1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
"""
Newton solver for Generalized Linear Models
"""
# Author: Christian Lorentzen <lorentzen.ch@gmail.com>
# License: BSD 3 clause
import warnings
from abc import ABC, abstractmethod
import numpy as np
import scipy.linalg
import scipy.optimize
from ..._loss.loss import HalfSquaredError
from ...exceptions import ConvergenceWarning
from ...utils.optimize import _check_optimize_result
from .._linear_loss import LinearModelLoss
class NewtonSolver(ABC):
"""Newton solver for GLMs.
This class implements Newton/2nd-order optimization routines for GLMs. Each Newton
iteration aims at finding the Newton step which is done by the inner solver. With
Hessian H, gradient g and coefficients coef, one step solves:
H @ coef_newton = -g
For our GLM / LinearModelLoss, we have gradient g and Hessian H:
g = X.T @ loss.gradient + l2_reg_strength * coef
H = X.T @ diag(loss.hessian) @ X + l2_reg_strength * identity
Backtracking line search updates coef = coef_old + t * coef_newton for some t in
(0, 1].
This is a base class, actual implementations (child classes) may deviate from the
above pattern and use structure specific tricks.
Usage pattern:
- initialize solver: sol = NewtonSolver(...)
- solve the problem: sol.solve(X, y, sample_weight)
References
----------
- Jorge Nocedal, Stephen J. Wright. (2006) "Numerical Optimization"
2nd edition
https://doi.org/10.1007/978-0-387-40065-5
- Stephen P. Boyd, Lieven Vandenberghe. (2004) "Convex Optimization."
Cambridge University Press, 2004.
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
Parameters
----------
coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
Initial coefficients of a linear model.
If shape (n_classes * n_dof,), the classes of one feature are contiguous,
i.e. one reconstructs the 2d-array via
coef.reshape((n_classes, -1), order="F").
linear_loss : LinearModelLoss
The loss to be minimized.
l2_reg_strength : float, default=0.0
L2 regularization strength.
tol : float, default=1e-4
The optimization problem is solved when each of the following condition is
fulfilled:
1. maximum |gradient| <= tol
2. Newton decrement d: 1/2 * d^2 <= tol
max_iter : int, default=100
Maximum number of Newton steps allowed.
n_threads : int, default=1
Number of OpenMP threads to use for the computation of the Hessian and gradient
of the loss function.
Attributes
----------
coef_old : ndarray of shape coef.shape
Coefficient of previous iteration.
coef_newton : ndarray of shape coef.shape
Newton step.
gradient : ndarray of shape coef.shape
Gradient of the loss w.r.t. the coefficients.
gradient_old : ndarray of shape coef.shape
Gradient of previous iteration.
loss_value : float
Value of objective function = loss + penalty.
loss_value_old : float
Value of objective function of previous itertion.
raw_prediction : ndarray of shape (n_samples,) or (n_samples, n_classes)
converged : bool
Indicator for convergence of the solver.
iteration : int
Number of Newton steps, i.e. calls to inner_solve
use_fallback_lbfgs_solve : bool
If set to True, the solver will resort to call LBFGS to finish the optimisation
procedure in case of convergence issues.
gradient_times_newton : float
gradient @ coef_newton, set in inner_solve and used by line_search. If the
Newton step is a descent direction, this is negative.
"""
def __init__(
self,
*,
coef,
linear_loss=LinearModelLoss(base_loss=HalfSquaredError(), fit_intercept=True),
l2_reg_strength=0.0,
tol=1e-4,
max_iter=100,
n_threads=1,
verbose=0,
):
self.coef = coef
self.linear_loss = linear_loss
self.l2_reg_strength = l2_reg_strength
self.tol = tol
self.max_iter = max_iter
self.n_threads = n_threads
self.verbose = verbose
def setup(self, X, y, sample_weight):
"""Precomputations
If None, initializes:
- self.coef
Sets:
- self.raw_prediction
- self.loss_value
"""
_, _, self.raw_prediction = self.linear_loss.weight_intercept_raw(self.coef, X)
self.loss_value = self.linear_loss.loss(
coef=self.coef,
X=X,
y=y,
sample_weight=sample_weight,
l2_reg_strength=self.l2_reg_strength,
n_threads=self.n_threads,
raw_prediction=self.raw_prediction,
)
@abstractmethod
def update_gradient_hessian(self, X, y, sample_weight):
"""Update gradient and Hessian."""
@abstractmethod
def inner_solve(self, X, y, sample_weight):
"""Compute Newton step.
Sets:
- self.coef_newton
- self.gradient_times_newton
"""
def fallback_lbfgs_solve(self, X, y, sample_weight):
"""Fallback solver in case of emergency.
If a solver detects convergence problems, it may fall back to this methods in
the hope to exit with success instead of raising an error.
Sets:
- self.coef
- self.converged
"""
opt_res = scipy.optimize.minimize(
self.linear_loss.loss_gradient,
self.coef,
method="L-BFGS-B",
jac=True,
options={
"maxiter": self.max_iter,
"maxls": 50, # default is 20
"iprint": self.verbose - 1,
"gtol": self.tol,
"ftol": 64 * np.finfo(np.float64).eps,
},
args=(X, y, sample_weight, self.l2_reg_strength, self.n_threads),
)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
self.coef = opt_res.x
self.converged = opt_res.status == 0
def line_search(self, X, y, sample_weight):
"""Backtracking line search.
Sets:
- self.coef_old
- self.coef
- self.loss_value_old
- self.loss_value
- self.gradient_old
- self.gradient
- self.raw_prediction
"""
# line search parameters
beta, sigma = 0.5, 0.00048828125 # 1/2, 1/2**11
eps = 16 * np.finfo(self.loss_value.dtype).eps
t = 1 # step size
# gradient_times_newton = self.gradient @ self.coef_newton
# was computed in inner_solve.
armijo_term = sigma * self.gradient_times_newton
_, _, raw_prediction_newton = self.linear_loss.weight_intercept_raw(
self.coef_newton, X
)
self.coef_old = self.coef
self.loss_value_old = self.loss_value
self.gradient_old = self.gradient
# np.sum(np.abs(self.gradient_old))
sum_abs_grad_old = -1
is_verbose = self.verbose >= 2
if is_verbose:
print(" Backtracking Line Search")
print(f" eps=10 * finfo.eps={eps}")
for i in range(21): # until and including t = beta**20 ~ 1e-6
self.coef = self.coef_old + t * self.coef_newton
raw = self.raw_prediction + t * raw_prediction_newton
self.loss_value, self.gradient = self.linear_loss.loss_gradient(
coef=self.coef,
X=X,
y=y,
sample_weight=sample_weight,
l2_reg_strength=self.l2_reg_strength,
n_threads=self.n_threads,
raw_prediction=raw,
)
# Note: If coef_newton is too large, loss_gradient may produce inf values,
# potentially accompanied by a RuntimeWarning.
# This case will be captured by the Armijo condition.
# 1. Check Armijo / sufficient decrease condition.
# The smaller (more negative) the better.
loss_improvement = self.loss_value - self.loss_value_old
check = loss_improvement <= t * armijo_term
if is_verbose:
print(
f" line search iteration={i+1}, step size={t}\n"
f" check loss improvement <= armijo term: {loss_improvement} "
f"<= {t * armijo_term} {check}"
)
if check:
break
# 2. Deal with relative loss differences around machine precision.
tiny_loss = np.abs(self.loss_value_old * eps)
check = np.abs(loss_improvement) <= tiny_loss
if is_verbose:
print(
" check loss |improvement| <= eps * |loss_old|:"
f" {np.abs(loss_improvement)} <= {tiny_loss} {check}"
)
if check:
if sum_abs_grad_old < 0:
sum_abs_grad_old = scipy.linalg.norm(self.gradient_old, ord=1)
# 2.1 Check sum of absolute gradients as alternative condition.
sum_abs_grad = scipy.linalg.norm(self.gradient, ord=1)
check = sum_abs_grad < sum_abs_grad_old
if is_verbose:
print(
" check sum(|gradient|) < sum(|gradient_old|): "
f"{sum_abs_grad} < {sum_abs_grad_old} {check}"
)
if check:
break
t *= beta
else:
warnings.warn(
(
f"Line search of Newton solver {self.__class__.__name__} at"
f" iteration #{self.iteration} did no converge after 21 line search"
" refinement iterations. It will now resort to lbfgs instead."
),
ConvergenceWarning,
)
if self.verbose:
print(" Line search did not converge and resorts to lbfgs instead.")
self.use_fallback_lbfgs_solve = True
return
self.raw_prediction = raw
def check_convergence(self, X, y, sample_weight):
"""Check for convergence.
Sets self.converged.
"""
if self.verbose:
print(" Check Convergence")
# Note: Checking maximum relative change of coefficient <= tol is a bad
# convergence criterion because even a large step could have brought us close
# to the true minimum.
# coef_step = self.coef - self.coef_old
# check = np.max(np.abs(coef_step) / np.maximum(1, np.abs(self.coef_old)))
# 1. Criterion: maximum |gradient| <= tol
# The gradient was already updated in line_search()
check = np.max(np.abs(self.gradient))
if self.verbose:
print(f" 1. max |gradient| {check} <= {self.tol}")
if check > self.tol:
return
# 2. Criterion: For Newton decrement d, check 1/2 * d^2 <= tol
# d = sqrt(grad @ hessian^-1 @ grad)
# = sqrt(coef_newton @ hessian @ coef_newton)
# See Boyd, Vanderberghe (2009) "Convex Optimization" Chapter 9.5.1.
d2 = self.coef_newton @ self.hessian @ self.coef_newton
if self.verbose:
print(f" 2. Newton decrement {0.5 * d2} <= {self.tol}")
if 0.5 * d2 > self.tol:
return
if self.verbose:
loss_value = self.linear_loss.loss(
coef=self.coef,
X=X,
y=y,
sample_weight=sample_weight,
l2_reg_strength=self.l2_reg_strength,
n_threads=self.n_threads,
)
print(f" Solver did converge at loss = {loss_value}.")
self.converged = True
def finalize(self, X, y, sample_weight):
"""Finalize the solvers results.
Some solvers may need this, others not.
"""
pass
def solve(self, X, y, sample_weight):
"""Solve the optimization problem.
This is the main routine.
Order of calls:
self.setup()
while iteration:
self.update_gradient_hessian()
self.inner_solve()
self.line_search()
self.check_convergence()
self.finalize()
Returns
-------
coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
Solution of the optimization problem.
"""
# setup usually:
# - initializes self.coef if needed
# - initializes and calculates self.raw_predictions, self.loss_value
self.setup(X=X, y=y, sample_weight=sample_weight)
self.iteration = 1
self.converged = False
self.use_fallback_lbfgs_solve = False
while self.iteration <= self.max_iter and not self.converged:
if self.verbose:
print(f"Newton iter={self.iteration}")
self.use_fallback_lbfgs_solve = False # Fallback solver.
# 1. Update Hessian and gradient
self.update_gradient_hessian(X=X, y=y, sample_weight=sample_weight)
# TODO:
# if iteration == 1:
# We might stop early, e.g. we already are close to the optimum,
# usually detected by zero gradients at this stage.
# 2. Inner solver
# Calculate Newton step/direction
# This usually sets self.coef_newton and self.gradient_times_newton.
self.inner_solve(X=X, y=y, sample_weight=sample_weight)
if self.use_fallback_lbfgs_solve:
break
# 3. Backtracking line search
# This usually sets self.coef_old, self.coef, self.loss_value_old
# self.loss_value, self.gradient_old, self.gradient,
# self.raw_prediction.
self.line_search(X=X, y=y, sample_weight=sample_weight)
if self.use_fallback_lbfgs_solve:
break
# 4. Check convergence
# Sets self.converged.
self.check_convergence(X=X, y=y, sample_weight=sample_weight)
# 5. Next iteration
self.iteration += 1
if not self.converged:
if self.use_fallback_lbfgs_solve:
# Note: The fallback solver circumvents check_convergence and relies on
# the convergence checks of lbfgs instead. Enough warnings have been
# raised on the way.
self.fallback_lbfgs_solve(X=X, y=y, sample_weight=sample_weight)
else:
warnings.warn(
(
f"Newton solver did not converge after {self.iteration - 1} "
"iterations."
),
ConvergenceWarning,
)
self.iteration -= 1
self.finalize(X=X, y=y, sample_weight=sample_weight)
return self.coef
class NewtonCholeskySolver(NewtonSolver):
"""Cholesky based Newton solver.
Inner solver for finding the Newton step H w_newton = -g uses Cholesky based linear
solver.
"""
def setup(self, X, y, sample_weight):
super().setup(X=X, y=y, sample_weight=sample_weight)
n_dof = X.shape[1]
if self.linear_loss.fit_intercept:
n_dof += 1
self.gradient = np.empty_like(self.coef)
self.hessian = np.empty_like(self.coef, shape=(n_dof, n_dof))
def update_gradient_hessian(self, X, y, sample_weight):
_, _, self.hessian_warning = self.linear_loss.gradient_hessian(
coef=self.coef,
X=X,
y=y,
sample_weight=sample_weight,
l2_reg_strength=self.l2_reg_strength,
n_threads=self.n_threads,
gradient_out=self.gradient,
hessian_out=self.hessian,
raw_prediction=self.raw_prediction, # this was updated in line_search
)
def inner_solve(self, X, y, sample_weight):
if self.hessian_warning:
warnings.warn(
(
f"The inner solver of {self.__class__.__name__} detected a "
"pointwise hessian with many negative values at iteration "
f"#{self.iteration}. It will now resort to lbfgs instead."
),
ConvergenceWarning,
)
if self.verbose:
print(
" The inner solver detected a pointwise Hessian with many "
"negative values and resorts to lbfgs instead."
)
self.use_fallback_lbfgs_solve = True
return
try:
with warnings.catch_warnings():
warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
self.coef_newton = scipy.linalg.solve(
self.hessian, -self.gradient, check_finite=False, assume_a="sym"
)
self.gradient_times_newton = self.gradient @ self.coef_newton
if self.gradient_times_newton > 0:
if self.verbose:
print(
" The inner solver found a Newton step that is not a "
"descent direction and resorts to LBFGS steps instead."
)
self.use_fallback_lbfgs_solve = True
return
except (np.linalg.LinAlgError, scipy.linalg.LinAlgWarning) as e:
warnings.warn(
f"The inner solver of {self.__class__.__name__} stumbled upon a "
"singular or very ill-conditioned Hessian matrix at iteration "
f"#{self.iteration}. It will now resort to lbfgs instead.\n"
"Further options are to use another solver or to avoid such situation "
"in the first place. Possible remedies are removing collinear features"
" of X or increasing the penalization strengths.\n"
"The original Linear Algebra message was:\n"
+ str(e),
scipy.linalg.LinAlgWarning,
)
# Possible causes:
# 1. hess_pointwise is negative. But this is already taken care in
# LinearModelLoss.gradient_hessian.
# 2. X is singular or ill-conditioned
# This might be the most probable cause.
#
# There are many possible ways to deal with this situation. Most of them
# add, explicitly or implicitly, a matrix to the hessian to make it
# positive definite, confer to Chapter 3.4 of Nocedal & Wright 2nd ed.
# Instead, we resort to lbfgs.
if self.verbose:
print(
" The inner solver stumbled upon an singular or ill-conditioned "
"Hessian matrix and resorts to LBFGS instead."
)
self.use_fallback_lbfgs_solve = True
return
|