File: _newton_solver.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (525 lines) | stat: -rw-r--r-- 19,275 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
"""
Newton solver for Generalized Linear Models
"""

# Author: Christian Lorentzen <lorentzen.ch@gmail.com>
# License: BSD 3 clause

import warnings
from abc import ABC, abstractmethod

import numpy as np
import scipy.linalg
import scipy.optimize

from ..._loss.loss import HalfSquaredError
from ...exceptions import ConvergenceWarning
from ...utils.optimize import _check_optimize_result
from .._linear_loss import LinearModelLoss


class NewtonSolver(ABC):
    """Newton solver for GLMs.

    This class implements Newton/2nd-order optimization routines for GLMs. Each Newton
    iteration aims at finding the Newton step which is done by the inner solver. With
    Hessian H, gradient g and coefficients coef, one step solves:

        H @ coef_newton = -g

    For our GLM / LinearModelLoss, we have gradient g and Hessian H:

        g = X.T @ loss.gradient + l2_reg_strength * coef
        H = X.T @ diag(loss.hessian) @ X + l2_reg_strength * identity

    Backtracking line search updates coef = coef_old + t * coef_newton for some t in
    (0, 1].

    This is a base class, actual implementations (child classes) may deviate from the
    above pattern and use structure specific tricks.

    Usage pattern:
        - initialize solver: sol = NewtonSolver(...)
        - solve the problem: sol.solve(X, y, sample_weight)

    References
    ----------
    - Jorge Nocedal, Stephen J. Wright. (2006) "Numerical Optimization"
      2nd edition
      https://doi.org/10.1007/978-0-387-40065-5

    - Stephen P. Boyd, Lieven Vandenberghe. (2004) "Convex Optimization."
      Cambridge University Press, 2004.
      https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

    Parameters
    ----------
    coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
        Initial coefficients of a linear model.
        If shape (n_classes * n_dof,), the classes of one feature are contiguous,
        i.e. one reconstructs the 2d-array via
        coef.reshape((n_classes, -1), order="F").

    linear_loss : LinearModelLoss
        The loss to be minimized.

    l2_reg_strength : float, default=0.0
        L2 regularization strength.

    tol : float, default=1e-4
        The optimization problem is solved when each of the following condition is
        fulfilled:
        1. maximum |gradient| <= tol
        2. Newton decrement d: 1/2 * d^2 <= tol

    max_iter : int, default=100
        Maximum number of Newton steps allowed.

    n_threads : int, default=1
        Number of OpenMP threads to use for the computation of the Hessian and gradient
        of the loss function.

    Attributes
    ----------
    coef_old : ndarray of shape coef.shape
        Coefficient of previous iteration.

    coef_newton : ndarray of shape coef.shape
        Newton step.

    gradient : ndarray of shape coef.shape
        Gradient of the loss w.r.t. the coefficients.

    gradient_old : ndarray of shape coef.shape
        Gradient of previous iteration.

    loss_value : float
        Value of objective function = loss + penalty.

    loss_value_old : float
        Value of objective function of previous itertion.

    raw_prediction : ndarray of shape (n_samples,) or (n_samples, n_classes)

    converged : bool
        Indicator for convergence of the solver.

    iteration : int
        Number of Newton steps, i.e. calls to inner_solve

    use_fallback_lbfgs_solve : bool
        If set to True, the solver will resort to call LBFGS to finish the optimisation
        procedure in case of convergence issues.

    gradient_times_newton : float
        gradient @ coef_newton, set in inner_solve and used by line_search. If the
        Newton step is a descent direction, this is negative.
    """

    def __init__(
        self,
        *,
        coef,
        linear_loss=LinearModelLoss(base_loss=HalfSquaredError(), fit_intercept=True),
        l2_reg_strength=0.0,
        tol=1e-4,
        max_iter=100,
        n_threads=1,
        verbose=0,
    ):
        self.coef = coef
        self.linear_loss = linear_loss
        self.l2_reg_strength = l2_reg_strength
        self.tol = tol
        self.max_iter = max_iter
        self.n_threads = n_threads
        self.verbose = verbose

    def setup(self, X, y, sample_weight):
        """Precomputations

        If None, initializes:
            - self.coef
        Sets:
            - self.raw_prediction
            - self.loss_value
        """
        _, _, self.raw_prediction = self.linear_loss.weight_intercept_raw(self.coef, X)
        self.loss_value = self.linear_loss.loss(
            coef=self.coef,
            X=X,
            y=y,
            sample_weight=sample_weight,
            l2_reg_strength=self.l2_reg_strength,
            n_threads=self.n_threads,
            raw_prediction=self.raw_prediction,
        )

    @abstractmethod
    def update_gradient_hessian(self, X, y, sample_weight):
        """Update gradient and Hessian."""

    @abstractmethod
    def inner_solve(self, X, y, sample_weight):
        """Compute Newton step.

        Sets:
            - self.coef_newton
            - self.gradient_times_newton
        """

    def fallback_lbfgs_solve(self, X, y, sample_weight):
        """Fallback solver in case of emergency.

        If a solver detects convergence problems, it may fall back to this methods in
        the hope to exit with success instead of raising an error.

        Sets:
            - self.coef
            - self.converged
        """
        opt_res = scipy.optimize.minimize(
            self.linear_loss.loss_gradient,
            self.coef,
            method="L-BFGS-B",
            jac=True,
            options={
                "maxiter": self.max_iter,
                "maxls": 50,  # default is 20
                "iprint": self.verbose - 1,
                "gtol": self.tol,
                "ftol": 64 * np.finfo(np.float64).eps,
            },
            args=(X, y, sample_weight, self.l2_reg_strength, self.n_threads),
        )
        self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
        self.coef = opt_res.x
        self.converged = opt_res.status == 0

    def line_search(self, X, y, sample_weight):
        """Backtracking line search.

        Sets:
            - self.coef_old
            - self.coef
            - self.loss_value_old
            - self.loss_value
            - self.gradient_old
            - self.gradient
            - self.raw_prediction
        """
        # line search parameters
        beta, sigma = 0.5, 0.00048828125  # 1/2, 1/2**11
        eps = 16 * np.finfo(self.loss_value.dtype).eps
        t = 1  # step size

        # gradient_times_newton = self.gradient @ self.coef_newton
        # was computed in inner_solve.
        armijo_term = sigma * self.gradient_times_newton
        _, _, raw_prediction_newton = self.linear_loss.weight_intercept_raw(
            self.coef_newton, X
        )

        self.coef_old = self.coef
        self.loss_value_old = self.loss_value
        self.gradient_old = self.gradient

        # np.sum(np.abs(self.gradient_old))
        sum_abs_grad_old = -1

        is_verbose = self.verbose >= 2
        if is_verbose:
            print("  Backtracking Line Search")
            print(f"    eps=10 * finfo.eps={eps}")

        for i in range(21):  # until and including t = beta**20 ~ 1e-6
            self.coef = self.coef_old + t * self.coef_newton
            raw = self.raw_prediction + t * raw_prediction_newton
            self.loss_value, self.gradient = self.linear_loss.loss_gradient(
                coef=self.coef,
                X=X,
                y=y,
                sample_weight=sample_weight,
                l2_reg_strength=self.l2_reg_strength,
                n_threads=self.n_threads,
                raw_prediction=raw,
            )
            # Note: If coef_newton is too large, loss_gradient may produce inf values,
            # potentially accompanied by a RuntimeWarning.
            # This case will be captured by the Armijo condition.

            # 1. Check Armijo / sufficient decrease condition.
            # The smaller (more negative) the better.
            loss_improvement = self.loss_value - self.loss_value_old
            check = loss_improvement <= t * armijo_term
            if is_verbose:
                print(
                    f"    line search iteration={i+1}, step size={t}\n"
                    f"      check loss improvement <= armijo term: {loss_improvement} "
                    f"<= {t * armijo_term} {check}"
                )
            if check:
                break
            # 2. Deal with relative loss differences around machine precision.
            tiny_loss = np.abs(self.loss_value_old * eps)
            check = np.abs(loss_improvement) <= tiny_loss
            if is_verbose:
                print(
                    "      check loss |improvement| <= eps * |loss_old|:"
                    f" {np.abs(loss_improvement)} <= {tiny_loss} {check}"
                )
            if check:
                if sum_abs_grad_old < 0:
                    sum_abs_grad_old = scipy.linalg.norm(self.gradient_old, ord=1)
                # 2.1 Check sum of absolute gradients as alternative condition.
                sum_abs_grad = scipy.linalg.norm(self.gradient, ord=1)
                check = sum_abs_grad < sum_abs_grad_old
                if is_verbose:
                    print(
                        "      check sum(|gradient|) < sum(|gradient_old|): "
                        f"{sum_abs_grad} < {sum_abs_grad_old} {check}"
                    )
                if check:
                    break

            t *= beta
        else:
            warnings.warn(
                (
                    f"Line search of Newton solver {self.__class__.__name__} at"
                    f" iteration #{self.iteration} did no converge after 21 line search"
                    " refinement iterations. It will now resort to lbfgs instead."
                ),
                ConvergenceWarning,
            )
            if self.verbose:
                print("  Line search did not converge and resorts to lbfgs instead.")
            self.use_fallback_lbfgs_solve = True
            return

        self.raw_prediction = raw

    def check_convergence(self, X, y, sample_weight):
        """Check for convergence.

        Sets self.converged.
        """
        if self.verbose:
            print("  Check Convergence")
        # Note: Checking maximum relative change of coefficient <= tol is a bad
        # convergence criterion because even a large step could have brought us close
        # to the true minimum.
        # coef_step = self.coef - self.coef_old
        # check = np.max(np.abs(coef_step) / np.maximum(1, np.abs(self.coef_old)))

        # 1. Criterion: maximum |gradient| <= tol
        #    The gradient was already updated in line_search()
        check = np.max(np.abs(self.gradient))
        if self.verbose:
            print(f"    1. max |gradient| {check} <= {self.tol}")
        if check > self.tol:
            return

        # 2. Criterion: For Newton decrement d, check 1/2 * d^2 <= tol
        #       d = sqrt(grad @ hessian^-1 @ grad)
        #         = sqrt(coef_newton @ hessian @ coef_newton)
        #    See Boyd, Vanderberghe (2009) "Convex Optimization" Chapter 9.5.1.
        d2 = self.coef_newton @ self.hessian @ self.coef_newton
        if self.verbose:
            print(f"    2. Newton decrement {0.5 * d2} <= {self.tol}")
        if 0.5 * d2 > self.tol:
            return

        if self.verbose:
            loss_value = self.linear_loss.loss(
                coef=self.coef,
                X=X,
                y=y,
                sample_weight=sample_weight,
                l2_reg_strength=self.l2_reg_strength,
                n_threads=self.n_threads,
            )
            print(f"  Solver did converge at loss = {loss_value}.")
        self.converged = True

    def finalize(self, X, y, sample_weight):
        """Finalize the solvers results.

        Some solvers may need this, others not.
        """
        pass

    def solve(self, X, y, sample_weight):
        """Solve the optimization problem.

        This is the main routine.

        Order of calls:
            self.setup()
            while iteration:
                self.update_gradient_hessian()
                self.inner_solve()
                self.line_search()
                self.check_convergence()
            self.finalize()

        Returns
        -------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Solution of the optimization problem.
        """
        # setup usually:
        #   - initializes self.coef if needed
        #   - initializes and calculates self.raw_predictions, self.loss_value
        self.setup(X=X, y=y, sample_weight=sample_weight)

        self.iteration = 1
        self.converged = False
        self.use_fallback_lbfgs_solve = False

        while self.iteration <= self.max_iter and not self.converged:
            if self.verbose:
                print(f"Newton iter={self.iteration}")

            self.use_fallback_lbfgs_solve = False  # Fallback solver.

            # 1. Update Hessian and gradient
            self.update_gradient_hessian(X=X, y=y, sample_weight=sample_weight)

            # TODO:
            # if iteration == 1:
            # We might stop early, e.g. we already are close to the optimum,
            # usually detected by zero gradients at this stage.

            # 2. Inner solver
            #    Calculate Newton step/direction
            #    This usually sets self.coef_newton and self.gradient_times_newton.
            self.inner_solve(X=X, y=y, sample_weight=sample_weight)
            if self.use_fallback_lbfgs_solve:
                break

            # 3. Backtracking line search
            #    This usually sets self.coef_old, self.coef, self.loss_value_old
            #    self.loss_value, self.gradient_old, self.gradient,
            #    self.raw_prediction.
            self.line_search(X=X, y=y, sample_weight=sample_weight)
            if self.use_fallback_lbfgs_solve:
                break

            # 4. Check convergence
            #    Sets self.converged.
            self.check_convergence(X=X, y=y, sample_weight=sample_weight)

            # 5. Next iteration
            self.iteration += 1

        if not self.converged:
            if self.use_fallback_lbfgs_solve:
                # Note: The fallback solver circumvents check_convergence and relies on
                # the convergence checks of lbfgs instead. Enough warnings have been
                # raised on the way.
                self.fallback_lbfgs_solve(X=X, y=y, sample_weight=sample_weight)
            else:
                warnings.warn(
                    (
                        f"Newton solver did not converge after {self.iteration - 1} "
                        "iterations."
                    ),
                    ConvergenceWarning,
                )

        self.iteration -= 1
        self.finalize(X=X, y=y, sample_weight=sample_weight)
        return self.coef


class NewtonCholeskySolver(NewtonSolver):
    """Cholesky based Newton solver.

    Inner solver for finding the Newton step H w_newton = -g uses Cholesky based linear
    solver.
    """

    def setup(self, X, y, sample_weight):
        super().setup(X=X, y=y, sample_weight=sample_weight)
        n_dof = X.shape[1]
        if self.linear_loss.fit_intercept:
            n_dof += 1
        self.gradient = np.empty_like(self.coef)
        self.hessian = np.empty_like(self.coef, shape=(n_dof, n_dof))

    def update_gradient_hessian(self, X, y, sample_weight):
        _, _, self.hessian_warning = self.linear_loss.gradient_hessian(
            coef=self.coef,
            X=X,
            y=y,
            sample_weight=sample_weight,
            l2_reg_strength=self.l2_reg_strength,
            n_threads=self.n_threads,
            gradient_out=self.gradient,
            hessian_out=self.hessian,
            raw_prediction=self.raw_prediction,  # this was updated in line_search
        )

    def inner_solve(self, X, y, sample_weight):
        if self.hessian_warning:
            warnings.warn(
                (
                    f"The inner solver of {self.__class__.__name__} detected a "
                    "pointwise hessian with many negative values at iteration "
                    f"#{self.iteration}. It will now resort to lbfgs instead."
                ),
                ConvergenceWarning,
            )
            if self.verbose:
                print(
                    "  The inner solver detected a pointwise Hessian with many "
                    "negative values and resorts to lbfgs instead."
                )
            self.use_fallback_lbfgs_solve = True
            return

        try:
            with warnings.catch_warnings():
                warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
                self.coef_newton = scipy.linalg.solve(
                    self.hessian, -self.gradient, check_finite=False, assume_a="sym"
                )
                self.gradient_times_newton = self.gradient @ self.coef_newton
                if self.gradient_times_newton > 0:
                    if self.verbose:
                        print(
                            "  The inner solver found a Newton step that is not a "
                            "descent direction and resorts to LBFGS steps instead."
                        )
                    self.use_fallback_lbfgs_solve = True
                    return
        except (np.linalg.LinAlgError, scipy.linalg.LinAlgWarning) as e:
            warnings.warn(
                f"The inner solver of {self.__class__.__name__} stumbled upon a "
                "singular or very ill-conditioned Hessian matrix at iteration "
                f"#{self.iteration}. It will now resort to lbfgs instead.\n"
                "Further options are to use another solver or to avoid such situation "
                "in the first place. Possible remedies are removing collinear features"
                " of X or increasing the penalization strengths.\n"
                "The original Linear Algebra message was:\n"
                + str(e),
                scipy.linalg.LinAlgWarning,
            )
            # Possible causes:
            # 1. hess_pointwise is negative. But this is already taken care in
            #    LinearModelLoss.gradient_hessian.
            # 2. X is singular or ill-conditioned
            #    This might be the most probable cause.
            #
            # There are many possible ways to deal with this situation. Most of them
            # add, explicitly or implicitly, a matrix to the hessian to make it
            # positive definite, confer to Chapter 3.4 of Nocedal & Wright 2nd ed.
            # Instead, we resort to lbfgs.
            if self.verbose:
                print(
                    "  The inner solver stumbled upon an singular or ill-conditioned "
                    "Hessian matrix and resorts to LBFGS instead."
                )
            self.use_fallback_lbfgs_solve = True
            return