
self : object
Fitted estimator.
Notes
-----
Coordinate descent is an algorithm that considers each column of
data at a time hence it will automatically convert the X input
as a Fortran-contiguous numpy array if necessary.
To avoid memory re-allocation it is advised to allocate the
initial data in memory directly using that format.
"""
if self.alpha == 0:
warnings.warn(
(
"With alpha=0, this algorithm does not converge "
"well. You are advised to use the LinearRegression "
"estimator"
),
stacklevel=2,
)
# Remember if X is copied
X_copied = False
# We expect X and y to be float64 or float32 Fortran ordered arrays
# when bypassing checks
if check_input:
X_copied = self.copy_X and self.fit_intercept
X, y = self._validate_data(
X,
y,
accept_sparse="csc",
order="F",
dtype=[np.float64, np.float32],
copy=X_copied,
multi_output=True,
y_numeric=True,
)
y = check_array(
y, order="F", copy=False, dtype=X.dtype.type, ensure_2d=False
)
n_samples, n_features = X.shape
alpha = self.alpha
if isinstance(sample_weight, numbers.Number):
sample_weight = None
if sample_weight is not None:
if check_input:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# TLDR: Rescale sw to sum up to n_samples.
# Long: The objective function of Enet
#
# 1/2 * np.average(squared error, weights=sw)
# + alpha * penalty (1)
#
# is invariant under rescaling of sw.
# But enet_path coordinate descent minimizes
#
# 1/2 * sum(squared error) + alpha' * penalty (2)
#
# and therefore sets
#
# alpha' = n_samples * alpha (3)
#
# inside its function body, which results in objective (2) being
# equivalent to (1) in case of no sw.
# With sw, however, enet_path should set
#
# alpha' = sum(sw) * alpha (4)
#
# Therefore, we use the freedom of Eq. (1) to rescale sw before
# calling enet_path, i.e.
#
# sw *= n_samples / sum(sw)
#
# such that sum(sw) = n_samples. This way, (3) and (4) are the same.
sample_weight = sample_weight * (n_samples / np.sum(sample_weight))
# Note: Alternatively, we could also have rescaled alpha instead
# of sample_weight:
#
# alpha *= np.sum(sample_weight) / n_samples
# Ensure copying happens only once, don't do it again if done above.
# X and y will be rescaled if sample_weight is not None, order='F'
# ensures that the returned X and y are still F-contiguous.
should_copy = self.copy_X and not X_copied
X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(
X,
y,
None,
self.precompute,
fit_intercept=self.fit_intercept,
copy=should_copy,
check_input=check_input,
sample_weight=sample_weight,
)
# coordinate descent needs F-ordered arrays and _pre_fit might have
# called _rescale_data
if check_input or sample_weight is not None:
X, y = _set_order(X, y, order="F")
if y.ndim == 1:
y = y[:, np.newaxis]
if Xy is not None and Xy.ndim == 1:
Xy = Xy[:, np.newaxis]
n_targets = y.shape[1]
if not self.warm_start or not hasattr(self, "coef_"):
coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order="F")
else:
coef_ = self.coef_
if coef_.ndim == 1:
coef_ = coef_[np.newaxis, :]
dual_gaps_ = np.zeros(n_targets, dtype=X.dtype)
self.n_iter_ = []
for k in range(n_targets):
if Xy is not None:
this_Xy = Xy[:, k]
else:
this_Xy = None
_, this_coef, this_dual_gap, this_iter = self.path(
X,
y[:, k],
l1_ratio=self.l1_ratio,
eps=None,
n_alphas=None,
alphas=[alpha],
precompute=precompute,
Xy=this_Xy,
copy_X=True,
coef_init=coef_[k],
verbose=False,
return_n_iter=True,
positive=self.positive,
check_input=False,
# from here on **params
tol=self.tol,
X_offset=X_offset,
X_scale=X_scale,
max_iter=self.max_iter,
random_state=self.random_state,
selection=self.selection,
sample_weight=sample_weight,
)
coef_[k] = this_coef[:, 0]
dual_gaps_[k] = this_dual_gap[0]
self.n_iter_.append(this_iter[0])
if n_targets == 1:
self.n_iter_ = self.n_iter_[0]
self.coef_ = coef_[0]
self.dual_gap_ = dual_gaps_[0]
else:
self.coef_ = coef_
self.dual_gap_ = dual_gaps_
self._set_intercept(X_offset, y_offset, X_scale)
# check for finiteness of coefficients
if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]):
raise ValueError(
"Coordinate descent iterations resulted in non-finite parameter"
" values. The input data may contain large values and need to"
" be preprocessed."
)
# return self for chaining fit and predict calls
return self
@property
def sparse_coef_(self):
"""Sparse representation of the fitted `coef_`."""
return sparse.csr_matrix(self.coef_)
def _decision_function(self, X):
"""Decision function of the linear model.
Parameters
----------
X : numpy array or scipy.sparse matrix of shape (n_samples, n_features)
Returns
-------
T : ndarray of shape (n_samples,)
The predicted decision function.
"""
check_is_fitted(self)
if sparse.issparse(X):
return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_
else:
return super()._decision_function(X)
###############################################################################
# Lasso model
class Lasso(ElasticNet):
"""Linear Model trained with L1 prior as regularizer (aka the Lasso).
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Technically the Lasso model is optimizing the same objective function as
the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).
Read more in the :ref:`User Guide <lasso>`.
Parameters
----------
alpha : float, default=1.0
Constant that multiplies the L1 term, controlling regularization
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
When `alpha = 0`, the objective is equivalent to ordinary least
squares, solved by the :class:`LinearRegression` object. For numerical
reasons, using `alpha = 0` with the `Lasso` object is not advised.
Instead, you should use the :class:`LinearRegression` object.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to False, no intercept will be used in calculations
(i.e. data is expected to be centered).
precompute : bool or array-like of shape (n_features, n_features),\
default=False
Whether to use a precomputed Gram matrix to speed up
calculations. The Gram matrix can also be passed as argument.
For sparse input this option is always ``False`` to preserve sparsity.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``, see Notes below.
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the cost function formula).
dual_gap_ : float or ndarray of shape (n_targets,)
Given param alpha, the dual gaps at the end of the optimization,
same shape as each observation of y.
sparse_coef_ : sparse matrix of shape (n_features, 1) or \
(n_targets, n_features)
Readonly property derived from ``coef_``.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function.
n_iter_ : int or list of int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Regularization path using LARS.
lasso_path : Regularization path using Lasso.
LassoLars : Lasso Path along the regularization parameter using LARS algorithm.
LassoCV : Lasso alpha parameter by cross-validation.
LassoLarsCV : Lasso least angle parameter algorithm by cross-validation.
sklearn.decomposition.sparse_encode : Sparse coding array estimator.
Notes
-----
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X argument of the fit method
should be directly passed as a Fortran-contiguous numpy array.
Regularization improves the conditioning of the problem and
reduces the variance of the estimates. Larger values specify stronger
regularization. Alpha corresponds to `1 / (2C)` in other linear
models such as :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
The precise stopping criteria based on `tol` are the following: First, check that
that maximum coordinate update, i.e. :math:`\\max_j |w_j^{new} - w_j^{old}|`
is smaller than `tol` times the maximum absolute coefficient, :math:`\\max_j |w_j|`.
If so, then additionally check whether the dual gap is smaller than `tol` times
:math:`||y||_2^2 / n_{\\text{samples}}`.
The target can be a 2-dimensional array, resulting in the optimization of the
following objective::
(1 / (2 * n_samples)) * ||Y - XW||^2_F + alpha * ||W||_11
where :math:`||W||_{1,1}` is the sum of the magnitude of the matrix coefficients.
It should not be confused with :class:`~sklearn.linear_model.MultiTaskLasso` which
instead penalizes the :math:`L_{2,1}` norm of the coefficients, yielding row-wise
sparsity in the coefficients.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1)
>>> print(clf.coef_)
[0.85 0. ]
>>> print(clf.intercept_)
0.15...
"""
_parameter_constraints: dict = {
**ElasticNet._parameter_constraints,
}
_parameter_constraints.pop("l1_ratio")
path = staticmethod(enet_path)
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
precompute=False,
copy_X=True,
max_iter=1000,
tol=1e-4,
warm_start=False,
positive=False,
random_state=None,
selection="cyclic",
):
super().__init__(
alpha=alpha,
l1_ratio=1.0,
fit_intercept=fit_intercept,
precompute=precompute,
copy_X=copy_X,
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
positive=positive,
random_state=random_state,
selection=selection,
)
###############################################################################
# Functions for CV with paths functions
def _path_residuals(
X,
y,
sample_weight,
train,
test,
fit_intercept,
path,
path_params,
alphas=None,
l1_ratio=1,
X_order=None,
dtype=None,
):
"""Returns the MSE for the models computed by 'path'.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : None or array-like of shape (n_samples,)
Sample weights.
train : list of indices
The indices of the train set.
test : list of indices
The indices of the test set.
path : callable
Function returning a list of models on the path. See
enet_path for an example of signature.
path_params : dictionary
Parameters passed to the path function.
alphas : array-like, default=None
Array of float that is used for cross-validation. If not
provided, computed using 'path'.
l1_ratio : float, default=1
float between 0 and 1 passed to ElasticNet (scaling between
l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an
L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0
< l1_ratio < 1``, the penalty is a combination of L1 and L2.
X_order : {'F', 'C'}, default=None
The order of the arrays expected by the path function to
avoid memory copies.
dtype : a numpy dtype, default=None
The dtype of the arrays expected by the path function to
avoid memory copies.
"""
X_train = X[train]
y_train = y[train]
X_test = X[test]
y_test = y[test]
if sample_weight is None:
sw_train, sw_test = None, None
else:
sw_train = sample_weight[train]
sw_test = sample_weight[test]
n_samples = X_train.shape[0]
# TLDR: Rescale sw_train to sum up to n_samples on the training set.
# See TLDR and long comment inside ElasticNet.fit.
sw_train *= n_samples / np.sum(sw_train)
# Note: Alternatively, we could also have rescaled alpha instead
# of sample_weight:
#
# alpha *= np.sum(sample_weight) / n_samples
if not sparse.issparse(X):
for array, array_input in (
(X_train, X),
(y_train, y),
(X_test, X),
(y_test, y),
):
if array.base is not array_input and not array.flags["WRITEABLE"]:
# fancy indexing should create a writable copy but it doesn't
# for read-only memmaps (cf. numpy#14132).
array.setflags(write=True)
if y.ndim == 1:
precompute = path_params["precompute"]
else:
# No Gram variant of multi-task exists right now.
# Fall back to default enet_multitask
precompute = False
X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(
X_train,
y_train,
None,
precompute,
fit_intercept=fit_intercept,
copy=False,
sample_weight=sw_train,
)
path_params = path_params.copy()
path_params["Xy"] = Xy
path_params["X_offset"] = X_offset
path_params["X_scale"] = X_scale
path_params["precompute"] = precompute
path_params["copy_X"] = False
path_params["alphas"] = alphas
# needed for sparse cd solver
path_params["sample_weight"] = sw_train
if "l1_ratio" in path_params:
path_params["l1_ratio"] = l1_ratio
# Do the ordering and type casting here, as if it is done in the path,
# X is copied and a reference is kept here
X_train = check_array(X_train, accept_sparse="csc", dtype=dtype, order=X_order)
alphas, coefs, _ = path(X_train, y_train, **path_params)
del X_train, y_train
if y.ndim == 1:
# Doing this so that it becomes coherent with multioutput.
coefs = coefs[np.newaxis, :, :]
y_offset = np.atleast_1d(y_offset)
y_test = y_test[:, np.newaxis]
intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs)
X_test_coefs = safe_sparse_dot(X_test, coefs)
residues = X_test_coefs - y_test[:, :, np.newaxis]
residues += intercepts
if sample_weight is None:
this_mse = (residues**2).mean(axis=0)
else:
this_mse = np.average(residues**2, weights=sw_test, axis=0)
return this_mse.mean(axis=0)
class LinearModelCV(MultiOutputMixin, LinearModel, ABC):
"""Base class for iterative model fitting along a regularization path."""
_parameter_constraints: dict = {
"eps": [Interval(Real, 0, None, closed="neither")],
"n_alphas": [Interval(Integral, 1, None, closed="left")],
"alphas": ["array-like", None],
"fit_intercept": ["boolean"],
"precompute": [StrOptions({"auto"}), "array-like", "boolean"],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"tol": [Interval(Real, 0, None, closed="left")],
"copy_X": ["boolean"],
"cv": ["cv_object"],
"verbose": ["verbose"],
"n_jobs": [Integral, None],
"positive": ["boolean"],
"random_state": ["random_state"],
"selection": [StrOptions({"cyclic", "random"})],
}
@abstractmethod
def __init__(
self,
eps=1e-3,
n_alphas=100,
alphas=None,
fit_intercept=True,
precompute="auto",
max_iter=1000,
tol=1e-4,
copy_X=True,
cv=None,
verbose=False,
n_jobs=None,
positive=False,
random_state=None,
selection="cyclic",
):
self.eps = eps
self.n_alphas = n_alphas
self.alphas = alphas
self.fit_intercept = fit_intercept
self.precompute = precompute
self.max_iter = max_iter
self.tol = tol
self.copy_X = copy_X
self.cv = cv
self.verbose = verbose
self.n_jobs = n_jobs
self.positive = positive
self.random_state = random_state
self.selection = selection
@abstractmethod
def _get_estimator(self):
"""Model to be fitted after the best alpha has been determined."""
@abstractmethod
def _is_multitask(self):
"""Bool indicating if class is meant for multidimensional target."""
@staticmethod
@abstractmethod
def path(X, y, **kwargs):
"""Compute path with coordinate descent."""
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, **params):
"""Fit linear model with coordinate descent.
Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data
to avoid unnecessary memory duplication. If y is mono-output,
X can be sparse.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : float or array-like of shape (n_samples,), \
default=None
Sample weights used for fitting and evaluation of the weighted
mean squared error of each cv-fold. Note that the cross validated
MSE that is finally used to find the best model is the unweighted
mean over the (weighted) MSEs of each test fold.
**params : dict, default=None
Parameters to be passed to the CV splitter.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Returns an instance of fitted model.
"""
_raise_for_params(params, self, "fit")
# This makes sure that there is no duplication in memory.
# Dealing right with copy_X is important in the following:
# Multiple functions touch X and subsamples of X and can induce a
# lot of duplication of memory
copy_X = self.copy_X and self.fit_intercept
check_y_params = dict(
copy=False, dtype=[np.float64, np.float32], ensure_2d=False
)
if isinstance(X, np.ndarray) or sparse.issparse(X):
# Keep a reference to X
reference_to_old_X = X
# Let us not impose fortran ordering so far: it is
# not useful for the cross-validation loop and will be done
# by the model fitting itself
# Need to validate separately here.
# We can't pass multi_output=True because that would allow y to be
# csr. We also want to allow y to be 64 or 32 but check_X_y only
# allows to convert for 64.
check_X_params = dict(
accept_sparse="csc", dtype=[np.float64, np.float32], copy=False
)
X, y = self._validate_data(
X, y, validate_separately=(check_X_params, check_y_params)
)
if sparse.issparse(X):
if hasattr(reference_to_old_X, "data") and not np.may_share_memory(
reference_to_old_X.data, X.data
):
# X is a sparse matrix and has been copied
copy_X = False
elif not np.may_share_memory(reference_to_old_X, X):
# X has been copied
copy_X = False
del reference_to_old_X
else:
# Need to validate separately here.
# We can't pass multi_output=True because that would allow y to be
# csr. We also want to allow y to be 64 or 32 but check_X_y only
# allows to convert for 64.
check_X_params = dict(
accept_sparse="csc",
dtype=[np.float64, np.float32],
order="F",
copy=copy_X,
)
X, y = self._validate_data(
X, y, validate_separately=(check_X_params, check_y_params)
)
copy_X = False
check_consistent_length(X, y)
if not self._is_multitask():
if y.ndim > 1 and y.shape[1] > 1:
raise ValueError(
"For multi-task outputs, use MultiTask%s" % self.__class__.__name__
)
y = column_or_1d(y, warn=True)
else:
if sparse.issparse(X):
raise TypeError("X should be dense but a sparse matrix waspassed")
elif y.ndim == 1:
raise ValueError(
"For mono-task outputs, use %sCV" % self.__class__.__name__[9:]
)
if isinstance(sample_weight, numbers.Number):
sample_weight = None
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
model = self._get_estimator()
# All LinearModelCV parameters except 'cv' are acceptable
path_params = self.get_params()
# Pop `intercept` that is not parameter of the path function
path_params.pop("fit_intercept", None)
if "l1_ratio" in path_params:
l1_ratios = np.atleast_1d(path_params["l1_ratio"])
# For the first path, we need to set l1_ratio
path_params["l1_ratio"] = l1_ratios[0]
else:
l1_ratios = [
1,
]
path_params.pop("cv", None)
path_params.pop("n_jobs", None)
alphas = self.alphas
n_l1_ratio = len(l1_ratios)
check_scalar_alpha = partial(
check_scalar,
target_type=Real,
min_val=0.0,
include_boundaries="left",
)
if alphas is None:
alphas = [
_alpha_grid(
X,
y,
l1_ratio=l1_ratio,
fit_intercept=self.fit_intercept,
eps=self.eps,
n_alphas=self.n_alphas,
copy_X=self.copy_X,
)
for l1_ratio in l1_ratios
]
else:
# Making sure alphas entries are scalars.
for index, alpha in enumerate(alphas):
check_scalar_alpha(alpha, f"alphas[{index}]")
# Making sure alphas is properly ordered.
alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1))
# We want n_alphas to be the number of alphas used for each l1_ratio.
n_alphas = len(alphas[0])
path_params.update({"n_alphas": n_alphas})
path_params["copy_X"] = copy_X
# We are not computing in parallel, we can modify X
# inplace in the folds
if effective_n_jobs(self.n_jobs) > 1:
path_params["copy_X"] = False
# init cross-validation generator
cv = check_cv(self.cv)
if _routing_enabled():
splitter_supports_sample_weight = get_routing_for_object(cv).consumes(
method="split", params=["sample_weight"]
)
if (
sample_weight is not None
and not splitter_supports_sample_weight
and not has_fit_parameter(self, "sample_weight")
):
raise ValueError(
"The CV splitter and underlying estimator do not support"
" sample weights."
)
if splitter_supports_sample_weight:
params["sample_weight"] = sample_weight
routed_params = process_routing(self, "fit", **params)
if sample_weight is not None and not has_fit_parameter(
self, "sample_weight"
):
# MultiTaskElasticNetCV does not (yet) support sample_weight
sample_weight = None
else:
routed_params = Bunch()
routed_params.splitter = Bunch(split=Bunch())
# Compute path for all folds and compute MSE to get the best alpha
folds = list(cv.split(X, y, **routed_params.splitter.split))
best_mse = np.inf
# We do a double for loop folded in one, in order to be able to
# iterate in parallel on l1_ratio and folds
jobs = (
delayed(_path_residuals)(
X,
y,
sample_weight,
train,
test,
self.fit_intercept,
self.path,
path_params,
alphas=this_alphas,
l1_ratio=this_l1_ratio,
X_order="F",
dtype=X.dtype.type,
)
for this_l1_ratio, this_alphas in zip(l1_ratios, alphas)
for train, test in folds
)
mse_paths = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose,
prefer="threads",
)(jobs)
mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1))
# The mean is computed over folds.
mean_mse = np.mean(mse_paths, axis=1)
self.mse_path_ = np.squeeze(np.moveaxis(mse_paths, 2, 1))
for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse):
i_best_alpha = np.argmin(mse_alphas)
this_best_mse = mse_alphas[i_best_alpha]
if this_best_mse < best_mse:
best_alpha = l1_alphas[i_best_alpha]
best_l1_ratio = l1_ratio
best_mse = this_best_mse
self.l1_ratio_ = best_l1_ratio
self.alpha_ = best_alpha
if self.alphas is None:
self.alphas_ = np.asarray(alphas)
if n_l1_ratio == 1:
self.alphas_ = self.alphas_[0]
# Remove duplicate alphas in case alphas is provided.
else:
self.alphas_ = np.asarray(alphas[0])
# Refit the model with the parameters selected
common_params = {
name: value
for name, value in self.get_params().items()
if name in model.get_params()
}
model.set_params(**common_params)
model.alpha = best_alpha
model.l1_ratio = best_l1_ratio
model.copy_X = copy_X
precompute = getattr(self, "precompute", None)
if isinstance(precompute, str) and precompute == "auto":
model.precompute = False
if sample_weight is None:
# MultiTaskElasticNetCV does not (yet) support sample_weight, even
# not sample_weight=None.
model.fit(X, y)
else:
model.fit(X, y, sample_weight=sample_weight)
if not hasattr(self, "l1_ratio"):
del self.l1_ratio_
self.coef_ = model.coef_
self.intercept_ = model.intercept_
self.dual_gap_ = model.dual_gap_
self.n_iter_ = model.n_iter_
return self
def _more_tags(self):
# Note: check_sample_weights_invariance(kind='ones') should work, but
# currently we can only mark a whole test as xfail.
return {
"_xfail_checks": {
"check_sample_weights_invariance": (
"zero sample_weight is not equivalent to removing samples"
),
}
}
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
splitter=check_cv(self.cv),
method_mapping=MethodMapping().add(callee="split", caller="fit"),
)
)
return router
class LassoCV(RegressorMixin, LinearModelCV):
"""Lasso linear model with iterative fitting along a regularization path.
See glossary entry for :term:`cross-validation estimator`.
The best model is selected by cross-validation.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the :ref:`User Guide <lasso>`.
Parameters
----------
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path.
alphas : array-like, default=None
List of alphas where to compute the models.
If ``None`` alphas are set automatically.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
precompute : 'auto', bool or array-like of shape \
(n_features, n_features), default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- int, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
verbose : bool or int, default=False
Amount of verbosity.
n_jobs : int, default=None
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
positive : bool, default=False
If positive, restrict regression coefficients to be positive.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
alpha_ : float
The amount of penalization chosen by cross validation.
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the cost function formula).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function.
mse_path_ : ndarray of shape (n_alphas, n_folds)
Mean square error for the test set on each fold, varying alpha.
alphas_ : ndarray of shape (n_alphas,)
The grid of alphas used for fitting.
dual_gap_ : float or ndarray of shape (n_targets,)
The dual gap at the end of the optimization for the optimal alpha
(``alpha_``).
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Compute Least Angle Regression or Lasso path using LARS
algorithm.
lasso_path : Compute Lasso path with coordinate descent.
Lasso : The Lasso is a linear model that estimates sparse coefficients.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
LassoCV : Lasso linear model with iterative fitting along a regularization
path.
LassoLarsCV : Cross-validated Lasso using the LARS algorithm.
Notes
-----
In `fit`, once the best parameter `alpha` is found through
cross-validation, the model is fit again using the entire training set.
To avoid unnecessary memory duplication the `X` argument of the `fit`
method should be directly passed as a Fortran-contiguous numpy array.
For an example, see
:ref:`examples/linear_model/plot_lasso_model_selection.py
<sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`.
:class:`LassoCV` leads to different results than a hyperparameter
search using :class:`~sklearn.model_selection.GridSearchCV` with a
:class:`Lasso` model. In :class:`LassoCV`, a model for a given
penalty `alpha` is warm started using the coefficients of the
closest model (trained at the previous iteration) on the
regularization path. It tends to speed up the hyperparameter
search.
Examples
--------
>>> from sklearn.linear_model import LassoCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4, random_state=0)
>>> reg = LassoCV(cv=5, random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9993...
>>> reg.predict(X[:1,])
array([-78.4951...])
"""
path = staticmethod(lasso_path)
def __init__(
self,
*,
eps=1e-3,
n_alphas=100,
alphas=None,
fit_intercept=True,
precompute="auto",
max_iter=1000,
tol=1e-4,
copy_X=True,
cv=None,
verbose=False,
n_jobs=None,
positive=False,
random_state=None,
selection="cyclic",
):
super().__init__(
eps=eps,
n_alphas=n_alphas,
alphas=alphas,
fit_intercept=fit_intercept,
precompute=precompute,
max_iter=max_iter,
tol=tol,
copy_X=copy_X,
cv=cv,
verbose=verbose,
n_jobs=n_jobs,
positive=positive,
random_state=random_state,
selection=selection,
)
def _get_estimator(self):
return Lasso()
def _is_multitask(self):
return False
def _more_tags(self):
return {"multioutput": False}
class ElasticNetCV(RegressorMixin, LinearModelCV):
"""Elastic Net model with iterative fitting along a regularization path.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <elastic_net>`.
Parameters
----------
l1_ratio : float or list of float, default=0.5
Float between 0 and 1 passed to ElasticNet (scaling between
l1 and l2 penalties). For ``l1_ratio = 0``
the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty.
For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2
This parameter can be a list, in which case the different
values are tested by cross-validation and the one giving the best
prediction score is used. Note that a good choice of list of
values for l1_ratio is often to put more values close to 1
(i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
.9, .95, .99, 1]``.
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path, used for each l1_ratio.
alphas : array-like, default=None
List of alphas where to compute the models.
If None alphas are set automatically.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
precompute : 'auto', bool or array-like of shape \
(n_features, n_features), default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- int, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
verbose : bool or int, default=0
Amount of verbosity.
n_jobs : int, default=None
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
alpha_ : float
The amount of penalization chosen by cross validation.
l1_ratio_ : float
The compromise between l1 and l2 penalization chosen by
cross validation.
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the cost function formula).
intercept_ : float or ndarray of shape (n_targets, n_features)
Independent term in the decision function.
mse_path_ : ndarray of shape (n_l1_ratio, n_alpha, n_folds)
Mean square error for the test set on each fold, varying l1_ratio and
alpha.
alphas_ : ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)
The grid of alphas used for fitting, for each l1_ratio.
dual_gap_ : float
The dual gaps at the end of the optimization for the optimal alpha.
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
enet_path : Compute elastic net path with coordinate descent.
ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.
Notes
-----
In `fit`, once the best parameters `l1_ratio` and `alpha` are found through
cross-validation, the model is fit again using the entire training set.
To avoid unnecessary memory duplication the `X` argument of the `fit`
method should be directly passed as a Fortran-contiguous numpy array.
The parameter `l1_ratio` corresponds to alpha in the glmnet R package
while alpha corresponds to the lambda parameter in glmnet.
More specifically, the optimization objective is::
1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
If you are interested in controlling the L1 and L2 penalty
separately, keep in mind that this is equivalent to::
a * L1 + b * L2
for::
alpha = a + b and l1_ratio = a / (a + b).
For an example, see
:ref:`examples/linear_model/plot_lasso_model_selection.py
<sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`.
Examples
--------
>>> from sklearn.linear_model import ElasticNetCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNetCV(cv=5, random_state=0)
>>> regr.fit(X, y)
ElasticNetCV(cv=5, random_state=0)
>>> print(regr.alpha_)
0.199...
>>> print(regr.intercept_)
0.398...
>>> print(regr.predict([[0, 0]]))
[0.398...]
"""
_parameter_constraints: dict = {
**LinearModelCV._parameter_constraints,
"l1_ratio": [Interval(Real, 0, 1, closed="both"), "array-like"],
}
path = staticmethod(enet_path)
def __init__(
self,
*,
l1_ratio=0.5,
eps=1e-3,
n_alphas=100,
alphas=None,
fit_intercept=True,
precompute="auto",
max_iter=1000,
tol=1e-4,
cv=None,
copy_X=True,
verbose=0,
n_jobs=None,
positive=False,
random_state=None,
selection="cyclic",
):
self.l1_ratio = l1_ratio
self.eps = eps
self.n_alphas = n_alphas
self.alphas = alphas
self.fit_intercept = fit_intercept
self.precompute = precompute
self.max_iter = max_iter
self.tol = tol
self.cv = cv
self.copy_X = copy_X
self.verbose = verbose
self.n_jobs = n_jobs
self.positive = positive
self.random_state = random_state
self.selection = selection
def _get_estimator(self):
return ElasticNet()
def _is_multitask(self):
return False
def _more_tags(self):
return {"multioutput": False}
###############################################################################
# Multi Task ElasticNet and Lasso models (with joint feature selection)
class MultiTaskElasticNet(Lasso):
"""Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
The optimization objective for MultiTaskElasticNet is::
(1 / (2 * n_samples)) * ||Y - XW||_Fro^2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where::
||W||_21 = sum_i sqrt(sum_j W_ij ^ 2)
i.e. the sum of norms of each row.
Read more in the :ref:`User Guide <multi_task_elastic_net>`.
Parameters
----------
alpha : float, default=1.0
Constant that multiplies the L1/L2 term. Defaults to 1.0.
l1_ratio : float, default=0.5
The ElasticNet mixing parameter, with 0 < l1_ratio <= 1.
For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it
is an L2 penalty.
For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
intercept_ : ndarray of shape (n_targets,)
Independent term in decision function.
coef_ : ndarray of shape (n_targets, n_features)
Parameter vector (W in the cost function formula). If a 1D y is
passed in at fit (non multi-task usage), ``coef_`` is then a 1D array.
Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance.
dual_gap_ : float
The dual gaps at the end of the optimization.
eps_ : float
The tolerance scaled scaled by the variance of the target `y`.
sparse_coef_ : sparse matrix of shape (n_features,) or \
(n_targets, n_features)
Sparse representation of the `coef_`.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in
cross-validation.
ElasticNet : Linear regression with combined L1 and L2 priors as regularizer.
MultiTaskLasso : Multi-task Lasso model trained with L1/L2
mixed-norm as regularizer.
Notes
-----
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X and y arguments of the fit
method should be directly passed as Fortran-contiguous numpy arrays.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNet(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
MultiTaskElasticNet(alpha=0.1)
>>> print(clf.coef_)
[[0.45663524 0.45612256]
[0.45663524 0.45612256]]
>>> print(clf.intercept_)
[0.0872422 0.0872422]
"""
_parameter_constraints: dict = {
**ElasticNet._parameter_constraints,
}
for param in ("precompute", "positive"):
_parameter_constraints.pop(param)
def __init__(
self,
alpha=1.0,
*,
l1_ratio=0.5,
fit_intercept=True,
copy_X=True,
max_iter=1000,
tol=1e-4,
warm_start=False,
random_state=None,
selection="cyclic",
):
self.l1_ratio = l1_ratio
self.alpha = alpha
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.copy_X = copy_X
self.tol = tol
self.warm_start = warm_start
self.random_state = random_state
self.selection = selection
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y):
"""Fit MultiTaskElasticNet model with coordinate descent.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data.
y : ndarray of shape (n_samples, n_targets)
Target. Will be cast to X's dtype if necessary.
Returns
-------
self : object
Fitted estimator.
Notes
-----
Coordinate descent is an algorithm that considers each column of
data at a time hence it will automatically convert the X input
as a Fortran-contiguous numpy array if necessary.
To avoid memory re-allocation it is advised to allocate the
initial data in memory directly using that format.
"""
# Need to validate separately here.
# We can't pass multi_output=True because that would allow y to be csr.
check_X_params = dict(
dtype=[np.float64, np.float32],
order="F",
copy=self.copy_X and self.fit_intercept,
)
check_y_params = dict(ensure_2d=False, order="F")
X, y = self._validate_data(
X, y, validate_separately=(check_X_params, check_y_params)
)
check_consistent_length(X, y)
y = y.astype(X.dtype)
if hasattr(self, "l1_ratio"):
model_str = "ElasticNet"
else:
model_str = "Lasso"
if y.ndim == 1:
raise ValueError("For mono-task outputs, use %s" % model_str)
n_samples, n_features = X.shape
n_targets = y.shape[1]
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X, y, fit_intercept=self.fit_intercept, copy=False
)
if not self.warm_start or not hasattr(self, "coef_"):
self.coef_ = np.zeros(
(n_targets, n_features), dtype=X.dtype.type, order="F"
)
l1_reg = self.alpha * self.l1_ratio * n_samples
l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples
self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory
random = self.selection == "random"
(
self.coef_,
self.dual_gap_,
self.eps_,
self.n_iter_,
) = cd_fast.enet_coordinate_descent_multi_task(
self.coef_,
l1_reg,
l2_reg,
X,
y,
self.max_iter,
self.tol,
check_random_state(self.random_state),
random,
)
# account for different objective scaling here and in cd_fast
self.dual_gap_ /= n_samples
self._set_intercept(X_offset, y_offset, X_scale)
# return self for chaining fit and predict calls
return self
def _more_tags(self):
return {"multioutput_only": True}
class MultiTaskLasso(MultiTaskElasticNet):
"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21
Where::
||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <multi_task_lasso>`.
Parameters
----------
alpha : float, default=1.0
Constant that multiplies the L1/L2 term. Defaults to 1.0.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
coef_ : ndarray of shape (n_targets, n_features)
Parameter vector (W in the cost function formula).
Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
intercept_ : ndarray of shape (n_targets,)
Independent term in decision function.
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance.
dual_gap_ : ndarray of shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
eps_ : float
The tolerance scaled scaled by the variance of the target `y`.
sparse_coef_ : sparse matrix of shape (n_features,) or \
(n_targets, n_features)
Sparse representation of the `coef_`.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso).
MultiTaskLassoCV: Multi-task L1 regularized linear model with built-in
cross-validation.
MultiTaskElasticNetCV: Multi-task L1/L2 ElasticNet with built-in cross-validation.
Notes
-----
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X and y arguments of the fit
method should be directly passed as Fortran-contiguous numpy arrays.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskLasso(alpha=0.1)
>>> clf.fit([[0, 1], [1, 2], [2, 4]], [[0, 0], [1, 1], [2, 3]])
MultiTaskLasso(alpha=0.1)
>>> print(clf.coef_)
[[0. 0.60809415]
[0. 0.94592424]]
>>> print(clf.intercept_)
[-0.41888636 -0.87382323]
"""
_parameter_constraints: dict = {
**MultiTaskElasticNet._parameter_constraints,
}
_parameter_constraints.pop("l1_ratio")
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
copy_X=True,
max_iter=1000,
tol=1e-4,
warm_start=False,
random_state=None,
selection="cyclic",
):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.copy_X = copy_X
self.tol = tol
self.warm_start = warm_start
self.l1_ratio = 1.0
self.random_state = random_state
self.selection = selection
class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
"""Multi-task L1/L2 ElasticNet with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
The optimization objective for MultiTaskElasticNet is::
(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where::
||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <multi_task_elastic_net>`.
.. versionadded:: 0.15
Parameters
----------
l1_ratio : float or list of float, default=0.5
The ElasticNet mixing parameter, with 0 < l1_ratio <= 1.
For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it
is an L2 penalty.
For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2.
This parameter can be a list, in which case the different
values are tested by cross-validation and the one giving the best
prediction score is used. Note that a good choice of list of
values for l1_ratio is often to put more values close to 1
(i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
.9, .95, .99, 1]``.
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path.
alphas : array-like, default=None
List of alphas where to compute the models.
If not provided, set automatically.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- int, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
verbose : bool or int, default=0
Amount of verbosity.
n_jobs : int, default=None
Number of CPUs to use during the cross validation. Note that this is
used only if multiple values for l1_ratio are given.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
intercept_ : ndarray of shape (n_targets,)
Independent term in decision function.
coef_ : ndarray of shape (n_targets, n_features)
Parameter vector (W in the cost function formula).
Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
alpha_ : float
The amount of penalization chosen by cross validation.
mse_path_ : ndarray of shape (n_alphas, n_folds) or \
(n_l1_ratio, n_alphas, n_folds)
Mean square error for the test set on each fold, varying alpha.
alphas_ : ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)
The grid of alphas used for fitting, for each l1_ratio.
l1_ratio_ : float
Best l1_ratio obtained by cross-validation.
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
dual_gap_ : float
The dual gap at the end of the optimization for the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
MultiTaskElasticNet : Multi-task L1/L2 ElasticNet with built-in cross-validation.
ElasticNetCV : Elastic net model with best model selection by
cross-validation.
MultiTaskLassoCV : Multi-task Lasso model trained with L1 norm
as regularizer and built-in cross-validation.
Notes
-----
The algorithm used to fit the model is coordinate descent.
In `fit`, once the best parameters `l1_ratio` and `alpha` are found through
cross-validation, the model is fit again using the entire training set.
To avoid unnecessary memory duplication the `X` and `y` arguments of the
`fit` method should be directly passed as Fortran-contiguous numpy arrays.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNetCV(cv=3)
>>> clf.fit([[0,0], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [2, 2]])
MultiTaskElasticNetCV(cv=3)
>>> print(clf.coef_)
[[0.52875032 0.46958558]
[0.52875032 0.46958558]]
>>> print(clf.intercept_)
[0.00166409 0.00166409]
"""
_parameter_constraints: dict = {
**LinearModelCV._parameter_constraints,
"l1_ratio": [Interval(Real, 0, 1, closed="both"), "array-like"],
}
_parameter_constraints.pop("precompute")
_parameter_constraints.pop("positive")
path = staticmethod(enet_path)
def __init__(
self,
*,
l1_ratio=0.5,
eps=1e-3,
n_alphas=100,
alphas=None,
fit_intercept=True,
max_iter=1000,
tol=1e-4,
cv=None,
copy_X=True,
verbose=0,
n_jobs=None,
random_state=None,
selection="cyclic",
):
self.l1_ratio = l1_ratio
self.eps = eps
self.n_alphas = n_alphas
self.alphas = alphas
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.tol = tol
self.cv = cv
self.copy_X = copy_X
self.verbose = verbose
self.n_jobs = n_jobs
self.random_state = random_state
self.selection = selection
def _get_estimator(self):
return MultiTaskElasticNet()
def _is_multitask(self):
return True
def _more_tags(self):
return {"multioutput_only": True}
# This is necessary as LinearModelCV now supports sample_weight while
# MultiTaskElasticNet does not (yet).
def fit(self, X, y, **params):
"""Fit MultiTaskElasticNet model with coordinate descent.
Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples, n_targets)
Training target variable. Will be cast to X's dtype if necessary.
**params : dict, default=None
Parameters to be passed to the CV splitter.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Returns MultiTaskElasticNet instance.
"""
return super().fit(X, y, **params)
class MultiTaskLassoCV(RegressorMixin, LinearModelCV):
"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
See glossary entry for :term:`cross-validation estimator`.
The optimization objective for MultiTaskLasso is::
(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21
Where::
||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <multi_task_lasso>`.
.. versionadded:: 0.15
Parameters
----------
eps : float, default=1e-3
Length of the path. ``eps=1e-3`` means that
``alpha_min / alpha_max = 1e-3``.
n_alphas : int, default=100
Number of alphas along the regularization path.
alphas : array-like, default=None
List of alphas where to compute the models.
If not provided, set automatically.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
max_iter : int, default=1000
The maximum number of iterations.
tol : float, default=1e-4
The tolerance for the optimization: if the updates are
smaller than ``tol``, the optimization code checks the
dual gap for optimality and continues until it is smaller
than ``tol``.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- int, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
verbose : bool or int, default=False
Amount of verbosity.
n_jobs : int, default=None
Number of CPUs to use during the cross validation. Note that this is
used only if multiple values for l1_ratio are given.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator that selects a random
feature to update. Used when ``selection`` == 'random'.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
selection : {'cyclic', 'random'}, default='cyclic'
If set to 'random', a random coefficient is updated every iteration
rather than looping over features sequentially by default. This
(setting to 'random') often leads to significantly faster convergence
especially when tol is higher than 1e-4.
Attributes
----------
intercept_ : ndarray of shape (n_targets,)
Independent term in decision function.
coef_ : ndarray of shape (n_targets, n_features)
Parameter vector (W in the cost function formula).
Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
alpha_ : float
The amount of penalization chosen by cross validation.
mse_path_ : ndarray of shape (n_alphas, n_folds)
Mean square error for the test set on each fold, varying alpha.
alphas_ : ndarray of shape (n_alphas,)
The grid of alphas used for fitting.
n_iter_ : int
Number of iterations run by the coordinate descent solver to reach
the specified tolerance for the optimal alpha.
dual_gap_ : float
The dual gap at the end of the optimization for the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
MultiTaskElasticNet : Multi-task ElasticNet model trained with L1/L2
mixed-norm as regularizer.
ElasticNetCV : Elastic net model with best model selection by
cross-validation.
MultiTaskElasticNetCV : Multi-task L1/L2 ElasticNet with built-in
cross-validation.
Notes
-----
The algorithm used to fit the model is coordinate descent.
In `fit`, once the best parameter `alpha` is found through
cross-validation, the model is fit again using the entire training set.
To avoid unnecessary memory duplication the `X` and `y` arguments of the
`fit` method should be directly passed as Fortran-contiguous numpy arrays.
Examples
--------
>>> from sklearn.linear_model import MultiTaskLassoCV
>>> from sklearn.datasets import make_regression
>>> from sklearn.metrics import r2_score
>>> X, y = make_regression(n_targets=2, noise=4, random_state=0)
>>> reg = MultiTaskLassoCV(cv=5, random_state=0).fit(X, y)
>>> r2_score(y, reg.predict(X))
0.9994...
>>> reg.alpha_
0.5713...
>>> reg.predict(X[:1,])
array([[153.7971..., 94.9015...]])
"""
_parameter_constraints: dict = {
**LinearModelCV._parameter_constraints,
}
_parameter_constraints.pop("precompute")
_parameter_constraints.pop("positive")
path = staticmethod(lasso_path)
def __init__(
self,
*,
eps=1e-3,
n_alphas=100,
alphas=None,
fit_intercept=True,
max_iter=1000,
tol=1e-4,
copy_X=True,
cv=None,
verbose=False,
n_jobs=None,
random_state=None,
selection="cyclic",
):
super().__init__(
eps=eps,
n_alphas=n_alphas,
alphas=alphas,
fit_intercept=fit_intercept,
max_iter=max_iter,
tol=tol,
copy_X=copy_X,
cv=cv,
verbose=verbose,
n_jobs=n_jobs,
random_state=random_state,
selection=selection,
)
def _get_estimator(self):
return MultiTaskLasso()
def _is_multitask(self):
return True
def _more_tags(self):
return {"multioutput_only": True}
# This is necessary as LinearModelCV now supports sample_weight while
# MultiTaskElasticNet does not (yet).
def fit(self, X, y, **params):
"""Fit MultiTaskLasso model with coordinate descent.
Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data.
y : ndarray of shape (n_samples, n_targets)
Target. Will be cast to X's dtype if necessary.
**params : dict, default=None
Parameters to be passed to the CV splitter.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Returns an instance of fitted model.
"""
return super().fit(X, y, **params)
|