File: _linear_loss.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (671 lines) | stat: -rw-r--r-- 26,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
"""
Loss functions for linear models with raw_prediction = X @ coef
"""
import numpy as np
from scipy import sparse

from ..utils.extmath import squared_norm


class LinearModelLoss:
    """General class for loss functions with raw_prediction = X @ coef + intercept.

    Note that raw_prediction is also known as linear predictor.

    The loss is the average of per sample losses and includes a term for L2
    regularization::

        loss = 1 / s_sum * sum_i s_i loss(y_i, X_i @ coef + intercept)
               + 1/2 * l2_reg_strength * ||coef||_2^2

    with sample weights s_i=1 if sample_weight=None and s_sum=sum_i s_i.

    Gradient and hessian, for simplicity without intercept, are::

        gradient = 1 / s_sum * X.T @ loss.gradient + l2_reg_strength * coef
        hessian = 1 / s_sum * X.T @ diag(loss.hessian) @ X
                  + l2_reg_strength * identity

    Conventions:
        if fit_intercept:
            n_dof =  n_features + 1
        else:
            n_dof = n_features

        if base_loss.is_multiclass:
            coef.shape = (n_classes, n_dof) or ravelled (n_classes * n_dof,)
        else:
            coef.shape = (n_dof,)

        The intercept term is at the end of the coef array:
        if base_loss.is_multiclass:
            if coef.shape (n_classes, n_dof):
                intercept = coef[:, -1]
            if coef.shape (n_classes * n_dof,)
                intercept = coef[n_features::n_dof] = coef[(n_dof-1)::n_dof]
            intercept.shape = (n_classes,)
        else:
            intercept = coef[-1]

    Note: If coef has shape (n_classes * n_dof,), the 2d-array can be reconstructed as

        coef.reshape((n_classes, -1), order="F")

    The option order="F" makes coef[:, i] contiguous. This, in turn, makes the
    coefficients without intercept, coef[:, :-1], contiguous and speeds up
    matrix-vector computations.

    Note: If the average loss per sample is wanted instead of the sum of the loss per
    sample, one can simply use a rescaled sample_weight such that
    sum(sample_weight) = 1.

    Parameters
    ----------
    base_loss : instance of class BaseLoss from sklearn._loss.
    fit_intercept : bool
    """

    def __init__(self, base_loss, fit_intercept):
        self.base_loss = base_loss
        self.fit_intercept = fit_intercept

    def init_zero_coef(self, X, dtype=None):
        """Allocate coef of correct shape with zeros.

        Parameters:
        -----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        dtype : data-type, default=None
            Overrides the data type of coef. With dtype=None, coef will have the same
            dtype as X.

        Returns
        -------
        coef : ndarray of shape (n_dof,) or (n_classes, n_dof)
            Coefficients of a linear model.
        """
        n_features = X.shape[1]
        n_classes = self.base_loss.n_classes
        if self.fit_intercept:
            n_dof = n_features + 1
        else:
            n_dof = n_features
        if self.base_loss.is_multiclass:
            coef = np.zeros_like(X, shape=(n_classes, n_dof), dtype=dtype, order="F")
        else:
            coef = np.zeros_like(X, shape=n_dof, dtype=dtype)
        return coef

    def weight_intercept(self, coef):
        """Helper function to get coefficients and intercept.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").

        Returns
        -------
        weights : ndarray of shape (n_features,) or (n_classes, n_features)
            Coefficients without intercept term.
        intercept : float or ndarray of shape (n_classes,)
            Intercept terms.
        """
        if not self.base_loss.is_multiclass:
            if self.fit_intercept:
                intercept = coef[-1]
                weights = coef[:-1]
            else:
                intercept = 0.0
                weights = coef
        else:
            # reshape to (n_classes, n_dof)
            if coef.ndim == 1:
                weights = coef.reshape((self.base_loss.n_classes, -1), order="F")
            else:
                weights = coef
            if self.fit_intercept:
                intercept = weights[:, -1]
                weights = weights[:, :-1]
            else:
                intercept = 0.0

        return weights, intercept

    def weight_intercept_raw(self, coef, X):
        """Helper function to get coefficients, intercept and raw_prediction.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.

        Returns
        -------
        weights : ndarray of shape (n_features,) or (n_classes, n_features)
            Coefficients without intercept term.
        intercept : float or ndarray of shape (n_classes,)
            Intercept terms.
        raw_prediction : ndarray of shape (n_samples,) or \
            (n_samples, n_classes)
        """
        weights, intercept = self.weight_intercept(coef)

        if not self.base_loss.is_multiclass:
            raw_prediction = X @ weights + intercept
        else:
            # weights has shape (n_classes, n_dof)
            raw_prediction = X @ weights.T + intercept  # ndarray, likely C-contiguous

        return weights, intercept, raw_prediction

    def l2_penalty(self, weights, l2_reg_strength):
        """Compute L2 penalty term l2_reg_strength/2 *||w||_2^2."""
        norm2_w = weights @ weights if weights.ndim == 1 else squared_norm(weights)
        return 0.5 * l2_reg_strength * norm2_w

    def loss(
        self,
        coef,
        X,
        y,
        sample_weight=None,
        l2_reg_strength=0.0,
        n_threads=1,
        raw_prediction=None,
    ):
        """Compute the loss as weighted average over point-wise losses.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        y : contiguous array of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or contiguous array of shape (n_samples,), default=None
            Sample weights.
        l2_reg_strength : float, default=0.0
            L2 regularization strength
        n_threads : int, default=1
            Number of OpenMP threads to use.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space). If provided, these are used. If
            None, then raw_prediction = X @ coef + intercept is calculated.

        Returns
        -------
        loss : float
            Weighted average of losses per sample, plus penalty.
        """
        if raw_prediction is None:
            weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)
        else:
            weights, intercept = self.weight_intercept(coef)

        loss = self.base_loss.loss(
            y_true=y,
            raw_prediction=raw_prediction,
            sample_weight=None,
            n_threads=n_threads,
        )
        loss = np.average(loss, weights=sample_weight)

        return loss + self.l2_penalty(weights, l2_reg_strength)

    def loss_gradient(
        self,
        coef,
        X,
        y,
        sample_weight=None,
        l2_reg_strength=0.0,
        n_threads=1,
        raw_prediction=None,
    ):
        """Computes the sum of loss and gradient w.r.t. coef.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        y : contiguous array of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or contiguous array of shape (n_samples,), default=None
            Sample weights.
        l2_reg_strength : float, default=0.0
            L2 regularization strength
        n_threads : int, default=1
            Number of OpenMP threads to use.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space). If provided, these are used. If
            None, then raw_prediction = X @ coef + intercept is calculated.

        Returns
        -------
        loss : float
            Weighted average of losses per sample, plus penalty.

        gradient : ndarray of shape coef.shape
             The gradient of the loss.
        """
        (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes
        n_dof = n_features + int(self.fit_intercept)

        if raw_prediction is None:
            weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)
        else:
            weights, intercept = self.weight_intercept(coef)

        loss, grad_pointwise = self.base_loss.loss_gradient(
            y_true=y,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            n_threads=n_threads,
        )
        sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)
        loss = loss.sum() / sw_sum
        loss += self.l2_penalty(weights, l2_reg_strength)

        grad_pointwise /= sw_sum

        if not self.base_loss.is_multiclass:
            grad = np.empty_like(coef, dtype=weights.dtype)
            grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights
            if self.fit_intercept:
                grad[-1] = grad_pointwise.sum()
        else:
            grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
            # grad_pointwise.shape = (n_samples, n_classes)
            grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights
            if self.fit_intercept:
                grad[:, -1] = grad_pointwise.sum(axis=0)
            if coef.ndim == 1:
                grad = grad.ravel(order="F")

        return loss, grad

    def gradient(
        self,
        coef,
        X,
        y,
        sample_weight=None,
        l2_reg_strength=0.0,
        n_threads=1,
        raw_prediction=None,
    ):
        """Computes the gradient w.r.t. coef.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        y : contiguous array of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or contiguous array of shape (n_samples,), default=None
            Sample weights.
        l2_reg_strength : float, default=0.0
            L2 regularization strength
        n_threads : int, default=1
            Number of OpenMP threads to use.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space). If provided, these are used. If
            None, then raw_prediction = X @ coef + intercept is calculated.

        Returns
        -------
        gradient : ndarray of shape coef.shape
             The gradient of the loss.
        """
        (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes
        n_dof = n_features + int(self.fit_intercept)

        if raw_prediction is None:
            weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)
        else:
            weights, intercept = self.weight_intercept(coef)

        grad_pointwise = self.base_loss.gradient(
            y_true=y,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            n_threads=n_threads,
        )
        sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)
        grad_pointwise /= sw_sum

        if not self.base_loss.is_multiclass:
            grad = np.empty_like(coef, dtype=weights.dtype)
            grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights
            if self.fit_intercept:
                grad[-1] = grad_pointwise.sum()
            return grad
        else:
            grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
            # gradient.shape = (n_samples, n_classes)
            grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights
            if self.fit_intercept:
                grad[:, -1] = grad_pointwise.sum(axis=0)
            if coef.ndim == 1:
                return grad.ravel(order="F")
            else:
                return grad

    def gradient_hessian(
        self,
        coef,
        X,
        y,
        sample_weight=None,
        l2_reg_strength=0.0,
        n_threads=1,
        gradient_out=None,
        hessian_out=None,
        raw_prediction=None,
    ):
        """Computes gradient and hessian w.r.t. coef.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        y : contiguous array of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or contiguous array of shape (n_samples,), default=None
            Sample weights.
        l2_reg_strength : float, default=0.0
            L2 regularization strength
        n_threads : int, default=1
            Number of OpenMP threads to use.
        gradient_out : None or ndarray of shape coef.shape
            A location into which the gradient is stored. If None, a new array
            might be created.
        hessian_out : None or ndarray
            A location into which the hessian is stored. If None, a new array
            might be created.
        raw_prediction : C-contiguous array of shape (n_samples,) or array of \
            shape (n_samples, n_classes)
            Raw prediction values (in link space). If provided, these are used. If
            None, then raw_prediction = X @ coef + intercept is calculated.

        Returns
        -------
        gradient : ndarray of shape coef.shape
             The gradient of the loss.

        hessian : ndarray
            Hessian matrix.

        hessian_warning : bool
            True if pointwise hessian has more than half of its elements non-positive.
        """
        n_samples, n_features = X.shape
        n_dof = n_features + int(self.fit_intercept)

        if raw_prediction is None:
            weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)
        else:
            weights, intercept = self.weight_intercept(coef)

        grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(
            y_true=y,
            raw_prediction=raw_prediction,
            sample_weight=sample_weight,
            n_threads=n_threads,
        )
        sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)
        grad_pointwise /= sw_sum
        hess_pointwise /= sw_sum

        # For non-canonical link functions and far away from the optimum, the pointwise
        # hessian can be negative. We take care that 75% of the hessian entries are
        # positive.
        hessian_warning = np.mean(hess_pointwise <= 0) > 0.25
        hess_pointwise = np.abs(hess_pointwise)

        if not self.base_loss.is_multiclass:
            # gradient
            if gradient_out is None:
                grad = np.empty_like(coef, dtype=weights.dtype)
            else:
                grad = gradient_out
            grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights
            if self.fit_intercept:
                grad[-1] = grad_pointwise.sum()

            # hessian
            if hessian_out is None:
                hess = np.empty(shape=(n_dof, n_dof), dtype=weights.dtype)
            else:
                hess = hessian_out

            if hessian_warning:
                # Exit early without computing the hessian.
                return grad, hess, hessian_warning

            # TODO: This "sandwich product", X' diag(W) X, is the main computational
            # bottleneck for solvers. A dedicated Cython routine might improve it
            # exploiting the symmetry (as opposed to, e.g., BLAS gemm).
            if sparse.issparse(X):
                hess[:n_features, :n_features] = (
                    X.T
                    @ sparse.dia_matrix(
                        (hess_pointwise, 0), shape=(n_samples, n_samples)
                    )
                    @ X
                ).toarray()
            else:
                # np.einsum may use less memory but the following, using BLAS matrix
                # multiplication (gemm), is by far faster.
                WX = hess_pointwise[:, None] * X
                hess[:n_features, :n_features] = np.dot(X.T, WX)

            if l2_reg_strength > 0:
                # The L2 penalty enters the Hessian on the diagonal only. To add those
                # terms, we use a flattened view on the array.
                hess.reshape(-1)[
                    : (n_features * n_dof) : (n_dof + 1)
                ] += l2_reg_strength

            if self.fit_intercept:
                # With intercept included as added column to X, the hessian becomes
                # hess = (X, 1)' @ diag(h) @ (X, 1)
                #      = (X' @ diag(h) @ X, X' @ h)
                #        (           h @ X, sum(h))
                # The left upper part has already been filled, it remains to compute
                # the last row and the last column.
                Xh = X.T @ hess_pointwise
                hess[:-1, -1] = Xh
                hess[-1, :-1] = Xh
                hess[-1, -1] = hess_pointwise.sum()
        else:
            # Here we may safely assume HalfMultinomialLoss aka categorical
            # cross-entropy.
            raise NotImplementedError

        return grad, hess, hessian_warning

    def gradient_hessian_product(
        self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1
    ):
        """Computes gradient and hessp (hessian product function) w.r.t. coef.

        Parameters
        ----------
        coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
            Coefficients of a linear model.
            If shape (n_classes * n_dof,), the classes of one feature are contiguous,
            i.e. one reconstructs the 2d-array via
            coef.reshape((n_classes, -1), order="F").
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.
        y : contiguous array of shape (n_samples,)
            Observed, true target values.
        sample_weight : None or contiguous array of shape (n_samples,), default=None
            Sample weights.
        l2_reg_strength : float, default=0.0
            L2 regularization strength
        n_threads : int, default=1
            Number of OpenMP threads to use.

        Returns
        -------
        gradient : ndarray of shape coef.shape
             The gradient of the loss.

        hessp : callable
            Function that takes in a vector input of shape of gradient and
            and returns matrix-vector product with hessian.
        """
        (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes
        n_dof = n_features + int(self.fit_intercept)
        weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)
        sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)

        if not self.base_loss.is_multiclass:
            grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(
                y_true=y,
                raw_prediction=raw_prediction,
                sample_weight=sample_weight,
                n_threads=n_threads,
            )
            grad_pointwise /= sw_sum
            hess_pointwise /= sw_sum
            grad = np.empty_like(coef, dtype=weights.dtype)
            grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights
            if self.fit_intercept:
                grad[-1] = grad_pointwise.sum()

            # Precompute as much as possible: hX, hX_sum and hessian_sum
            hessian_sum = hess_pointwise.sum()
            if sparse.issparse(X):
                hX = (
                    sparse.dia_matrix((hess_pointwise, 0), shape=(n_samples, n_samples))
                    @ X
                )
            else:
                hX = hess_pointwise[:, np.newaxis] * X

            if self.fit_intercept:
                # Calculate the double derivative with respect to intercept.
                # Note: In case hX is sparse, hX.sum is a matrix object.
                hX_sum = np.squeeze(np.asarray(hX.sum(axis=0)))
                # prevent squeezing to zero-dim array if n_features == 1
                hX_sum = np.atleast_1d(hX_sum)

            # With intercept included and l2_reg_strength = 0, hessp returns
            # res = (X, 1)' @ diag(h) @ (X, 1) @ s
            #     = (X, 1)' @ (hX @ s[:n_features], sum(h) * s[-1])
            # res[:n_features] = X' @ hX @ s[:n_features] + sum(h) * s[-1]
            # res[-1] = 1' @ hX @ s[:n_features] + sum(h) * s[-1]
            def hessp(s):
                ret = np.empty_like(s)
                if sparse.issparse(X):
                    ret[:n_features] = X.T @ (hX @ s[:n_features])
                else:
                    ret[:n_features] = np.linalg.multi_dot([X.T, hX, s[:n_features]])
                ret[:n_features] += l2_reg_strength * s[:n_features]

                if self.fit_intercept:
                    ret[:n_features] += s[-1] * hX_sum
                    ret[-1] = hX_sum @ s[:n_features] + hessian_sum * s[-1]
                return ret

        else:
            # Here we may safely assume HalfMultinomialLoss aka categorical
            # cross-entropy.
            # HalfMultinomialLoss computes only the diagonal part of the hessian, i.e.
            # diagonal in the classes. Here, we want the matrix-vector product of the
            # full hessian. Therefore, we call gradient_proba.
            grad_pointwise, proba = self.base_loss.gradient_proba(
                y_true=y,
                raw_prediction=raw_prediction,
                sample_weight=sample_weight,
                n_threads=n_threads,
            )
            grad_pointwise /= sw_sum
            grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
            grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights
            if self.fit_intercept:
                grad[:, -1] = grad_pointwise.sum(axis=0)

            # Full hessian-vector product, i.e. not only the diagonal part of the
            # hessian. Derivation with some index battle for input vector s:
            #   - sample index i
            #   - feature indices j, m
            #   - class indices k, l
            #   - 1_{k=l} is one if k=l else 0
            #   - p_i_k is the (predicted) probability that sample i belongs to class k
            #     for all i: sum_k p_i_k = 1
            #   - s_l_m is input vector for class l and feature m
            #   - X' = X transposed
            #
            # Note: Hessian with dropping most indices is just:
            #       X' @ p_k (1(k=l) - p_l) @ X
            #
            # result_{k j} = sum_{i, l, m} Hessian_{i, k j, m l} * s_l_m
            #   = sum_{i, l, m} (X')_{ji} * p_i_k * (1_{k=l} - p_i_l)
            #                   * X_{im} s_l_m
            #   = sum_{i, m} (X')_{ji} * p_i_k
            #                * (X_{im} * s_k_m - sum_l p_i_l * X_{im} * s_l_m)
            #
            # See also https://github.com/scikit-learn/scikit-learn/pull/3646#discussion_r17461411  # noqa
            def hessp(s):
                s = s.reshape((n_classes, -1), order="F")  # shape = (n_classes, n_dof)
                if self.fit_intercept:
                    s_intercept = s[:, -1]
                    s = s[:, :-1]  # shape = (n_classes, n_features)
                else:
                    s_intercept = 0
                tmp = X @ s.T + s_intercept  # X_{im} * s_k_m
                tmp += (-proba * tmp).sum(axis=1)[:, np.newaxis]  # - sum_l ..
                tmp *= proba  # * p_i_k
                if sample_weight is not None:
                    tmp *= sample_weight[:, np.newaxis]
                # hess_prod = empty_like(grad), but we ravel grad below and this
                # function is run after that.
                hess_prod = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
                hess_prod[:, :n_features] = (tmp.T @ X) / sw_sum + l2_reg_strength * s
                if self.fit_intercept:
                    hess_prod[:, -1] = tmp.sum(axis=0) / sw_sum
                if coef.ndim == 1:
                    return hess_prod.ravel(order="F")
                else:
                    return hess_prod

            if coef.ndim == 1:
                return grad.ravel(order="F"), hessp

        return grad, hessp