1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
"""
Generalized Linear Models with Exponential Dispersion Family
"""
# Author: Christian Lorentzen <lorentzen.ch@gmail.com>
# some parts and tricks stolen from other sklearn files.
# License: BSD 3 clause
from numbers import Integral, Real
import numpy as np
import scipy.optimize
from ..._loss.loss import (
HalfGammaLoss,
HalfPoissonLoss,
HalfSquaredError,
HalfTweedieLoss,
HalfTweedieLossIdentity,
)
from ...base import BaseEstimator, RegressorMixin, _fit_context
from ...utils import check_array
from ...utils._openmp_helpers import _openmp_effective_n_threads
from ...utils._param_validation import Hidden, Interval, StrOptions
from ...utils.optimize import _check_optimize_result
from ...utils.validation import _check_sample_weight, check_is_fitted
from .._linear_loss import LinearModelLoss
from ._newton_solver import NewtonCholeskySolver, NewtonSolver
class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
"""Regression via a penalized Generalized Linear Model (GLM).
GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at fitting and
predicting the mean of the target y as y_pred=h(X*w) with coefficients w.
Therefore, the fit minimizes the following objective function with L2 priors as
regularizer::
1/(2*sum(s_i)) * sum(s_i * deviance(y_i, h(x_i*w)) + 1/2 * alpha * ||w||_2^2
with inverse link function h, s=sample_weight and per observation (unit) deviance
deviance(y_i, h(x_i*w)). Note that for an EDM, 1/2 * deviance is the negative
log-likelihood up to a constant (in w) term.
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
Instead of implementing the EDM family and a link function separately, we directly
use the loss functions `from sklearn._loss` which have the link functions included
in them for performance reasons. We pick the loss functions that implement
(1/2 times) EDM deviances.
Read more in the :ref:`User Guide <Generalized_linear_models>`.
.. versionadded:: 0.23
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
Values must be in the range `[0.0, inf)`.
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
'newton-cholesky'
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
iterated reweighted least squares) with an inner Cholesky based solver.
This solver is a good choice for `n_samples` >> `n_features`, especially
with one-hot encoded categorical features with rare categories. Be aware
that the memory usage of this solver has a quadratic dependency on
`n_features` because it explicitly computes the Hessian matrix.
.. versionadded:: 1.2
max_iter : int, default=100
The maximal number of iterations for the solver.
Values must be in the range `[1, inf)`.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
Values must be in the range `(0.0, inf)`.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_``.
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Values must be in the range `[0, inf)`.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
_base_loss : BaseLoss, default=HalfSquaredError()
This is set during fit via `self._get_loss()`.
A `_base_loss` contains a specific loss function as well as the link
function. The loss to be minimized specifies the distributional assumption of
the GLM, i.e. the distribution from the EDM. Here are some examples:
======================= ======== ==========================
_base_loss Link Target Domain
======================= ======== ==========================
HalfSquaredError identity y any real number
HalfPoissonLoss log 0 <= y
HalfGammaLoss log 0 < y
HalfTweedieLoss log dependent on tweedie power
HalfTweedieLossIdentity identity dependent on tweedie power
======================= ======== ==========================
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. For instance, with a log link,
we have `y_pred = exp(X @ coeff + intercept)`.
"""
# We allow for NewtonSolver classes for the "solver" parameter but do not
# make them public in the docstrings. This facilitates testing and
# benchmarking.
_parameter_constraints: dict = {
"alpha": [Interval(Real, 0.0, None, closed="left")],
"fit_intercept": ["boolean"],
"solver": [
StrOptions({"lbfgs", "newton-cholesky"}),
Hidden(type),
],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"tol": [Interval(Real, 0.0, None, closed="neither")],
"warm_start": ["boolean"],
"verbose": ["verbose"],
}
def __init__(
self,
*,
alpha=1.0,
fit_intercept=True,
solver="lbfgs",
max_iter=100,
tol=1e-4,
warm_start=False,
verbose=0,
):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.solver = solver
self.max_iter = max_iter
self.tol = tol
self.warm_start = warm_start
self.verbose = verbose
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit a Generalized Linear Model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : object
Fitted model.
"""
X, y = self._validate_data(
X,
y,
accept_sparse=["csc", "csr"],
dtype=[np.float64, np.float32],
y_numeric=True,
multi_output=False,
)
# required by losses
if self.solver == "lbfgs":
# lbfgs will force coef and therefore raw_prediction to be float64. The
# base_loss needs y, X @ coef and sample_weight all of same dtype
# (and contiguous).
loss_dtype = np.float64
else:
loss_dtype = min(max(y.dtype, X.dtype), np.float64)
y = check_array(y, dtype=loss_dtype, order="C", ensure_2d=False)
if sample_weight is not None:
# Note that _check_sample_weight calls check_array(order="C") required by
# losses.
sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype)
n_samples, n_features = X.shape
self._base_loss = self._get_loss()
linear_loss = LinearModelLoss(
base_loss=self._base_loss,
fit_intercept=self.fit_intercept,
)
if not linear_loss.base_loss.in_y_true_range(y):
raise ValueError(
"Some value(s) of y are out of the valid range of the loss"
f" {self._base_loss.__class__.__name__!r}."
)
# TODO: if alpha=0 check that X is not rank deficient
# NOTE: Rescaling of sample_weight:
# We want to minimize
# obj = 1/(2 * sum(sample_weight)) * sum(sample_weight * deviance)
# + 1/2 * alpha * L2,
# with
# deviance = 2 * loss.
# The objective is invariant to multiplying sample_weight by a constant. We
# could choose this constant such that sum(sample_weight) = 1 in order to end
# up with
# obj = sum(sample_weight * loss) + 1/2 * alpha * L2.
# But LinearModelLoss.loss() already computes
# average(loss, weights=sample_weight)
# Thus, without rescaling, we have
# obj = LinearModelLoss.loss(...)
if self.warm_start and hasattr(self, "coef_"):
if self.fit_intercept:
# LinearModelLoss needs intercept at the end of coefficient array.
coef = np.concatenate((self.coef_, np.array([self.intercept_])))
else:
coef = self.coef_
coef = coef.astype(loss_dtype, copy=False)
else:
coef = linear_loss.init_zero_coef(X, dtype=loss_dtype)
if self.fit_intercept:
coef[-1] = linear_loss.base_loss.link.link(
np.average(y, weights=sample_weight)
)
l2_reg_strength = self.alpha
n_threads = _openmp_effective_n_threads()
# Algorithms for optimization:
# Note again that our losses implement 1/2 * deviance.
if self.solver == "lbfgs":
func = linear_loss.loss_gradient
opt_res = scipy.optimize.minimize(
func,
coef,
method="L-BFGS-B",
jac=True,
options={
"maxiter": self.max_iter,
"maxls": 50, # default is 20
"iprint": self.verbose - 1,
"gtol": self.tol,
# The constant 64 was found empirically to pass the test suite.
# The point is that ftol is very small, but a bit larger than
# machine precision for float64, which is the dtype used by lbfgs.
"ftol": 64 * np.finfo(float).eps,
},
args=(X, y, sample_weight, l2_reg_strength, n_threads),
)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
coef = opt_res.x
elif self.solver == "newton-cholesky":
sol = NewtonCholeskySolver(
coef=coef,
linear_loss=linear_loss,
l2_reg_strength=l2_reg_strength,
tol=self.tol,
max_iter=self.max_iter,
n_threads=n_threads,
verbose=self.verbose,
)
coef = sol.solve(X, y, sample_weight)
self.n_iter_ = sol.iteration
elif issubclass(self.solver, NewtonSolver):
sol = self.solver(
coef=coef,
linear_loss=linear_loss,
l2_reg_strength=l2_reg_strength,
tol=self.tol,
max_iter=self.max_iter,
n_threads=n_threads,
)
coef = sol.solve(X, y, sample_weight)
self.n_iter_ = sol.iteration
else:
raise ValueError(f"Invalid solver={self.solver}.")
if self.fit_intercept:
self.intercept_ = coef[-1]
self.coef_ = coef[:-1]
else:
# set intercept to zero as the other linear models do
self.intercept_ = 0.0
self.coef_ = coef
return self
def _linear_predictor(self, X):
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
Note that we often use the term raw_prediction instead of linear predictor.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values of linear predictor.
"""
check_is_fitted(self)
X = self._validate_data(
X,
accept_sparse=["csr", "csc", "coo"],
dtype=[np.float64, np.float32],
ensure_2d=True,
allow_nd=False,
reset=False,
)
return X @ self.coef_ + self.intercept_
def predict(self, X):
"""Predict using GLM with feature matrix X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values.
"""
# check_array is done in _linear_predictor
raw_prediction = self._linear_predictor(X)
y_pred = self._base_loss.link.inverse(raw_prediction)
return y_pred
def score(self, X, y, sample_weight=None):
"""Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2.
R^2 uses squared error and D^2 uses the deviance of this GLM, see the
:ref:`User Guide <regression_metrics>`.
D^2 is defined as
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
:math:`D_{null}` is the null deviance, i.e. the deviance of a model
with intercept alone, which corresponds to :math:`y_{pred} = \\bar{y}`.
The mean :math:`\\bar{y}` is averaged by sample_weight.
Best possible score is 1.0 and it can be negative (because the model
can be arbitrarily worse).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True values of target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
D^2 of self.predict(X) w.r.t. y.
"""
# TODO: Adapt link to User Guide in the docstring, once
# https://github.com/scikit-learn/scikit-learn/pull/22118 is merged.
#
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
raw_prediction = self._linear_predictor(X) # validates X
# required by losses
y = check_array(y, dtype=raw_prediction.dtype, order="C", ensure_2d=False)
if sample_weight is not None:
# Note that _check_sample_weight calls check_array(order="C") required by
# losses.
sample_weight = _check_sample_weight(sample_weight, X, dtype=y.dtype)
base_loss = self._base_loss
if not base_loss.in_y_true_range(y):
raise ValueError(
"Some value(s) of y are out of the valid range of the loss"
f" {base_loss.__name__}."
)
constant = np.average(
base_loss.constant_to_optimal_zero(y_true=y, sample_weight=None),
weights=sample_weight,
)
# Missing factor of 2 in deviance cancels out.
deviance = base_loss(
y_true=y,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
n_threads=1,
)
y_mean = base_loss.link.link(np.average(y, weights=sample_weight))
deviance_null = base_loss(
y_true=y,
raw_prediction=np.tile(y_mean, y.shape[0]),
sample_weight=sample_weight,
n_threads=1,
)
return 1 - (deviance + constant) / (deviance_null + constant)
def _more_tags(self):
try:
# Create instance of BaseLoss if fit wasn't called yet. This is necessary as
# TweedieRegressor might set the used loss during fit different from
# self._base_loss.
base_loss = self._get_loss()
return {"requires_positive_y": not base_loss.in_y_true_range(-1.0)}
except (ValueError, AttributeError, TypeError):
# This happens when the link or power parameter of TweedieRegressor is
# invalid. We fallback on the default tags in that case.
return {}
def _get_loss(self):
"""This is only necessary because of the link and power arguments of the
TweedieRegressor.
Note that we do not need to pass sample_weight to the loss class as this is
only needed to set loss.constant_hessian on which GLMs do not rely.
"""
return HalfSquaredError()
class PoissonRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Poisson distribution.
This regressor uses the 'log' link function.
Read more in the :ref:`User Guide <Generalized_linear_models>`.
.. versionadded:: 0.23
Parameters
----------
alpha : float, default=1
Constant that multiplies the L2 penalty term and determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
Values of `alpha` must be in the range `[0.0, inf)`.
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (`X @ coef + intercept`).
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
'newton-cholesky'
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
iterated reweighted least squares) with an inner Cholesky based solver.
This solver is a good choice for `n_samples` >> `n_features`, especially
with one-hot encoded categorical features with rare categories. Be aware
that the memory usage of this solver has a quadratic dependency on
`n_features` because it explicitly computes the Hessian matrix.
.. versionadded:: 1.2
max_iter : int, default=100
The maximal number of iterations for the solver.
Values must be in the range `[1, inf)`.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
Values must be in the range `(0.0, inf)`.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Values must be in the range `[0, inf)`.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_iter_ : int
Actual number of iterations used in the solver.
See Also
--------
TweedieRegressor : Generalized Linear Model with a Tweedie distribution.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.PoissonRegressor()
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
>>> y = [12, 17, 22, 21]
>>> clf.fit(X, y)
PoissonRegressor()
>>> clf.score(X, y)
0.990...
>>> clf.coef_
array([0.121..., 0.158...])
>>> clf.intercept_
2.088...
>>> clf.predict([[1, 1], [3, 4]])
array([10.676..., 21.875...])
"""
_parameter_constraints: dict = {
**_GeneralizedLinearRegressor._parameter_constraints
}
def __init__(
self,
*,
alpha=1.0,
fit_intercept=True,
solver="lbfgs",
max_iter=100,
tol=1e-4,
warm_start=False,
verbose=0,
):
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
def _get_loss(self):
return HalfPoissonLoss()
class GammaRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Gamma distribution.
This regressor uses the 'log' link function.
Read more in the :ref:`User Guide <Generalized_linear_models>`.
.. versionadded:: 0.23
Parameters
----------
alpha : float, default=1
Constant that multiplies the L2 penalty term and determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
Values of `alpha` must be in the range `[0.0, inf)`.
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor `X @ coef_ + intercept_`.
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
'newton-cholesky'
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
iterated reweighted least squares) with an inner Cholesky based solver.
This solver is a good choice for `n_samples` >> `n_features`, especially
with one-hot encoded categorical features with rare categories. Be aware
that the memory usage of this solver has a quadratic dependency on
`n_features` because it explicitly computes the Hessian matrix.
.. versionadded:: 1.2
max_iter : int, default=100
The maximal number of iterations for the solver.
Values must be in the range `[1, inf)`.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
Values must be in the range `(0.0, inf)`.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for `coef_` and `intercept_`.
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Values must be in the range `[0, inf)`.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
n_iter_ : int
Actual number of iterations used in the solver.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
PoissonRegressor : Generalized Linear Model with a Poisson distribution.
TweedieRegressor : Generalized Linear Model with a Tweedie distribution.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.GammaRegressor()
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
>>> y = [19, 26, 33, 30]
>>> clf.fit(X, y)
GammaRegressor()
>>> clf.score(X, y)
0.773...
>>> clf.coef_
array([0.072..., 0.066...])
>>> clf.intercept_
2.896...
>>> clf.predict([[1, 0], [2, 8]])
array([19.483..., 35.795...])
"""
_parameter_constraints: dict = {
**_GeneralizedLinearRegressor._parameter_constraints
}
def __init__(
self,
*,
alpha=1.0,
fit_intercept=True,
solver="lbfgs",
max_iter=100,
tol=1e-4,
warm_start=False,
verbose=0,
):
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
def _get_loss(self):
return HalfGammaLoss()
class TweedieRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Tweedie distribution.
This estimator can be used to model different GLMs depending on the
``power`` parameter, which determines the underlying distribution.
Read more in the :ref:`User Guide <Generalized_linear_models>`.
.. versionadded:: 0.23
Parameters
----------
power : float, default=0
The power determines the underlying target distribution according
to the following table:
+-------+------------------------+
| Power | Distribution |
+=======+========================+
| 0 | Normal |
+-------+------------------------+
| 1 | Poisson |
+-------+------------------------+
| (1,2) | Compound Poisson Gamma |
+-------+------------------------+
| 2 | Gamma |
+-------+------------------------+
| 3 | Inverse Gaussian |
+-------+------------------------+
For ``0 < power < 1``, no distribution exists.
alpha : float, default=1
Constant that multiplies the L2 penalty term and determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
Values of `alpha` must be in the range `[0.0, inf)`.
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (`X @ coef + intercept`).
link : {'auto', 'identity', 'log'}, default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen `power` parameter as follows:
- 'identity' for ``power <= 0``, e.g. for the Normal distribution
- 'log' for ``power > 0``, e.g. for Poisson, Gamma and Inverse Gaussian
distributions
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
'newton-cholesky'
Uses Newton-Raphson steps (in arbitrary precision arithmetic equivalent to
iterated reweighted least squares) with an inner Cholesky based solver.
This solver is a good choice for `n_samples` >> `n_features`, especially
with one-hot encoded categorical features with rare categories. Be aware
that the memory usage of this solver has a quadratic dependency on
`n_features` because it explicitly computes the Hessian matrix.
.. versionadded:: 1.2
max_iter : int, default=100
The maximal number of iterations for the solver.
Values must be in the range `[1, inf)`.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
Values must be in the range `(0.0, inf)`.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Values must be in the range `[0, inf)`.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
PoissonRegressor : Generalized Linear Model with a Poisson distribution.
GammaRegressor : Generalized Linear Model with a Gamma distribution.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.TweedieRegressor()
>>> X = [[1, 2], [2, 3], [3, 4], [4, 3]]
>>> y = [2, 3.5, 5, 5.5]
>>> clf.fit(X, y)
TweedieRegressor()
>>> clf.score(X, y)
0.839...
>>> clf.coef_
array([0.599..., 0.299...])
>>> clf.intercept_
1.600...
>>> clf.predict([[1, 1], [3, 4]])
array([2.500..., 4.599...])
"""
_parameter_constraints: dict = {
**_GeneralizedLinearRegressor._parameter_constraints,
"power": [Interval(Real, None, None, closed="neither")],
"link": [StrOptions({"auto", "identity", "log"})],
}
def __init__(
self,
*,
power=0.0,
alpha=1.0,
fit_intercept=True,
link="auto",
solver="lbfgs",
max_iter=100,
tol=1e-4,
warm_start=False,
verbose=0,
):
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
self.link = link
self.power = power
def _get_loss(self):
if self.link == "auto":
if self.power <= 0:
# identity link
return HalfTweedieLossIdentity(power=self.power)
else:
# log link
return HalfTweedieLoss(power=self.power)
if self.link == "log":
return HalfTweedieLoss(power=self.power)
if self.link == "identity":
return HalfTweedieLossIdentity(power=self.power)
|