1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
|
"""
Least Angle Regression algorithm. See the documentation on the
Generalized Linear Model for a complete discussion.
"""
# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux
#
# License: BSD 3 clause
import sys
import warnings
from math import log
from numbers import Integral, Real
import numpy as np
from scipy import interpolate, linalg
from scipy.linalg.lapack import get_lapack_funcs
from ..base import MultiOutputMixin, RegressorMixin, _fit_context
from ..exceptions import ConvergenceWarning
from ..model_selection import check_cv
# mypy error: Module 'sklearn.utils' has no attribute 'arrayfuncs'
from ..utils import ( # type: ignore
Bunch,
arrayfuncs,
as_float_array,
check_random_state,
)
from ..utils._metadata_requests import (
MetadataRouter,
MethodMapping,
_raise_for_params,
_routing_enabled,
process_routing,
)
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
from ..utils.parallel import Parallel, delayed
from ._base import LinearModel, LinearRegression, _preprocess_data
SOLVE_TRIANGULAR_ARGS = {"check_finite": False}
@validate_params(
{
"X": [np.ndarray, None],
"y": [np.ndarray, None],
"Xy": [np.ndarray, None],
"Gram": [StrOptions({"auto"}), "boolean", np.ndarray, None],
"max_iter": [Interval(Integral, 0, None, closed="left")],
"alpha_min": [Interval(Real, 0, None, closed="left")],
"method": [StrOptions({"lar", "lasso"})],
"copy_X": ["boolean"],
"eps": [Interval(Real, 0, None, closed="neither"), None],
"copy_Gram": ["boolean"],
"verbose": ["verbose"],
"return_path": ["boolean"],
"return_n_iter": ["boolean"],
"positive": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def lars_path(
X,
y,
Xy=None,
*,
Gram=None,
max_iter=500,
alpha_min=0,
method="lar",
copy_X=True,
eps=np.finfo(float).eps,
copy_Gram=True,
verbose=0,
return_path=True,
return_n_iter=False,
positive=False,
):
"""Compute Least Angle Regression or Lasso path using the LARS algorithm [1].
The optimization objective for the case method='lasso' is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method='lar', the objective function is only known in
the form of an implicit equation (see discussion in [1]).
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
X : None or ndarray of shape (n_samples, n_features)
Input data. Note that if X is `None` then the Gram matrix must be
specified, i.e., cannot be `None` or `False`.
y : None or ndarray of shape (n_samples,)
Input targets.
Xy : array-like of shape (n_features,) or (n_features, n_targets), \
default=None
`Xy = X.T @ y` that can be precomputed. It is useful
only when the Gram matrix is precomputed.
Gram : None, 'auto', bool, ndarray of shape (n_features, n_features), \
default=None
Precomputed Gram matrix `X.T @ X`, if `'auto'`, the Gram
matrix is precomputed from the given X, if there are more samples
than features.
max_iter : int, default=500
Maximum number of iterations to perform, set to infinity for no limit.
alpha_min : float, default=0
Minimum correlation along the path. It corresponds to the
regularization parameter `alpha` in the Lasso.
method : {'lar', 'lasso'}, default='lar'
Specifies the returned model. Select `'lar'` for Least Angle
Regression, `'lasso'` for the Lasso.
copy_X : bool, default=True
If `False`, `X` is overwritten.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the `tol` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_Gram : bool, default=True
If `False`, `Gram` is overwritten.
verbose : int, default=0
Controls output verbosity.
return_path : bool, default=True
If `True`, returns the entire path, else returns only the
last point of the path.
return_n_iter : bool, default=False
Whether to return the number of iterations.
positive : bool, default=False
Restrict coefficients to be >= 0.
This option is only allowed with method 'lasso'. Note that the model
coefficients will not converge to the ordinary-least-squares solution
for small values of alpha. Only coefficients up to the smallest alpha
value (`alphas_[alphas_ > 0.].min()` when fit_path=True) reached by
the stepwise Lars-Lasso algorithm are typically in congruence with the
solution of the coordinate descent `lasso_path` function.
Returns
-------
alphas : ndarray of shape (n_alphas + 1,)
Maximum of covariances (in absolute value) at each iteration.
`n_alphas` is either `max_iter`, `n_features`, or the
number of nodes in the path with `alpha >= alpha_min`, whichever
is smaller.
active : ndarray of shape (n_alphas,)
Indices of active variables at the end of the path.
coefs : ndarray of shape (n_features, n_alphas + 1)
Coefficients along the path.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is set
to True.
See Also
--------
lars_path_gram : Compute LARS path in the sufficient stats mode.
lasso_path : Compute Lasso path with coordinate descent.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
Lars : Least Angle Regression model a.k.a. LAR.
LassoLarsCV : Cross-validated Lasso, using the LARS algorithm.
LarsCV : Cross-validated Least Angle Regression model.
sklearn.decomposition.sparse_encode : Sparse coding.
References
----------
.. [1] "Least Angle Regression", Efron et al.
http://statweb.stanford.edu/~tibs/ftp/lars.pdf
.. [2] `Wikipedia entry on the Least-angle regression
<https://en.wikipedia.org/wiki/Least-angle_regression>`_
.. [3] `Wikipedia entry on the Lasso
<https://en.wikipedia.org/wiki/Lasso_(statistics)>`_
"""
if X is None and Gram is not None:
raise ValueError(
"X cannot be None if Gram is not None"
"Use lars_path_gram to avoid passing X and y."
)
return _lars_path_solver(
X=X,
y=y,
Xy=Xy,
Gram=Gram,
n_samples=None,
max_iter=max_iter,
alpha_min=alpha_min,
method=method,
copy_X=copy_X,
eps=eps,
copy_Gram=copy_Gram,
verbose=verbose,
return_path=return_path,
return_n_iter=return_n_iter,
positive=positive,
)
@validate_params(
{
"Xy": [np.ndarray],
"Gram": [np.ndarray],
"n_samples": [Interval(Integral, 0, None, closed="left")],
"max_iter": [Interval(Integral, 0, None, closed="left")],
"alpha_min": [Interval(Real, 0, None, closed="left")],
"method": [StrOptions({"lar", "lasso"})],
"copy_X": ["boolean"],
"eps": [Interval(Real, 0, None, closed="neither"), None],
"copy_Gram": ["boolean"],
"verbose": ["verbose"],
"return_path": ["boolean"],
"return_n_iter": ["boolean"],
"positive": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def lars_path_gram(
Xy,
Gram,
*,
n_samples,
max_iter=500,
alpha_min=0,
method="lar",
copy_X=True,
eps=np.finfo(float).eps,
copy_Gram=True,
verbose=0,
return_path=True,
return_n_iter=False,
positive=False,
):
"""The lars_path in the sufficient stats mode [1].
The optimization objective for the case method='lasso' is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method='lars', the objective function is only known in
the form of an implicit equation (see discussion in [1])
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
Xy : ndarray of shape (n_features,) or (n_features, n_targets)
`Xy = X.T @ y`.
Gram : ndarray of shape (n_features, n_features)
`Gram = X.T @ X`.
n_samples : int
Equivalent size of sample.
max_iter : int, default=500
Maximum number of iterations to perform, set to infinity for no limit.
alpha_min : float, default=0
Minimum correlation along the path. It corresponds to the
regularization parameter alpha parameter in the Lasso.
method : {'lar', 'lasso'}, default='lar'
Specifies the returned model. Select `'lar'` for Least Angle
Regression, ``'lasso'`` for the Lasso.
copy_X : bool, default=True
If `False`, `X` is overwritten.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the `tol` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_Gram : bool, default=True
If `False`, `Gram` is overwritten.
verbose : int, default=0
Controls output verbosity.
return_path : bool, default=True
If `return_path==True` returns the entire path, else returns only the
last point of the path.
return_n_iter : bool, default=False
Whether to return the number of iterations.
positive : bool, default=False
Restrict coefficients to be >= 0.
This option is only allowed with method 'lasso'. Note that the model
coefficients will not converge to the ordinary-least-squares solution
for small values of alpha. Only coefficients up to the smallest alpha
value (`alphas_[alphas_ > 0.].min()` when `fit_path=True`) reached by
the stepwise Lars-Lasso algorithm are typically in congruence with the
solution of the coordinate descent lasso_path function.
Returns
-------
alphas : ndarray of shape (n_alphas + 1,)
Maximum of covariances (in absolute value) at each iteration.
`n_alphas` is either `max_iter`, `n_features` or the
number of nodes in the path with `alpha >= alpha_min`, whichever
is smaller.
active : ndarray of shape (n_alphas,)
Indices of active variables at the end of the path.
coefs : ndarray of shape (n_features, n_alphas + 1)
Coefficients along the path.
n_iter : int
Number of iterations run. Returned only if `return_n_iter` is set
to True.
See Also
--------
lars_path_gram : Compute LARS path.
lasso_path : Compute Lasso path with coordinate descent.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
Lars : Least Angle Regression model a.k.a. LAR.
LassoLarsCV : Cross-validated Lasso, using the LARS algorithm.
LarsCV : Cross-validated Least Angle Regression model.
sklearn.decomposition.sparse_encode : Sparse coding.
References
----------
.. [1] "Least Angle Regression", Efron et al.
http://statweb.stanford.edu/~tibs/ftp/lars.pdf
.. [2] `Wikipedia entry on the Least-angle regression
<https://en.wikipedia.org/wiki/Least-angle_regression>`_
.. [3] `Wikipedia entry on the Lasso
<https://en.wikipedia.org/wiki/Lasso_(statistics)>`_
"""
return _lars_path_solver(
X=None,
y=None,
Xy=Xy,
Gram=Gram,
n_samples=n_samples,
max_iter=max_iter,
alpha_min=alpha_min,
method=method,
copy_X=copy_X,
eps=eps,
copy_Gram=copy_Gram,
verbose=verbose,
return_path=return_path,
return_n_iter=return_n_iter,
positive=positive,
)
def _lars_path_solver(
X,
y,
Xy=None,
Gram=None,
n_samples=None,
max_iter=500,
alpha_min=0,
method="lar",
copy_X=True,
eps=np.finfo(float).eps,
copy_Gram=True,
verbose=0,
return_path=True,
return_n_iter=False,
positive=False,
):
"""Compute Least Angle Regression or Lasso path using LARS algorithm [1]
The optimization objective for the case method='lasso' is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method='lars', the objective function is only known in
the form of an implicit equation (see discussion in [1])
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
X : None or ndarray of shape (n_samples, n_features)
Input data. Note that if X is None then Gram must be specified,
i.e., cannot be None or False.
y : None or ndarray of shape (n_samples,)
Input targets.
Xy : array-like of shape (n_features,) or (n_features, n_targets), \
default=None
`Xy = np.dot(X.T, y)` that can be precomputed. It is useful
only when the Gram matrix is precomputed.
Gram : None, 'auto' or array-like of shape (n_features, n_features), \
default=None
Precomputed Gram matrix `(X' * X)`, if ``'auto'``, the Gram
matrix is precomputed from the given X, if there are more samples
than features.
n_samples : int or float, default=None
Equivalent size of sample. If `None`, it will be `n_samples`.
max_iter : int, default=500
Maximum number of iterations to perform, set to infinity for no limit.
alpha_min : float, default=0
Minimum correlation along the path. It corresponds to the
regularization parameter alpha parameter in the Lasso.
method : {'lar', 'lasso'}, default='lar'
Specifies the returned model. Select ``'lar'`` for Least Angle
Regression, ``'lasso'`` for the Lasso.
copy_X : bool, default=True
If ``False``, ``X`` is overwritten.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_Gram : bool, default=True
If ``False``, ``Gram`` is overwritten.
verbose : int, default=0
Controls output verbosity.
return_path : bool, default=True
If ``return_path==True`` returns the entire path, else returns only the
last point of the path.
return_n_iter : bool, default=False
Whether to return the number of iterations.
positive : bool, default=False
Restrict coefficients to be >= 0.
This option is only allowed with method 'lasso'. Note that the model
coefficients will not converge to the ordinary-least-squares solution
for small values of alpha. Only coefficients up to the smallest alpha
value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by
the stepwise Lars-Lasso algorithm are typically in congruence with the
solution of the coordinate descent lasso_path function.
Returns
-------
alphas : array-like of shape (n_alphas + 1,)
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter``, ``n_features`` or the
number of nodes in the path with ``alpha >= alpha_min``, whichever
is smaller.
active : array-like of shape (n_alphas,)
Indices of active variables at the end of the path.
coefs : array-like of shape (n_features, n_alphas + 1)
Coefficients along the path
n_iter : int
Number of iterations run. Returned only if return_n_iter is set
to True.
See Also
--------
lasso_path
LassoLars
Lars
LassoLarsCV
LarsCV
sklearn.decomposition.sparse_encode
References
----------
.. [1] "Least Angle Regression", Efron et al.
http://statweb.stanford.edu/~tibs/ftp/lars.pdf
.. [2] `Wikipedia entry on the Least-angle regression
<https://en.wikipedia.org/wiki/Least-angle_regression>`_
.. [3] `Wikipedia entry on the Lasso
<https://en.wikipedia.org/wiki/Lasso_(statistics)>`_
"""
if method == "lar" and positive:
raise ValueError("Positive constraint not supported for 'lar' coding method.")
n_samples = n_samples if n_samples is not None else y.size
if Xy is None:
Cov = np.dot(X.T, y)
else:
Cov = Xy.copy()
if Gram is None or Gram is False:
Gram = None
if X is None:
raise ValueError("X and Gram cannot both be unspecified.")
elif isinstance(Gram, str) and Gram == "auto" or Gram is True:
if Gram is True or X.shape[0] > X.shape[1]:
Gram = np.dot(X.T, X)
else:
Gram = None
elif copy_Gram:
Gram = Gram.copy()
if Gram is None:
n_features = X.shape[1]
else:
n_features = Cov.shape[0]
if Gram.shape != (n_features, n_features):
raise ValueError("The shapes of the inputs Gram and Xy do not match.")
if copy_X and X is not None and Gram is None:
# force copy. setting the array to be fortran-ordered
# speeds up the calculation of the (partial) Gram matrix
# and allows to easily swap columns
X = X.copy("F")
max_features = min(max_iter, n_features)
dtypes = set(a.dtype for a in (X, y, Xy, Gram) if a is not None)
if len(dtypes) == 1:
# use the precision level of input data if it is consistent
return_dtype = next(iter(dtypes))
else:
# fallback to double precision otherwise
return_dtype = np.float64
if return_path:
coefs = np.zeros((max_features + 1, n_features), dtype=return_dtype)
alphas = np.zeros(max_features + 1, dtype=return_dtype)
else:
coef, prev_coef = (
np.zeros(n_features, dtype=return_dtype),
np.zeros(n_features, dtype=return_dtype),
)
alpha, prev_alpha = (
np.array([0.0], dtype=return_dtype),
np.array([0.0], dtype=return_dtype),
)
# above better ideas?
n_iter, n_active = 0, 0
active, indices = list(), np.arange(n_features)
# holds the sign of covariance
sign_active = np.empty(max_features, dtype=np.int8)
drop = False
# will hold the cholesky factorization. Only lower part is
# referenced.
if Gram is None:
L = np.empty((max_features, max_features), dtype=X.dtype)
swap, nrm2 = linalg.get_blas_funcs(("swap", "nrm2"), (X,))
else:
L = np.empty((max_features, max_features), dtype=Gram.dtype)
swap, nrm2 = linalg.get_blas_funcs(("swap", "nrm2"), (Cov,))
(solve_cholesky,) = get_lapack_funcs(("potrs",), (L,))
if verbose:
if verbose > 1:
print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC")
else:
sys.stdout.write(".")
sys.stdout.flush()
tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning
cov_precision = np.finfo(Cov.dtype).precision
equality_tolerance = np.finfo(np.float32).eps
if Gram is not None:
Gram_copy = Gram.copy()
Cov_copy = Cov.copy()
while True:
if Cov.size:
if positive:
C_idx = np.argmax(Cov)
else:
C_idx = np.argmax(np.abs(Cov))
C_ = Cov[C_idx]
if positive:
C = C_
else:
C = np.fabs(C_)
else:
C = 0.0
if return_path:
alpha = alphas[n_iter, np.newaxis]
coef = coefs[n_iter]
prev_alpha = alphas[n_iter - 1, np.newaxis]
prev_coef = coefs[n_iter - 1]
alpha[0] = C / n_samples
if alpha[0] <= alpha_min + equality_tolerance: # early stopping
if abs(alpha[0] - alpha_min) > equality_tolerance:
# interpolation factor 0 <= ss < 1
if n_iter > 0:
# In the first iteration, all alphas are zero, the formula
# below would make ss a NaN
ss = (prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])
coef[:] = prev_coef + ss * (coef - prev_coef)
alpha[0] = alpha_min
if return_path:
coefs[n_iter] = coef
break
if n_iter >= max_iter or n_active >= n_features:
break
if not drop:
##########################################################
# Append x_j to the Cholesky factorization of (Xa * Xa') #
# #
# ( L 0 ) #
# L -> ( ) , where L * w = Xa' x_j #
# ( w z ) and z = ||x_j|| #
# #
##########################################################
if positive:
sign_active[n_active] = np.ones_like(C_)
else:
sign_active[n_active] = np.sign(C_)
m, n = n_active, C_idx + n_active
Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0])
indices[n], indices[m] = indices[m], indices[n]
Cov_not_shortened = Cov
Cov = Cov[1:] # remove Cov[0]
if Gram is None:
X.T[n], X.T[m] = swap(X.T[n], X.T[m])
c = nrm2(X.T[n_active]) ** 2
L[n_active, :n_active] = np.dot(X.T[n_active], X.T[:n_active].T)
else:
# swap does only work inplace if matrix is fortran
# contiguous ...
Gram[m], Gram[n] = swap(Gram[m], Gram[n])
Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n])
c = Gram[n_active, n_active]
L[n_active, :n_active] = Gram[n_active, :n_active]
# Update the cholesky decomposition for the Gram matrix
if n_active:
linalg.solve_triangular(
L[:n_active, :n_active],
L[n_active, :n_active],
trans=0,
lower=1,
overwrite_b=True,
**SOLVE_TRIANGULAR_ARGS,
)
v = np.dot(L[n_active, :n_active], L[n_active, :n_active])
diag = max(np.sqrt(np.abs(c - v)), eps)
L[n_active, n_active] = diag
if diag < 1e-7:
# The system is becoming too ill-conditioned.
# We have degenerate vectors in our active set.
# We'll 'drop for good' the last regressor added.
warnings.warn(
"Regressors in active set degenerate. "
"Dropping a regressor, after %i iterations, "
"i.e. alpha=%.3e, "
"with an active set of %i regressors, and "
"the smallest cholesky pivot element being %.3e."
" Reduce max_iter or increase eps parameters."
% (n_iter, alpha.item(), n_active, diag),
ConvergenceWarning,
)
# XXX: need to figure a 'drop for good' way
Cov = Cov_not_shortened
Cov[0] = 0
Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0])
continue
active.append(indices[n_active])
n_active += 1
if verbose > 1:
print(
"%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], "", n_active, C)
)
if method == "lasso" and n_iter > 0 and prev_alpha[0] < alpha[0]:
# alpha is increasing. This is because the updates of Cov are
# bringing in too much numerical error that is greater than
# than the remaining correlation with the
# regressors. Time to bail out
warnings.warn(
"Early stopping the lars path, as the residues "
"are small and the current value of alpha is no "
"longer well controlled. %i iterations, alpha=%.3e, "
"previous alpha=%.3e, with an active set of %i "
"regressors." % (n_iter, alpha.item(), prev_alpha.item(), n_active),
ConvergenceWarning,
)
break
# least squares solution
least_squares, _ = solve_cholesky(
L[:n_active, :n_active], sign_active[:n_active], lower=True
)
if least_squares.size == 1 and least_squares == 0:
# This happens because sign_active[:n_active] = 0
least_squares[...] = 1
AA = 1.0
else:
# is this really needed ?
AA = 1.0 / np.sqrt(np.sum(least_squares * sign_active[:n_active]))
if not np.isfinite(AA):
# L is too ill-conditioned
i = 0
L_ = L[:n_active, :n_active].copy()
while not np.isfinite(AA):
L_.flat[:: n_active + 1] += (2**i) * eps
least_squares, _ = solve_cholesky(
L_, sign_active[:n_active], lower=True
)
tmp = max(np.sum(least_squares * sign_active[:n_active]), eps)
AA = 1.0 / np.sqrt(tmp)
i += 1
least_squares *= AA
if Gram is None:
# equiangular direction of variables in the active set
eq_dir = np.dot(X.T[:n_active].T, least_squares)
# correlation between each unactive variables and
# eqiangular vector
corr_eq_dir = np.dot(X.T[n_active:], eq_dir)
else:
# if huge number of features, this takes 50% of time, I
# think could be avoided if we just update it using an
# orthogonal (QR) decomposition of X
corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares)
# Explicit rounding can be necessary to avoid `np.argmax(Cov)` yielding
# unstable results because of rounding errors.
np.around(corr_eq_dir, decimals=cov_precision, out=corr_eq_dir)
g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny32))
if positive:
gamma_ = min(g1, C / AA)
else:
g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny32))
gamma_ = min(g1, g2, C / AA)
# TODO: better names for these variables: z
drop = False
z = -coef[active] / (least_squares + tiny32)
z_pos = arrayfuncs.min_pos(z)
if z_pos < gamma_:
# some coefficients have changed sign
idx = np.where(z == z_pos)[0][::-1]
# update the sign, important for LAR
sign_active[idx] = -sign_active[idx]
if method == "lasso":
gamma_ = z_pos
drop = True
n_iter += 1
if return_path:
if n_iter >= coefs.shape[0]:
del coef, alpha, prev_alpha, prev_coef
# resize the coefs and alphas array
add_features = 2 * max(1, (max_features - n_active))
coefs = np.resize(coefs, (n_iter + add_features, n_features))
coefs[-add_features:] = 0
alphas = np.resize(alphas, n_iter + add_features)
alphas[-add_features:] = 0
coef = coefs[n_iter]
prev_coef = coefs[n_iter - 1]
else:
# mimic the effect of incrementing n_iter on the array references
prev_coef = coef
prev_alpha[0] = alpha[0]
coef = np.zeros_like(coef)
coef[active] = prev_coef[active] + gamma_ * least_squares
# update correlations
Cov -= gamma_ * corr_eq_dir
# See if any coefficient has changed sign
if drop and method == "lasso":
# handle the case when idx is not length of 1
for ii in idx:
arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii)
n_active -= 1
# handle the case when idx is not length of 1
drop_idx = [active.pop(ii) for ii in idx]
if Gram is None:
# propagate dropped variable
for ii in idx:
for i in range(ii, n_active):
X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1])
# yeah this is stupid
indices[i], indices[i + 1] = indices[i + 1], indices[i]
# TODO: this could be updated
residual = y - np.dot(X[:, :n_active], coef[active])
temp = np.dot(X.T[n_active], residual)
Cov = np.r_[temp, Cov]
else:
for ii in idx:
for i in range(ii, n_active):
indices[i], indices[i + 1] = indices[i + 1], indices[i]
Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1])
Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1])
# Cov_n = Cov_j + x_j * X + increment(betas) TODO:
# will this still work with multiple drops ?
# recompute covariance. Probably could be done better
# wrong as Xy is not swapped with the rest of variables
# TODO: this could be updated
temp = Cov_copy[drop_idx] - np.dot(Gram_copy[drop_idx], coef)
Cov = np.r_[temp, Cov]
sign_active = np.delete(sign_active, idx)
sign_active = np.append(sign_active, 0.0) # just to maintain size
if verbose > 1:
print(
"%s\t\t%s\t\t%s\t\t%s\t\t%s"
% (n_iter, "", drop_idx, n_active, abs(temp))
)
if return_path:
# resize coefs in case of early stop
alphas = alphas[: n_iter + 1]
coefs = coefs[: n_iter + 1]
if return_n_iter:
return alphas, active, coefs.T, n_iter
else:
return alphas, active, coefs.T
else:
if return_n_iter:
return alpha, active, coef, n_iter
else:
return alpha, active, coef
###############################################################################
# Estimator classes
class Lars(MultiOutputMixin, RegressorMixin, LinearModel):
"""Least Angle Regression model a.k.a. LAR.
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
verbose : bool or int, default=False
Sets the verbosity amount.
precompute : bool, 'auto' or array-like , default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
n_nonzero_coefs : int, default=500
Target number of non-zero coefficients. Use ``np.inf`` for no limit.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
fit_path : bool, default=True
If True the full path is stored in the ``coef_path_`` attribute.
If you compute the solution for a large problem or many targets,
setting ``fit_path`` to ``False`` will lead to a speedup, especially
with a small alpha.
jitter : float, default=None
Upper bound on a uniform noise parameter to be added to the
`y` values, to satisfy the model's assumption of
one-at-a-time computations. Might help with stability.
.. versionadded:: 0.23
random_state : int, RandomState instance or None, default=None
Determines random number generation for jittering. Pass an int
for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
.. versionadded:: 0.23
Attributes
----------
alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter``, ``n_features`` or the
number of nodes in the path with ``alpha >= alpha_min``, whichever
is smaller. If this is a list of array-like, the length of the outer
list is `n_targets`.
active_ : list of shape (n_alphas,) or list of such lists
Indices of active variables at the end of the path.
If this is a list of list, the length of the outer list is `n_targets`.
coef_path_ : array-like of shape (n_features, n_alphas + 1) or list \
of such arrays
The varying values of the coefficients along the path. It is not
present if the ``fit_path`` parameter is ``False``. If this is a list
of array-like, the length of the outer list is `n_targets`.
coef_ : array-like of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the formulation formula).
intercept_ : float or array-like of shape (n_targets,)
Independent term in decision function.
n_iter_ : array-like or int
The number of iterations taken by lars_path to find the
grid of alphas for each target.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path: Compute Least Angle Regression or Lasso
path using LARS algorithm.
LarsCV : Cross-validated Least Angle Regression model.
sklearn.decomposition.sparse_encode : Sparse coding.
Examples
--------
>>> from sklearn import linear_model
>>> reg = linear_model.Lars(n_nonzero_coefs=1)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
Lars(n_nonzero_coefs=1)
>>> print(reg.coef_)
[ 0. -1.11...]
"""
_parameter_constraints: dict = {
"fit_intercept": ["boolean"],
"verbose": ["verbose"],
"precompute": ["boolean", StrOptions({"auto"}), np.ndarray, Hidden(None)],
"n_nonzero_coefs": [Interval(Integral, 1, None, closed="left")],
"eps": [Interval(Real, 0, None, closed="left")],
"copy_X": ["boolean"],
"fit_path": ["boolean"],
"jitter": [Interval(Real, 0, None, closed="left"), None],
"random_state": ["random_state"],
}
method = "lar"
positive = False
def __init__(
self,
*,
fit_intercept=True,
verbose=False,
precompute="auto",
n_nonzero_coefs=500,
eps=np.finfo(float).eps,
copy_X=True,
fit_path=True,
jitter=None,
random_state=None,
):
self.fit_intercept = fit_intercept
self.verbose = verbose
self.precompute = precompute
self.n_nonzero_coefs = n_nonzero_coefs
self.eps = eps
self.copy_X = copy_X
self.fit_path = fit_path
self.jitter = jitter
self.random_state = random_state
@staticmethod
def _get_gram(precompute, X, y):
if (not hasattr(precompute, "__array__")) and (
(precompute is True)
or (precompute == "auto" and X.shape[0] > X.shape[1])
or (precompute == "auto" and y.shape[1] > 1)
):
precompute = np.dot(X.T, X)
return precompute
def _fit(self, X, y, max_iter, alpha, fit_path, Xy=None):
"""Auxiliary method to fit the model using X, y as training data"""
n_features = X.shape[1]
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X, y, fit_intercept=self.fit_intercept, copy=self.copy_X
)
if y.ndim == 1:
y = y[:, np.newaxis]
n_targets = y.shape[1]
Gram = self._get_gram(self.precompute, X, y)
self.alphas_ = []
self.n_iter_ = []
self.coef_ = np.empty((n_targets, n_features), dtype=X.dtype)
if fit_path:
self.active_ = []
self.coef_path_ = []
for k in range(n_targets):
this_Xy = None if Xy is None else Xy[:, k]
alphas, active, coef_path, n_iter_ = lars_path(
X,
y[:, k],
Gram=Gram,
Xy=this_Xy,
copy_X=self.copy_X,
copy_Gram=True,
alpha_min=alpha,
method=self.method,
verbose=max(0, self.verbose - 1),
max_iter=max_iter,
eps=self.eps,
return_path=True,
return_n_iter=True,
positive=self.positive,
)
self.alphas_.append(alphas)
self.active_.append(active)
self.n_iter_.append(n_iter_)
self.coef_path_.append(coef_path)
self.coef_[k] = coef_path[:, -1]
if n_targets == 1:
self.alphas_, self.active_, self.coef_path_, self.coef_ = [
a[0]
for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)
]
self.n_iter_ = self.n_iter_[0]
else:
for k in range(n_targets):
this_Xy = None if Xy is None else Xy[:, k]
alphas, _, self.coef_[k], n_iter_ = lars_path(
X,
y[:, k],
Gram=Gram,
Xy=this_Xy,
copy_X=self.copy_X,
copy_Gram=True,
alpha_min=alpha,
method=self.method,
verbose=max(0, self.verbose - 1),
max_iter=max_iter,
eps=self.eps,
return_path=False,
return_n_iter=True,
positive=self.positive,
)
self.alphas_.append(alphas)
self.n_iter_.append(n_iter_)
if n_targets == 1:
self.alphas_ = self.alphas_[0]
self.n_iter_ = self.n_iter_[0]
self._set_intercept(X_offset, y_offset, X_scale)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, Xy=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
Xy : array-like of shape (n_features,) or (n_features, n_targets), \
default=None
Xy = np.dot(X.T, y) that can be precomputed. It is useful
only when the Gram matrix is precomputed.
Returns
-------
self : object
Returns an instance of self.
"""
X, y = self._validate_data(X, y, y_numeric=True, multi_output=True)
alpha = getattr(self, "alpha", 0.0)
if hasattr(self, "n_nonzero_coefs"):
alpha = 0.0 # n_nonzero_coefs parametrization takes priority
max_iter = self.n_nonzero_coefs
else:
max_iter = self.max_iter
if self.jitter is not None:
rng = check_random_state(self.random_state)
noise = rng.uniform(high=self.jitter, size=len(y))
y = y + noise
self._fit(
X,
y,
max_iter=max_iter,
alpha=alpha,
fit_path=self.fit_path,
Xy=Xy,
)
return self
class LassoLars(Lars):
"""Lasso model fit with Least Angle Regression a.k.a. Lars.
It is a Linear Model trained with an L1 prior as regularizer.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
alpha : float, default=1.0
Constant that multiplies the penalty term. Defaults to 1.0.
``alpha = 0`` is equivalent to an ordinary least square, solved
by :class:`LinearRegression`. For numerical reasons, using
``alpha = 0`` with the LassoLars object is not advised and you
should prefer the LinearRegression object.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
verbose : bool or int, default=False
Sets the verbosity amount.
precompute : bool, 'auto' or array-like, default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, default=500
Maximum number of iterations to perform.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
fit_path : bool, default=True
If ``True`` the full path is stored in the ``coef_path_`` attribute.
If you compute the solution for a large problem or many targets,
setting ``fit_path`` to ``False`` will lead to a speedup, especially
with a small alpha.
positive : bool, default=False
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients will not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
jitter : float, default=None
Upper bound on a uniform noise parameter to be added to the
`y` values, to satisfy the model's assumption of
one-at-a-time computations. Might help with stability.
.. versionadded:: 0.23
random_state : int, RandomState instance or None, default=None
Determines random number generation for jittering. Pass an int
for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
.. versionadded:: 0.23
Attributes
----------
alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter``, ``n_features`` or the
number of nodes in the path with ``alpha >= alpha_min``, whichever
is smaller. If this is a list of array-like, the length of the outer
list is `n_targets`.
active_ : list of length n_alphas or list of such lists
Indices of active variables at the end of the path.
If this is a list of list, the length of the outer list is `n_targets`.
coef_path_ : array-like of shape (n_features, n_alphas + 1) or list \
of such arrays
If a list is passed it's expected to be one of n_targets such arrays.
The varying values of the coefficients along the path. It is not
present if the ``fit_path`` parameter is ``False``. If this is a list
of array-like, the length of the outer list is `n_targets`.
coef_ : array-like of shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the formulation formula).
intercept_ : float or array-like of shape (n_targets,)
Independent term in decision function.
n_iter_ : array-like or int
The number of iterations taken by lars_path to find the
grid of alphas for each target.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Compute Least Angle Regression or Lasso
path using LARS algorithm.
lasso_path : Compute Lasso path with coordinate descent.
Lasso : Linear Model trained with L1 prior as
regularizer (aka the Lasso).
LassoCV : Lasso linear model with iterative fitting
along a regularization path.
LassoLarsCV: Cross-validated Lasso, using the LARS algorithm.
LassoLarsIC : Lasso model fit with Lars using BIC
or AIC for model selection.
sklearn.decomposition.sparse_encode : Sparse coding.
Examples
--------
>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=0.01)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
LassoLars(alpha=0.01)
>>> print(reg.coef_)
[ 0. -0.955...]
"""
_parameter_constraints: dict = {
**Lars._parameter_constraints,
"alpha": [Interval(Real, 0, None, closed="left")],
"max_iter": [Interval(Integral, 0, None, closed="left")],
"positive": ["boolean"],
}
_parameter_constraints.pop("n_nonzero_coefs")
method = "lasso"
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
verbose=False,
precompute="auto",
max_iter=500,
eps=np.finfo(float).eps,
copy_X=True,
fit_path=True,
positive=False,
jitter=None,
random_state=None,
):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.positive = positive
self.precompute = precompute
self.copy_X = copy_X
self.eps = eps
self.fit_path = fit_path
self.jitter = jitter
self.random_state = random_state
###############################################################################
# Cross-validated estimator classes
def _check_copy_and_writeable(array, copy=False):
if copy or not array.flags.writeable:
return array.copy()
return array
def _lars_path_residues(
X_train,
y_train,
X_test,
y_test,
Gram=None,
copy=True,
method="lar",
verbose=False,
fit_intercept=True,
max_iter=500,
eps=np.finfo(float).eps,
positive=False,
):
"""Compute the residues on left-out data for a full LARS path
Parameters
-----------
X_train : array-like of shape (n_samples, n_features)
The data to fit the LARS on
y_train : array-like of shape (n_samples,)
The target variable to fit LARS on
X_test : array-like of shape (n_samples, n_features)
The data to compute the residues on
y_test : array-like of shape (n_samples,)
The target variable to compute the residues on
Gram : None, 'auto' or array-like of shape (n_features, n_features), \
default=None
Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram
matrix is precomputed from the given X, if there are more samples
than features
copy : bool, default=True
Whether X_train, X_test, y_train and y_test should be copied;
if False, they may be overwritten.
method : {'lar' , 'lasso'}, default='lar'
Specifies the returned model. Select ``'lar'`` for Least Angle
Regression, ``'lasso'`` for the Lasso.
verbose : bool or int, default=False
Sets the amount of verbosity
fit_intercept : bool, default=True
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
positive : bool, default=False
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
See reservations for using this option in combination with method
'lasso' for expected small values of alpha in the doc of LassoLarsCV
and LassoLarsIC.
max_iter : int, default=500
Maximum number of iterations to perform.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Returns
--------
alphas : array-like of shape (n_alphas,)
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter`` or ``n_features``, whichever
is smaller.
active : list
Indices of active variables at the end of the path.
coefs : array-like of shape (n_features, n_alphas)
Coefficients along the path
residues : array-like of shape (n_alphas, n_samples)
Residues of the prediction on the test data
"""
X_train = _check_copy_and_writeable(X_train, copy)
y_train = _check_copy_and_writeable(y_train, copy)
X_test = _check_copy_and_writeable(X_test, copy)
y_test = _check_copy_and_writeable(y_test, copy)
if fit_intercept:
X_mean = X_train.mean(axis=0)
X_train -= X_mean
X_test -= X_mean
y_mean = y_train.mean(axis=0)
y_train = as_float_array(y_train, copy=False)
y_train -= y_mean
y_test = as_float_array(y_test, copy=False)
y_test -= y_mean
alphas, active, coefs = lars_path(
X_train,
y_train,
Gram=Gram,
copy_X=False,
copy_Gram=False,
method=method,
verbose=max(0, verbose - 1),
max_iter=max_iter,
eps=eps,
positive=positive,
)
residues = np.dot(X_test, coefs) - y_test[:, np.newaxis]
return alphas, active, coefs, residues.T
class LarsCV(Lars):
"""Cross-validated Least Angle Regression model.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
verbose : bool or int, default=False
Sets the verbosity amount.
max_iter : int, default=500
Maximum number of iterations to perform.
precompute : bool, 'auto' or array-like , default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram matrix
cannot be passed as argument since we will use only subsets of X.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
max_n_alphas : int, default=1000
The maximum number of points on the path used to compute the
residuals in the cross-validation.
n_jobs : int or None, default=None
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_X : bool, default=True
If ``True``, X will be copied; else, it may be overwritten.
Attributes
----------
active_ : list of length n_alphas or list of such lists
Indices of active variables at the end of the path.
If this is a list of lists, the outer list length is `n_targets`.
coef_ : array-like of shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function
coef_path_ : array-like of shape (n_features, n_alphas)
the varying values of the coefficients along the path
alpha_ : float
the estimated regularization parameter alpha
alphas_ : array-like of shape (n_alphas,)
the different values of alpha along the path
cv_alphas_ : array-like of shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
mse_path_ : array-like of shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path
(alpha values given by ``cv_alphas``)
n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Compute Least Angle Regression or Lasso
path using LARS algorithm.
lasso_path : Compute Lasso path with coordinate descent.
Lasso : Linear Model trained with L1 prior as
regularizer (aka the Lasso).
LassoCV : Lasso linear model with iterative fitting
along a regularization path.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
LassoLarsIC : Lasso model fit with Lars using BIC
or AIC for model selection.
sklearn.decomposition.sparse_encode : Sparse coding.
Notes
-----
In `fit`, once the best parameter `alpha` is found through
cross-validation, the model is fit again using the entire training set.
Examples
--------
>>> from sklearn.linear_model import LarsCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_samples=200, noise=4.0, random_state=0)
>>> reg = LarsCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9996...
>>> reg.alpha_
0.2961...
>>> reg.predict(X[:1,])
array([154.3996...])
"""
_parameter_constraints: dict = {
**Lars._parameter_constraints,
"max_iter": [Interval(Integral, 0, None, closed="left")],
"cv": ["cv_object"],
"max_n_alphas": [Interval(Integral, 1, None, closed="left")],
"n_jobs": [Integral, None],
}
for parameter in ["n_nonzero_coefs", "jitter", "fit_path", "random_state"]:
_parameter_constraints.pop(parameter)
method = "lar"
def __init__(
self,
*,
fit_intercept=True,
verbose=False,
max_iter=500,
precompute="auto",
cv=None,
max_n_alphas=1000,
n_jobs=None,
eps=np.finfo(float).eps,
copy_X=True,
):
self.max_iter = max_iter
self.cv = cv
self.max_n_alphas = max_n_alphas
self.n_jobs = n_jobs
super().__init__(
fit_intercept=fit_intercept,
verbose=verbose,
precompute=precompute,
n_nonzero_coefs=500,
eps=eps,
copy_X=copy_X,
fit_path=True,
)
def _more_tags(self):
return {"multioutput": False}
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, **params):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
**params : dict, default=None
Parameters to be passed to the CV splitter.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Returns an instance of self.
"""
_raise_for_params(params, self, "fit")
X, y = self._validate_data(X, y, y_numeric=True)
X = as_float_array(X, copy=self.copy_X)
y = as_float_array(y, copy=self.copy_X)
# init cross-validation generator
cv = check_cv(self.cv, classifier=False)
if _routing_enabled():
routed_params = process_routing(self, "fit", **params)
else:
routed_params = Bunch(splitter=Bunch(split={}))
# As we use cross-validation, the Gram matrix is not precomputed here
Gram = self.precompute
if hasattr(Gram, "__array__"):
warnings.warn(
'Parameter "precompute" cannot be an array in '
'%s. Automatically switch to "auto" instead.'
% self.__class__.__name__
)
Gram = "auto"
cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_lars_path_residues)(
X[train],
y[train],
X[test],
y[test],
Gram=Gram,
copy=False,
method=self.method,
verbose=max(0, self.verbose - 1),
fit_intercept=self.fit_intercept,
max_iter=self.max_iter,
eps=self.eps,
positive=self.positive,
)
for train, test in cv.split(X, y, **routed_params.splitter.split)
)
all_alphas = np.concatenate(list(zip(*cv_paths))[0])
# Unique also sorts
all_alphas = np.unique(all_alphas)
# Take at most max_n_alphas values
stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas))))
all_alphas = all_alphas[::stride]
mse_path = np.empty((len(all_alphas), len(cv_paths)))
for index, (alphas, _, _, residues) in enumerate(cv_paths):
alphas = alphas[::-1]
residues = residues[::-1]
if alphas[0] != 0:
alphas = np.r_[0, alphas]
residues = np.r_[residues[0, np.newaxis], residues]
if alphas[-1] != all_alphas[-1]:
alphas = np.r_[alphas, all_alphas[-1]]
residues = np.r_[residues, residues[-1, np.newaxis]]
this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas)
this_residues **= 2
mse_path[:, index] = np.mean(this_residues, axis=-1)
mask = np.all(np.isfinite(mse_path), axis=-1)
all_alphas = all_alphas[mask]
mse_path = mse_path[mask]
# Select the alpha that minimizes left-out error
i_best_alpha = np.argmin(mse_path.mean(axis=-1))
best_alpha = all_alphas[i_best_alpha]
# Store our parameters
self.alpha_ = best_alpha
self.cv_alphas_ = all_alphas
self.mse_path_ = mse_path
# Now compute the full model using best_alpha
# it will call a lasso internally when self if LassoLarsCV
# as self.method == 'lasso'
self._fit(
X,
y,
max_iter=self.max_iter,
alpha=best_alpha,
Xy=None,
fit_path=True,
)
return self
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
splitter=check_cv(self.cv),
method_mapping=MethodMapping().add(callee="split", caller="fit"),
)
return router
class LassoLarsCV(LarsCV):
"""Cross-validated Lasso, using the LARS algorithm.
See glossary entry for :term:`cross-validation estimator`.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the :ref:`User Guide <least_angle_regression>`.
Parameters
----------
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
verbose : bool or int, default=False
Sets the verbosity amount.
max_iter : int, default=500
Maximum number of iterations to perform.
precompute : bool or 'auto' , default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram matrix
cannot be passed as argument since we will use only subsets of X.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, :class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
max_n_alphas : int, default=1000
The maximum number of points on the path used to compute the
residuals in the cross-validation.
n_jobs : int or None, default=None
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
positive : bool, default=False
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients do not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
As a consequence using LassoLarsCV only makes sense for problems where
a sparse solution is expected and/or reached.
Attributes
----------
coef_ : array-like of shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function.
coef_path_ : array-like of shape (n_features, n_alphas)
the varying values of the coefficients along the path
alpha_ : float
the estimated regularization parameter alpha
alphas_ : array-like of shape (n_alphas,)
the different values of alpha along the path
cv_alphas_ : array-like of shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
mse_path_ : array-like of shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path
(alpha values given by ``cv_alphas``)
n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
active_ : list of int
Indices of active variables at the end of the path.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Compute Least Angle Regression or Lasso
path using LARS algorithm.
lasso_path : Compute Lasso path with coordinate descent.
Lasso : Linear Model trained with L1 prior as
regularizer (aka the Lasso).
LassoCV : Lasso linear model with iterative fitting
along a regularization path.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
LassoLarsIC : Lasso model fit with Lars using BIC
or AIC for model selection.
sklearn.decomposition.sparse_encode : Sparse coding.
Notes
-----
The object solves the same problem as the
:class:`~sklearn.linear_model.LassoCV` object. However, unlike the
:class:`~sklearn.linear_model.LassoCV`, it find the relevant alphas values
by itself. In general, because of this property, it will be more stable.
However, it is more fragile to heavily multicollinear datasets.
It is more efficient than the :class:`~sklearn.linear_model.LassoCV` if
only a small number of features are selected compared to the total number,
for instance if there are very few samples compared to the number of
features.
In `fit`, once the best parameter `alpha` is found through
cross-validation, the model is fit again using the entire training set.
Examples
--------
>>> from sklearn.linear_model import LassoLarsCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4.0, random_state=0)
>>> reg = LassoLarsCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9993...
>>> reg.alpha_
0.3972...
>>> reg.predict(X[:1,])
array([-78.4831...])
"""
_parameter_constraints = {
**LarsCV._parameter_constraints,
"positive": ["boolean"],
}
method = "lasso"
def __init__(
self,
*,
fit_intercept=True,
verbose=False,
max_iter=500,
precompute="auto",
cv=None,
max_n_alphas=1000,
n_jobs=None,
eps=np.finfo(float).eps,
copy_X=True,
positive=False,
):
self.fit_intercept = fit_intercept
self.verbose = verbose
self.max_iter = max_iter
self.precompute = precompute
self.cv = cv
self.max_n_alphas = max_n_alphas
self.n_jobs = n_jobs
self.eps = eps
self.copy_X = copy_X
self.positive = positive
# XXX : we don't use super().__init__
# to avoid setting n_nonzero_coefs
class LassoLarsIC(LassoLars):
"""Lasso model fit with Lars using BIC or AIC for model selection.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion [2]_ and BIC is the Bayes
Information criterion [3]_. Such criteria are useful to select the value
of the regularization parameter by making a trade-off between the
goodness of fit and the complexity of the model. A good model should
explain well the data while being simple.
Read more in the :ref:`User Guide <lasso_lars_ic>`.
Parameters
----------
criterion : {'aic', 'bic'}, default='aic'
The type of criterion to use.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
verbose : bool or int, default=False
Sets the verbosity amount.
precompute : bool, 'auto' or array-like, default='auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to ``'auto'`` let us decide. The Gram
matrix can also be passed as argument.
max_iter : int, default=500
Maximum number of iterations to perform. Can be used for
early stopping.
eps : float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the ``tol`` parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
positive : bool, default=False
Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default.
Under the positive restriction the model coefficients do not converge
to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (``alphas_[alphas_ >
0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso
algorithm are typically in congruence with the solution of the
coordinate descent Lasso estimator.
As a consequence using LassoLarsIC only makes sense for problems where
a sparse solution is expected and/or reached.
noise_variance : float, default=None
The estimated noise variance of the data. If `None`, an unbiased
estimate is computed by an OLS model. However, it is only possible
in the case where `n_samples > n_features + fit_intercept`.
.. versionadded:: 1.1
Attributes
----------
coef_ : array-like of shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function.
alpha_ : float
the alpha parameter chosen by the information criterion
alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays
Maximum of covariances (in absolute value) at each iteration.
``n_alphas`` is either ``max_iter``, ``n_features`` or the
number of nodes in the path with ``alpha >= alpha_min``, whichever
is smaller. If a list, it will be of length `n_targets`.
n_iter_ : int
number of iterations run by lars_path to find the grid of
alphas.
criterion_ : array-like of shape (n_alphas,)
The value of the information criteria ('aic', 'bic') across all
alphas. The alpha which has the smallest information criterion is
chosen, as specified in [1]_.
noise_variance_ : float
The estimated noise variance from the data used to compute the
criterion.
.. versionadded:: 1.1
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
lars_path : Compute Least Angle Regression or Lasso
path using LARS algorithm.
lasso_path : Compute Lasso path with coordinate descent.
Lasso : Linear Model trained with L1 prior as
regularizer (aka the Lasso).
LassoCV : Lasso linear model with iterative fitting
along a regularization path.
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
LassoLarsCV: Cross-validated Lasso, using the LARS algorithm.
sklearn.decomposition.sparse_encode : Sparse coding.
Notes
-----
The number of degrees of freedom is computed as in [1]_.
To have more details regarding the mathematical formulation of the
AIC and BIC criteria, please refer to :ref:`User Guide <lasso_lars_ic>`.
References
----------
.. [1] :arxiv:`Zou, Hui, Trevor Hastie, and Robert Tibshirani.
"On the degrees of freedom of the lasso."
The Annals of Statistics 35.5 (2007): 2173-2192.
<0712.0881>`
.. [2] `Wikipedia entry on the Akaike information criterion
<https://en.wikipedia.org/wiki/Akaike_information_criterion>`_
.. [3] `Wikipedia entry on the Bayesian information criterion
<https://en.wikipedia.org/wiki/Bayesian_information_criterion>`_
Examples
--------
>>> from sklearn import linear_model
>>> reg = linear_model.LassoLarsIC(criterion='bic')
>>> X = [[-2, 2], [-1, 1], [0, 0], [1, 1], [2, 2]]
>>> y = [-2.2222, -1.1111, 0, -1.1111, -2.2222]
>>> reg.fit(X, y)
LassoLarsIC(criterion='bic')
>>> print(reg.coef_)
[ 0. -1.11...]
"""
_parameter_constraints: dict = {
**LassoLars._parameter_constraints,
"criterion": [StrOptions({"aic", "bic"})],
"noise_variance": [Interval(Real, 0, None, closed="left"), None],
}
for parameter in ["jitter", "fit_path", "alpha", "random_state"]:
_parameter_constraints.pop(parameter)
def __init__(
self,
criterion="aic",
*,
fit_intercept=True,
verbose=False,
precompute="auto",
max_iter=500,
eps=np.finfo(float).eps,
copy_X=True,
positive=False,
noise_variance=None,
):
self.criterion = criterion
self.fit_intercept = fit_intercept
self.positive = positive
self.max_iter = max_iter
self.verbose = verbose
self.copy_X = copy_X
self.precompute = precompute
self.eps = eps
self.fit_path = True
self.noise_variance = noise_variance
def _more_tags(self):
return {"multioutput": False}
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, copy_X=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary.
copy_X : bool, default=None
If provided, this parameter will override the choice
of copy_X made at instance creation.
If ``True``, X will be copied; else, it may be overwritten.
Returns
-------
self : object
Returns an instance of self.
"""
if copy_X is None:
copy_X = self.copy_X
X, y = self._validate_data(X, y, y_numeric=True)
X, y, Xmean, ymean, Xstd = _preprocess_data(
X, y, fit_intercept=self.fit_intercept, copy=copy_X
)
Gram = self.precompute
alphas_, _, coef_path_, self.n_iter_ = lars_path(
X,
y,
Gram=Gram,
copy_X=copy_X,
copy_Gram=True,
alpha_min=0.0,
method="lasso",
verbose=self.verbose,
max_iter=self.max_iter,
eps=self.eps,
return_n_iter=True,
positive=self.positive,
)
n_samples = X.shape[0]
if self.criterion == "aic":
criterion_factor = 2
elif self.criterion == "bic":
criterion_factor = log(n_samples)
else:
raise ValueError(
f"criterion should be either bic or aic, got {self.criterion!r}"
)
residuals = y[:, np.newaxis] - np.dot(X, coef_path_)
residuals_sum_squares = np.sum(residuals**2, axis=0)
degrees_of_freedom = np.zeros(coef_path_.shape[1], dtype=int)
for k, coef in enumerate(coef_path_.T):
mask = np.abs(coef) > np.finfo(coef.dtype).eps
if not np.any(mask):
continue
# get the number of degrees of freedom equal to:
# Xc = X[:, mask]
# Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs
degrees_of_freedom[k] = np.sum(mask)
self.alphas_ = alphas_
if self.noise_variance is None:
self.noise_variance_ = self._estimate_noise_variance(
X, y, positive=self.positive
)
else:
self.noise_variance_ = self.noise_variance
self.criterion_ = (
n_samples * np.log(2 * np.pi * self.noise_variance_)
+ residuals_sum_squares / self.noise_variance_
+ criterion_factor * degrees_of_freedom
)
n_best = np.argmin(self.criterion_)
self.alpha_ = alphas_[n_best]
self.coef_ = coef_path_[:, n_best]
self._set_intercept(Xmean, ymean, Xstd)
return self
def _estimate_noise_variance(self, X, y, positive):
"""Compute an estimate of the variance with an OLS model.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data to be fitted by the OLS model. We expect the data to be
centered.
y : ndarray of shape (n_samples,)
Associated target.
positive : bool, default=False
Restrict coefficients to be >= 0. This should be inline with
the `positive` parameter from `LassoLarsIC`.
Returns
-------
noise_variance : float
An estimator of the noise variance of an OLS model.
"""
if X.shape[0] <= X.shape[1] + self.fit_intercept:
raise ValueError(
f"You are using {self.__class__.__name__} in the case where the number "
"of samples is smaller than the number of features. In this setting, "
"getting a good estimate for the variance of the noise is not "
"possible. Provide an estimate of the noise variance in the "
"constructor."
)
# X and y are already centered and we don't need to fit with an intercept
ols_model = LinearRegression(positive=positive, fit_intercept=False)
y_pred = ols_model.fit(X, y).predict(X)
return np.sum((y - y_pred) ** 2) / (
X.shape[0] - X.shape[1] - self.fit_intercept
)
|