File: test_glm.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1112 lines) | stat: -rw-r--r-- 40,696 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
#
# License: BSD 3 clause

import itertools
import warnings
from functools import partial

import numpy as np
import pytest
import scipy
from numpy.testing import assert_allclose
from scipy import linalg
from scipy.optimize import minimize, root

from sklearn._loss import HalfBinomialLoss, HalfPoissonLoss, HalfTweedieLoss
from sklearn._loss.link import IdentityLink, LogLink
from sklearn.base import clone
from sklearn.datasets import make_low_rank_matrix, make_regression
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import (
    GammaRegressor,
    PoissonRegressor,
    Ridge,
    TweedieRegressor,
)
from sklearn.linear_model._glm import _GeneralizedLinearRegressor
from sklearn.linear_model._glm._newton_solver import NewtonCholeskySolver
from sklearn.linear_model._linear_loss import LinearModelLoss
from sklearn.metrics import d2_tweedie_score, mean_poisson_deviance
from sklearn.model_selection import train_test_split

SOLVERS = ["lbfgs", "newton-cholesky"]


class BinomialRegressor(_GeneralizedLinearRegressor):
    def _get_loss(self):
        return HalfBinomialLoss()


def _special_minimize(fun, grad, x, tol_NM, tol):
    # Find good starting point by Nelder-Mead
    res_NM = minimize(
        fun, x, method="Nelder-Mead", options={"xatol": tol_NM, "fatol": tol_NM}
    )
    # Now refine via root finding on the gradient of the function, which is
    # more precise than minimizing the function itself.
    res = root(
        grad,
        res_NM.x,
        method="lm",
        options={"ftol": tol, "xtol": tol, "gtol": tol},
    )
    return res.x


@pytest.fixture(scope="module")
def regression_data():
    X, y = make_regression(
        n_samples=107, n_features=10, n_informative=80, noise=0.5, random_state=2
    )
    return X, y


@pytest.fixture(
    params=itertools.product(
        ["long", "wide"],
        [
            BinomialRegressor(),
            PoissonRegressor(),
            GammaRegressor(),
            # TweedieRegressor(power=3.0),  # too difficult
            # TweedieRegressor(power=0, link="log"),  # too difficult
            TweedieRegressor(power=1.5),
        ],
    ),
    ids=lambda param: f"{param[0]}-{param[1]}",
)
def glm_dataset(global_random_seed, request):
    """Dataset with GLM solutions, well conditioned X.

    This is inspired by ols_ridge_dataset in test_ridge.py.

    The construction is based on the SVD decomposition of X = U S V'.

    Parameters
    ----------
    type : {"long", "wide"}
        If "long", then n_samples > n_features.
        If "wide", then n_features > n_samples.
    model : a GLM model

    For "wide", we return the minimum norm solution:

        min ||w||_2 subject to w = argmin deviance(X, y, w)

    Note that the deviance is always minimized if y = inverse_link(X w) is possible to
    achieve, which it is in the wide data case. Therefore, we can construct the
    solution with minimum norm like (wide) OLS:

        min ||w||_2 subject to link(y) = raw_prediction = X w

    Returns
    -------
    model : GLM model
    X : ndarray
        Last column of 1, i.e. intercept.
    y : ndarray
    coef_unpenalized : ndarray
        Minimum norm solutions, i.e. min sum(loss(w)) (with minimum ||w||_2 in
        case of ambiguity)
        Last coefficient is intercept.
    coef_penalized : ndarray
        GLM solution with alpha=l2_reg_strength=1, i.e.
        min 1/n * sum(loss) + ||w[:-1]||_2^2.
        Last coefficient is intercept.
    l2_reg_strength : float
        Always equal 1.
    """
    data_type, model = request.param
    # Make larger dim more than double as big as the smaller one.
    # This helps when constructing singular matrices like (X, X).
    if data_type == "long":
        n_samples, n_features = 12, 4
    else:
        n_samples, n_features = 4, 12
    k = min(n_samples, n_features)
    rng = np.random.RandomState(global_random_seed)
    X = make_low_rank_matrix(
        n_samples=n_samples,
        n_features=n_features,
        effective_rank=k,
        tail_strength=0.1,
        random_state=rng,
    )
    X[:, -1] = 1  # last columns acts as intercept
    U, s, Vt = linalg.svd(X, full_matrices=False)
    assert np.all(s > 1e-3)  # to be sure
    assert np.max(s) / np.min(s) < 100  # condition number of X

    if data_type == "long":
        coef_unpenalized = rng.uniform(low=1, high=3, size=n_features)
        coef_unpenalized *= rng.choice([-1, 1], size=n_features)
        raw_prediction = X @ coef_unpenalized
    else:
        raw_prediction = rng.uniform(low=-3, high=3, size=n_samples)
        # minimum norm solution min ||w||_2 such that raw_prediction = X w:
        # w = X'(XX')^-1 raw_prediction = V s^-1 U' raw_prediction
        coef_unpenalized = Vt.T @ np.diag(1 / s) @ U.T @ raw_prediction

    linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=True)
    sw = np.full(shape=n_samples, fill_value=1 / n_samples)
    y = linear_loss.base_loss.link.inverse(raw_prediction)

    # Add penalty l2_reg_strength * ||coef||_2^2 for l2_reg_strength=1 and solve with
    # optimizer. Note that the problem is well conditioned such that we get accurate
    # results.
    l2_reg_strength = 1
    fun = partial(
        linear_loss.loss,
        X=X[:, :-1],
        y=y,
        sample_weight=sw,
        l2_reg_strength=l2_reg_strength,
    )
    grad = partial(
        linear_loss.gradient,
        X=X[:, :-1],
        y=y,
        sample_weight=sw,
        l2_reg_strength=l2_reg_strength,
    )
    coef_penalized_with_intercept = _special_minimize(
        fun, grad, coef_unpenalized, tol_NM=1e-6, tol=1e-14
    )

    linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=False)
    fun = partial(
        linear_loss.loss,
        X=X[:, :-1],
        y=y,
        sample_weight=sw,
        l2_reg_strength=l2_reg_strength,
    )
    grad = partial(
        linear_loss.gradient,
        X=X[:, :-1],
        y=y,
        sample_weight=sw,
        l2_reg_strength=l2_reg_strength,
    )
    coef_penalized_without_intercept = _special_minimize(
        fun, grad, coef_unpenalized[:-1], tol_NM=1e-6, tol=1e-14
    )

    # To be sure
    assert np.linalg.norm(coef_penalized_with_intercept) < np.linalg.norm(
        coef_unpenalized
    )

    return (
        model,
        X,
        y,
        coef_unpenalized,
        coef_penalized_with_intercept,
        coef_penalized_without_intercept,
        l2_reg_strength,
    )


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_glm_regression(solver, fit_intercept, glm_dataset):
    """Test that GLM converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    """
    model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    X = X[:, :-1]  # remove intercept
    if fit_intercept:
        coef = coef_with_intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        coef = coef_without_intercept
        intercept = 0

    model.fit(X, y)

    rtol = 5e-5 if solver == "lbfgs" else 1e-9
    assert model.intercept_ == pytest.approx(intercept, rel=rtol)
    assert_allclose(model.coef_, coef, rtol=rtol)

    # Same with sample_weight.
    model = (
        clone(model).set_params(**params).fit(X, y, sample_weight=np.ones(X.shape[0]))
    )
    assert model.intercept_ == pytest.approx(intercept, rel=rtol)
    assert_allclose(model.coef_, coef, rtol=rtol)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_hstacked_X(solver, fit_intercept, glm_dataset):
    """Test that GLM converges for all solvers to correct solution on hstacked data.

    We work with a simple constructed data set with known solution.
    Fit on [X] with alpha is the same as fit on [X, X]/2 with alpha/2.
    For long X, [X, X] is still a long but singular matrix.
    """
    model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
    n_samples, n_features = X.shape
    params = dict(
        alpha=alpha / 2,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    X = X[:, :-1]  # remove intercept
    X = 0.5 * np.concatenate((X, X), axis=1)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features - 1)
    if fit_intercept:
        coef = coef_with_intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        coef = coef_without_intercept
        intercept = 0

    with warnings.catch_warnings():
        # XXX: Investigate if the ConvergenceWarning that can appear in some
        # cases should be considered a bug or not. In the mean time we don't
        # fail when the assertions below pass irrespective of the presence of
        # the warning.
        warnings.simplefilter("ignore", ConvergenceWarning)
        model.fit(X, y)

    rtol = 2e-4 if solver == "lbfgs" else 5e-9
    assert model.intercept_ == pytest.approx(intercept, rel=rtol)
    assert_allclose(model.coef_, np.r_[coef, coef], rtol=rtol)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset):
    """Test that GLM converges for all solvers to correct solution on vstacked data.

    We work with a simple constructed data set with known solution.
    Fit on [X] with alpha is the same as fit on [X], [y]
                                                [X], [y] with 1 * alpha.
    It is the same alpha as the average loss stays the same.
    For wide X, [X', X'] is a singular matrix.
    """
    model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
    n_samples, n_features = X.shape
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    X = X[:, :-1]  # remove intercept
    X = np.concatenate((X, X), axis=0)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
    y = np.r_[y, y]
    if fit_intercept:
        coef = coef_with_intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        coef = coef_without_intercept
        intercept = 0
    model.fit(X, y)

    rtol = 3e-5 if solver == "lbfgs" else 5e-9
    assert model.intercept_ == pytest.approx(intercept, rel=rtol)
    assert_allclose(model.coef_, coef, rtol=rtol)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized(solver, fit_intercept, glm_dataset):
    """Test that unpenalized GLM converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    Note: This checks the minimum norm solution for wide X, i.e.
    n_samples < n_features:
        min ||w||_2 subject to w = argmin deviance(X, y, w)
    """
    model, X, y, coef, _, _, _ = glm_dataset
    n_samples, n_features = X.shape
    alpha = 0  # unpenalized
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    if fit_intercept:
        X = X[:, :-1]  # remove intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        intercept = 0

    with warnings.catch_warnings():
        if solver.startswith("newton") and n_samples < n_features:
            # The newton solvers should warn and automatically fallback to LBFGS
            # in this case. The model should still converge.
            warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
        # XXX: Investigate if the ConvergenceWarning that can appear in some
        # cases should be considered a bug or not. In the mean time we don't
        # fail when the assertions below pass irrespective of the presence of
        # the warning.
        warnings.filterwarnings("ignore", category=ConvergenceWarning)
        model.fit(X, y)

    # FIXME: `assert_allclose(model.coef_, coef)` should work for all cases but fails
    # for the wide/fat case with n_features > n_samples. Most current GLM solvers do
    # NOT return the minimum norm solution with fit_intercept=True.
    if n_samples > n_features:
        rtol = 5e-5 if solver == "lbfgs" else 1e-7
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef, rtol=rtol)
    else:
        # As it is an underdetermined problem, prediction = y. The following shows that
        # we get a solution, i.e. a (non-unique) minimum of the objective function ...
        rtol = 5e-5
        if solver == "newton-cholesky":
            rtol = 5e-4
        assert_allclose(model.predict(X), y, rtol=rtol)

        norm_solution = np.linalg.norm(np.r_[intercept, coef])
        norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
        if solver == "newton-cholesky":
            # XXX: This solver shows random behaviour. Sometimes it finds solutions
            # with norm_model <= norm_solution! So we check conditionally.
            if norm_model < (1 + 1e-12) * norm_solution:
                assert model.intercept_ == pytest.approx(intercept)
                assert_allclose(model.coef_, coef, rtol=rtol)
        elif solver == "lbfgs" and fit_intercept:
            # But it is not the minimum norm solution. Otherwise the norms would be
            # equal.
            assert norm_model > (1 + 1e-12) * norm_solution

            # See https://github.com/scikit-learn/scikit-learn/issues/23670.
            # Note: Even adding a tiny penalty does not give the minimal norm solution.
            # XXX: We could have naively expected LBFGS to find the minimal norm
            # solution by adding a very small penalty. Even that fails for a reason we
            # do not properly understand at this point.
        else:
            # When `fit_intercept=False`, LBFGS naturally converges to the minimum norm
            # solution on this problem.
            # XXX: Do we have any theoretical guarantees why this should be the case?
            assert model.intercept_ == pytest.approx(intercept, rel=rtol)
            assert_allclose(model.coef_, coef, rtol=rtol)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized_hstacked_X(solver, fit_intercept, glm_dataset):
    """Test that unpenalized GLM converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    GLM fit on [X] is the same as fit on [X, X]/2.
    For long X, [X, X] is a singular matrix and we check against the minimum norm
    solution:
        min ||w||_2 subject to w = argmin deviance(X, y, w)
    """
    model, X, y, coef, _, _, _ = glm_dataset
    n_samples, n_features = X.shape
    alpha = 0  # unpenalized
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    if fit_intercept:
        intercept = coef[-1]
        coef = coef[:-1]
        if n_samples > n_features:
            X = X[:, :-1]  # remove intercept
            X = 0.5 * np.concatenate((X, X), axis=1)
        else:
            # To know the minimum norm solution, we keep one intercept column and do
            # not divide by 2. Later on, we must take special care.
            X = np.c_[X[:, :-1], X[:, :-1], X[:, -1]]
    else:
        intercept = 0
        X = 0.5 * np.concatenate((X, X), axis=1)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)

    with warnings.catch_warnings():
        if solver.startswith("newton"):
            # The newton solvers should warn and automatically fallback to LBFGS
            # in this case. The model should still converge.
            warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
        # XXX: Investigate if the ConvergenceWarning that can appear in some
        # cases should be considered a bug or not. In the mean time we don't
        # fail when the assertions below pass irrespective of the presence of
        # the warning.
        warnings.filterwarnings("ignore", category=ConvergenceWarning)
        model.fit(X, y)

    if fit_intercept and n_samples < n_features:
        # Here we take special care.
        model_intercept = 2 * model.intercept_
        model_coef = 2 * model.coef_[:-1]  # exclude the other intercept term.
        # For minimum norm solution, we would have
        # assert model.intercept_ == pytest.approx(model.coef_[-1])
    else:
        model_intercept = model.intercept_
        model_coef = model.coef_

    if n_samples > n_features:
        assert model_intercept == pytest.approx(intercept)
        rtol = 1e-4
        assert_allclose(model_coef, np.r_[coef, coef], rtol=rtol)
    else:
        # As it is an underdetermined problem, prediction = y. The following shows that
        # we get a solution, i.e. a (non-unique) minimum of the objective function ...
        rtol = 1e-6 if solver == "lbfgs" else 5e-6
        assert_allclose(model.predict(X), y, rtol=rtol)
        if (solver == "lbfgs" and fit_intercept) or solver == "newton-cholesky":
            # Same as in test_glm_regression_unpenalized.
            # But it is not the minimum norm solution. Otherwise the norms would be
            # equal.
            norm_solution = np.linalg.norm(
                0.5 * np.r_[intercept, intercept, coef, coef]
            )
            norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
            assert norm_model > (1 + 1e-12) * norm_solution
            # For minimum norm solution, we would have
            # assert model.intercept_ == pytest.approx(model.coef_[-1])
        else:
            assert model_intercept == pytest.approx(intercept, rel=5e-6)
            assert_allclose(model_coef, np.r_[coef, coef], rtol=1e-4)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized_vstacked_X(solver, fit_intercept, glm_dataset):
    """Test that unpenalized GLM converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    GLM fit on [X] is the same as fit on [X], [y]
                                         [X], [y].
    For wide X, [X', X'] is a singular matrix and we check against the minimum norm
    solution:
        min ||w||_2 subject to w = argmin deviance(X, y, w)
    """
    model, X, y, coef, _, _, _ = glm_dataset
    n_samples, n_features = X.shape
    alpha = 0  # unpenalized
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-12,
        max_iter=1000,
    )

    model = clone(model).set_params(**params)
    if fit_intercept:
        X = X[:, :-1]  # remove intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        intercept = 0
    X = np.concatenate((X, X), axis=0)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
    y = np.r_[y, y]

    with warnings.catch_warnings():
        if solver.startswith("newton") and n_samples < n_features:
            # The newton solvers should warn and automatically fallback to LBFGS
            # in this case. The model should still converge.
            warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
        # XXX: Investigate if the ConvergenceWarning that can appear in some
        # cases should be considered a bug or not. In the mean time we don't
        # fail when the assertions below pass irrespective of the presence of
        # the warning.
        warnings.filterwarnings("ignore", category=ConvergenceWarning)
        model.fit(X, y)

    if n_samples > n_features:
        rtol = 5e-5 if solver == "lbfgs" else 1e-6
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef, rtol=rtol)
    else:
        # As it is an underdetermined problem, prediction = y. The following shows that
        # we get a solution, i.e. a (non-unique) minimum of the objective function ...
        rtol = 1e-6 if solver == "lbfgs" else 5e-6
        assert_allclose(model.predict(X), y, rtol=rtol)

        norm_solution = np.linalg.norm(np.r_[intercept, coef])
        norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
        if solver == "newton-cholesky":
            # XXX: This solver shows random behaviour. Sometimes it finds solutions
            # with norm_model <= norm_solution! So we check conditionally.
            if not (norm_model > (1 + 1e-12) * norm_solution):
                assert model.intercept_ == pytest.approx(intercept)
                assert_allclose(model.coef_, coef, rtol=1e-4)
        elif solver == "lbfgs" and fit_intercept:
            # Same as in test_glm_regression_unpenalized.
            # But it is not the minimum norm solution. Otherwise the norms would be
            # equal.
            assert norm_model > (1 + 1e-12) * norm_solution
        else:
            rtol = 1e-5 if solver == "newton-cholesky" else 1e-4
            assert model.intercept_ == pytest.approx(intercept, rel=rtol)
            assert_allclose(model.coef_, coef, rtol=rtol)


def test_sample_weights_validation():
    """Test the raised errors in the validation of sample_weight."""
    # scalar value but not positive
    X = [[1]]
    y = [1]
    weights = 0
    glm = _GeneralizedLinearRegressor()

    # Positive weights are accepted
    glm.fit(X, y, sample_weight=1)

    # 2d array
    weights = [[0]]
    with pytest.raises(ValueError, match="must be 1D array or scalar"):
        glm.fit(X, y, weights)

    # 1d but wrong length
    weights = [1, 0]
    msg = r"sample_weight.shape == \(2,\), expected \(1,\)!"
    with pytest.raises(ValueError, match=msg):
        glm.fit(X, y, weights)


@pytest.mark.parametrize(
    "glm",
    [
        TweedieRegressor(power=3),
        PoissonRegressor(),
        GammaRegressor(),
        TweedieRegressor(power=1.5),
    ],
)
def test_glm_wrong_y_range(glm):
    y = np.array([-1, 2])
    X = np.array([[1], [1]])
    msg = r"Some value\(s\) of y are out of the valid range of the loss"
    with pytest.raises(ValueError, match=msg):
        glm.fit(X, y)


@pytest.mark.parametrize("fit_intercept", [False, True])
def test_glm_identity_regression(fit_intercept):
    """Test GLM regression with identity link on a simple dataset."""
    coef = [1.0, 2.0]
    X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
    y = np.dot(X, coef)
    glm = _GeneralizedLinearRegressor(
        alpha=0,
        fit_intercept=fit_intercept,
        tol=1e-12,
    )
    if fit_intercept:
        glm.fit(X[:, 1:], y)
        assert_allclose(glm.coef_, coef[1:], rtol=1e-10)
        assert_allclose(glm.intercept_, coef[0], rtol=1e-10)
    else:
        glm.fit(X, y)
        assert_allclose(glm.coef_, coef, rtol=1e-12)


@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("alpha", [0.0, 1.0])
@pytest.mark.parametrize(
    "GLMEstimator", [_GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor]
)
def test_glm_sample_weight_consistency(fit_intercept, alpha, GLMEstimator):
    """Test that the impact of sample_weight is consistent"""
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 5

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    glm_params = dict(alpha=alpha, fit_intercept=fit_intercept)

    glm = GLMEstimator(**glm_params).fit(X, y)
    coef = glm.coef_.copy()

    # sample_weight=np.ones(..) should be equivalent to sample_weight=None
    sample_weight = np.ones(y.shape)
    glm.fit(X, y, sample_weight=sample_weight)
    assert_allclose(glm.coef_, coef, rtol=1e-12)

    # sample_weight are normalized to 1 so, scaling them has no effect
    sample_weight = 2 * np.ones(y.shape)
    glm.fit(X, y, sample_weight=sample_weight)
    assert_allclose(glm.coef_, coef, rtol=1e-12)

    # setting one element of sample_weight to 0 is equivalent to removing
    # the corresponding sample
    sample_weight = np.ones(y.shape)
    sample_weight[-1] = 0
    glm.fit(X, y, sample_weight=sample_weight)
    coef1 = glm.coef_.copy()
    glm.fit(X[:-1], y[:-1])
    assert_allclose(glm.coef_, coef1, rtol=1e-12)

    # check that multiplying sample_weight by 2 is equivalent
    # to repeating corresponding samples twice
    X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
    y2 = np.concatenate([y, y[: n_samples // 2]])
    sample_weight_1 = np.ones(len(y))
    sample_weight_1[: n_samples // 2] = 2

    glm1 = GLMEstimator(**glm_params).fit(X, y, sample_weight=sample_weight_1)

    glm2 = GLMEstimator(**glm_params).fit(X2, y2, sample_weight=None)
    assert_allclose(glm1.coef_, glm2.coef_)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
    "estimator",
    [
        PoissonRegressor(),
        GammaRegressor(),
        TweedieRegressor(power=3.0),
        TweedieRegressor(power=0, link="log"),
        TweedieRegressor(power=1.5),
        TweedieRegressor(power=4.5),
    ],
)
def test_glm_log_regression(solver, fit_intercept, estimator):
    """Test GLM regression with log link on a simple dataset."""
    coef = [0.2, -0.1]
    X = np.array([[0, 1, 2, 3, 4], [1, 1, 1, 1, 1]]).T
    y = np.exp(np.dot(X, coef))
    glm = clone(estimator).set_params(
        alpha=0,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-8,
    )
    if fit_intercept:
        res = glm.fit(X[:, :-1], y)
        assert_allclose(res.coef_, coef[:-1], rtol=1e-6)
        assert_allclose(res.intercept_, coef[-1], rtol=1e-6)
    else:
        res = glm.fit(X, y)
        assert_allclose(res.coef_, coef, rtol=2e-6)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_warm_start(solver, fit_intercept, global_random_seed):
    n_samples, n_features = 100, 10
    X, y = make_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_features - 2,
        bias=fit_intercept * 1.0,
        noise=1.0,
        random_state=global_random_seed,
    )
    y = np.abs(y)  # Poisson requires non-negative targets.
    alpha = 1
    params = {
        "solver": solver,
        "fit_intercept": fit_intercept,
        "tol": 1e-10,
    }

    glm1 = PoissonRegressor(warm_start=False, max_iter=1000, alpha=alpha, **params)
    glm1.fit(X, y)

    glm2 = PoissonRegressor(warm_start=True, max_iter=1, alpha=alpha, **params)
    # As we intentionally set max_iter=1 such that the solver should raise a
    # ConvergenceWarning.
    with pytest.warns(ConvergenceWarning):
        glm2.fit(X, y)

    linear_loss = LinearModelLoss(
        base_loss=glm1._get_loss(),
        fit_intercept=fit_intercept,
    )
    sw = np.full_like(y, fill_value=1 / n_samples)

    objective_glm1 = linear_loss.loss(
        coef=np.r_[glm1.coef_, glm1.intercept_] if fit_intercept else glm1.coef_,
        X=X,
        y=y,
        sample_weight=sw,
        l2_reg_strength=alpha,
    )
    objective_glm2 = linear_loss.loss(
        coef=np.r_[glm2.coef_, glm2.intercept_] if fit_intercept else glm2.coef_,
        X=X,
        y=y,
        sample_weight=sw,
        l2_reg_strength=alpha,
    )
    assert objective_glm1 < objective_glm2

    glm2.set_params(max_iter=1000)
    glm2.fit(X, y)
    # The two models are not exactly identical since the lbfgs solver
    # computes the approximate hessian from previous iterations, which
    # will not be strictly identical in the case of a warm start.
    rtol = 2e-4 if solver == "lbfgs" else 1e-9
    assert_allclose(glm1.coef_, glm2.coef_, rtol=rtol)
    assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-5)


@pytest.mark.parametrize("n_samples, n_features", [(100, 10), (10, 100)])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("sample_weight", [None, True])
def test_normal_ridge_comparison(
    n_samples, n_features, fit_intercept, sample_weight, request
):
    """Compare with Ridge regression for Normal distributions."""
    test_size = 10
    X, y = make_regression(
        n_samples=n_samples + test_size,
        n_features=n_features,
        n_informative=n_features - 2,
        noise=0.5,
        random_state=42,
    )

    if n_samples > n_features:
        ridge_params = {"solver": "svd"}
    else:
        ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7}

    (
        X_train,
        X_test,
        y_train,
        y_test,
    ) = train_test_split(X, y, test_size=test_size, random_state=0)

    alpha = 1.0
    if sample_weight is None:
        sw_train = None
        alpha_ridge = alpha * n_samples
    else:
        sw_train = np.random.RandomState(0).rand(len(y_train))
        alpha_ridge = alpha * sw_train.sum()

    # GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2
    ridge = Ridge(
        alpha=alpha_ridge,
        random_state=42,
        fit_intercept=fit_intercept,
        **ridge_params,
    )
    ridge.fit(X_train, y_train, sample_weight=sw_train)

    glm = _GeneralizedLinearRegressor(
        alpha=alpha,
        fit_intercept=fit_intercept,
        max_iter=300,
        tol=1e-5,
    )
    glm.fit(X_train, y_train, sample_weight=sw_train)
    assert glm.coef_.shape == (X.shape[1],)
    assert_allclose(glm.coef_, ridge.coef_, atol=5e-5)
    assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5)
    assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4)
    assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4)


@pytest.mark.parametrize("solver", ["lbfgs", "newton-cholesky"])
def test_poisson_glmnet(solver):
    """Compare Poisson regression with L2 regularization and LogLink to glmnet"""
    # library("glmnet")
    # options(digits=10)
    # df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2))
    # x <- data.matrix(df[,c("a", "b")])
    # y <- df$y
    # fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson",
    #               standardize=F, thresh=1e-10, nlambda=10000)
    # coef(fit, s=1)
    # (Intercept) -0.12889386979
    # a            0.29019207995
    # b            0.03741173122
    X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
    y = np.array([0, 1, 1, 2])
    glm = PoissonRegressor(
        alpha=1,
        fit_intercept=True,
        tol=1e-7,
        max_iter=300,
        solver=solver,
    )
    glm.fit(X, y)
    assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5)
    assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5)


def test_convergence_warning(regression_data):
    X, y = regression_data

    est = _GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
    with pytest.warns(ConvergenceWarning):
        est.fit(X, y)


@pytest.mark.parametrize(
    "name, link_class", [("identity", IdentityLink), ("log", LogLink)]
)
def test_tweedie_link_argument(name, link_class):
    """Test GLM link argument set as string."""
    y = np.array([0.1, 0.5])  # in range of all distributions
    X = np.array([[1], [2]])
    glm = TweedieRegressor(power=1, link=name).fit(X, y)
    assert isinstance(glm._base_loss.link, link_class)


@pytest.mark.parametrize(
    "power, expected_link_class",
    [
        (0, IdentityLink),  # normal
        (1, LogLink),  # poisson
        (2, LogLink),  # gamma
        (3, LogLink),  # inverse-gaussian
    ],
)
def test_tweedie_link_auto(power, expected_link_class):
    """Test that link='auto' delivers the expected link function"""
    y = np.array([0.1, 0.5])  # in range of all distributions
    X = np.array([[1], [2]])
    glm = TweedieRegressor(link="auto", power=power).fit(X, y)
    assert isinstance(glm._base_loss.link, expected_link_class)


@pytest.mark.parametrize("power", [0, 1, 1.5, 2, 3])
@pytest.mark.parametrize("link", ["log", "identity"])
def test_tweedie_score(regression_data, power, link):
    """Test that GLM score equals d2_tweedie_score for Tweedie losses."""
    X, y = regression_data
    # make y positive
    y = np.abs(y) + 1.0
    glm = TweedieRegressor(power=power, link=link).fit(X, y)
    assert glm.score(X, y) == pytest.approx(
        d2_tweedie_score(y, glm.predict(X), power=power)
    )


@pytest.mark.parametrize(
    "estimator, value",
    [
        (PoissonRegressor(), True),
        (GammaRegressor(), True),
        (TweedieRegressor(power=1.5), True),
        (TweedieRegressor(power=0), False),
    ],
)
def test_tags(estimator, value):
    assert estimator._get_tags()["requires_positive_y"] is value


def test_linalg_warning_with_newton_solver(global_random_seed):
    newton_solver = "newton-cholesky"
    rng = np.random.RandomState(global_random_seed)
    # Use at least 20 samples to reduce the likelihood of getting a degenerate
    # dataset for any global_random_seed.
    X_orig = rng.normal(size=(20, 3))
    y = rng.poisson(
        np.exp(X_orig @ np.ones(X_orig.shape[1])), size=X_orig.shape[0]
    ).astype(np.float64)

    # Collinear variation of the same input features.
    X_collinear = np.hstack([X_orig] * 10)

    # Let's consider the deviance of a constant baseline on this problem.
    baseline_pred = np.full_like(y, y.mean())
    constant_model_deviance = mean_poisson_deviance(y, baseline_pred)
    assert constant_model_deviance > 1.0

    # No warning raised on well-conditioned design, even without regularization.
    tol = 1e-10
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(X_orig, y)
    original_newton_deviance = mean_poisson_deviance(y, reg.predict(X_orig))

    # On this dataset, we should have enough data points to not make it
    # possible to get a near zero deviance (for the any of the admissible
    # random seeds). This will make it easier to interpret meaning of rtol in
    # the subsequent assertions:
    assert original_newton_deviance > 0.2

    # We check that the model could successfully fit information in X_orig to
    # improve upon the constant baseline by a large margin (when evaluated on
    # the traing set).
    assert constant_model_deviance - original_newton_deviance > 0.1

    # LBFGS is robust to a collinear design because its approximation of the
    # Hessian is Symmeric Positive Definite by construction. Let's record its
    # solution
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        reg = PoissonRegressor(solver="lbfgs", alpha=0.0, tol=tol).fit(X_collinear, y)
    collinear_lbfgs_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))

    # The LBFGS solution on the collinear is expected to reach a comparable
    # solution to the Newton solution on the original data.
    rtol = 1e-6
    assert collinear_lbfgs_deviance == pytest.approx(original_newton_deviance, rel=rtol)

    # Fitting a Newton solver on the collinear version of the training data
    # without regularization should raise an informative warning and fallback
    # to the LBFGS solver.
    msg = (
        "The inner solver of .*Newton.*Solver stumbled upon a singular or very "
        "ill-conditioned Hessian matrix"
    )
    with pytest.warns(scipy.linalg.LinAlgWarning, match=msg):
        reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(
            X_collinear, y
        )
    # As a result we should still automatically converge to a good solution.
    collinear_newton_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))
    assert collinear_newton_deviance == pytest.approx(
        original_newton_deviance, rel=rtol
    )

    # Increasing the regularization slightly should make the problem go away:
    with warnings.catch_warnings():
        warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
        reg = PoissonRegressor(solver=newton_solver, alpha=1e-10).fit(X_collinear, y)

    # The slightly penalized model on the collinear data should be close enough
    # to the unpenalized model on the original data.
    penalized_collinear_newton_deviance = mean_poisson_deviance(
        y, reg.predict(X_collinear)
    )
    assert penalized_collinear_newton_deviance == pytest.approx(
        original_newton_deviance, rel=rtol
    )


@pytest.mark.parametrize("verbose", [0, 1, 2])
def test_newton_solver_verbosity(capsys, verbose):
    """Test the std output of verbose newton solvers."""
    y = np.array([1, 2], dtype=float)
    X = np.array([[1.0, 0], [0, 1]], dtype=float)
    linear_loss = LinearModelLoss(base_loss=HalfPoissonLoss(), fit_intercept=False)
    sol = NewtonCholeskySolver(
        coef=linear_loss.init_zero_coef(X),
        linear_loss=linear_loss,
        l2_reg_strength=0,
        verbose=verbose,
    )
    sol.solve(X, y, None)  # returns array([0., 0.69314758])
    captured = capsys.readouterr()

    if verbose == 0:
        assert captured.out == ""
    else:
        msg = [
            "Newton iter=1",
            "Check Convergence",
            "1. max |gradient|",
            "2. Newton decrement",
            "Solver did converge at loss = ",
        ]
        for m in msg:
            assert m in captured.out

    if verbose >= 2:
        msg = ["Backtracking Line Search", "line search iteration="]
        for m in msg:
            assert m in captured.out

    # Set the Newton solver to a state with a completely wrong Newton step.
    sol = NewtonCholeskySolver(
        coef=linear_loss.init_zero_coef(X),
        linear_loss=linear_loss,
        l2_reg_strength=0,
        verbose=verbose,
    )
    sol.setup(X=X, y=y, sample_weight=None)
    sol.iteration = 1
    sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
    sol.coef_newton = np.array([1.0, 0])
    sol.gradient_times_newton = sol.gradient @ sol.coef_newton
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", ConvergenceWarning)
        sol.line_search(X=X, y=y, sample_weight=None)
        captured = capsys.readouterr()
    if verbose >= 1:
        assert (
            "Line search did not converge and resorts to lbfgs instead." in captured.out
        )

    # Set the Newton solver to a state with bad Newton step such that the loss
    # improvement in line search is tiny.
    sol = NewtonCholeskySolver(
        coef=np.array([1e-12, 0.69314758]),
        linear_loss=linear_loss,
        l2_reg_strength=0,
        verbose=verbose,
    )
    sol.setup(X=X, y=y, sample_weight=None)
    sol.iteration = 1
    sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
    sol.coef_newton = np.array([1e-6, 0])
    sol.gradient_times_newton = sol.gradient @ sol.coef_newton
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", ConvergenceWarning)
        sol.line_search(X=X, y=y, sample_weight=None)
        captured = capsys.readouterr()
    if verbose >= 2:
        msg = [
            "line search iteration=",
            "check loss improvement <= armijo term:",
            "check loss |improvement| <= eps * |loss_old|:",
            "check sum(|gradient|) < sum(|gradient_old|):",
        ]
        for m in msg:
            assert m in captured.out

    # Test for a case with negative hessian. We badly initialize coef for a Tweedie
    # loss with non-canonical link, e.g. Inverse Gaussian deviance with a log link.
    linear_loss = LinearModelLoss(
        base_loss=HalfTweedieLoss(power=3), fit_intercept=False
    )
    sol = NewtonCholeskySolver(
        coef=linear_loss.init_zero_coef(X) + 1,
        linear_loss=linear_loss,
        l2_reg_strength=0,
        verbose=verbose,
    )
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", ConvergenceWarning)
        sol.solve(X, y, None)
    captured = capsys.readouterr()
    if verbose >= 1:
        assert (
            "The inner solver detected a pointwise Hessian with many negative values"
            " and resorts to lbfgs instead."
            in captured.out
        )