1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
{{py:
"""
Template file for easily generate fused types consistent code using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).
Generated file: sag_fast.pyx
Each class is duplicated for all dtypes (float and double). The keywords
between double braces are substituted in setup.py.
Authors: Danny Sullivan <dbsullivan23@gmail.com>
Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
Arthur Mensch <arthur.mensch@m4x.org
Arthur Imbert <arthurimbert05@gmail.com>
Joan Massich <mailsik@gmail.com>
License: BSD 3 clause
"""
# name_suffix, c_type, np_type
dtypes = [('64', 'double', 'np.float64'),
('32', 'float', 'np.float32')]
}}
"""SAG and SAGA implementation"""
import numpy as np
from libc.math cimport fabs, exp, log
from libc.time cimport time, time_t
from ._sgd_fast cimport LossFunction
from ._sgd_fast cimport Log, SquaredLoss
from ..utils._seq_dataset cimport SequentialDataset32, SequentialDataset64
from libc.stdio cimport printf
{{for name_suffix, c_type, np_type in dtypes}}
cdef extern from "_sgd_fast_helpers.h":
bint skl_isfinite{{name_suffix}}({{c_type}}) nogil
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef inline {{c_type}} fmax{{name_suffix}}({{c_type}} x, {{c_type}} y) noexcept nogil:
if x > y:
return x
return y
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef {{c_type}} _logsumexp{{name_suffix}}({{c_type}}* arr, int n_classes) noexcept nogil:
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
"""
# Use the max to normalize, as with the log this is what accumulates
# the less errors
cdef {{c_type}} vmax = arr[0]
cdef {{c_type}} out = 0.0
cdef int i
for i in range(1, n_classes):
if vmax < arr[i]:
vmax = arr[i]
for i in range(n_classes):
out += exp(arr[i] - vmax)
return log(out) + vmax
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef class MultinomialLogLoss{{name_suffix}}:
cdef {{c_type}} _loss(self, {{c_type}}* prediction, {{c_type}} y, int n_classes,
{{c_type}} sample_weight) noexcept nogil:
r"""Multinomial Logistic regression loss.
The multinomial logistic loss for one sample is:
loss = - sw \sum_c \delta_{y,c} (prediction[c] - logsumexp(prediction))
= sw (logsumexp(prediction) - prediction[y])
where:
prediction = dot(x_sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Parameters
----------
prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
y : {{c_type}}, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded).
n_classes : integer
Total number of classes.
sample_weight : {{c_type}}
Weight of current sample.
Returns
-------
loss : {{c_type}}
Multinomial loss for current sample.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef {{c_type}} logsumexp_prediction = _logsumexp{{name_suffix}}(prediction, n_classes)
cdef {{c_type}} loss
# y is the indice of the correct class of current sample.
loss = (logsumexp_prediction - prediction[int(y)]) * sample_weight
return loss
cdef void dloss(self, {{c_type}}* prediction, {{c_type}} y, int n_classes,
{{c_type}} sample_weight, {{c_type}}* gradient_ptr) noexcept nogil:
r"""Multinomial Logistic regression gradient of the loss.
The gradient of the multinomial logistic loss with respect to a class c,
and for one sample is:
grad_c = - sw * (p[c] - \delta_{y,c})
where:
p[c] = exp(logsumexp(prediction) - prediction[c])
prediction = dot(sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Note that to obtain the true gradient, this value has to be multiplied
by the sample vector x.
Parameters
----------
prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
y : {{c_type}}, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded)
n_classes : integer
Total number of classes.
sample_weight : {{c_type}}
Weight of current sample.
gradient_ptr : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Gradient vector to be filled.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef {{c_type}} logsumexp_prediction = _logsumexp{{name_suffix}}(prediction, n_classes)
cdef int class_ind
for class_ind in range(n_classes):
gradient_ptr[class_ind] = exp(prediction[class_ind] -
logsumexp_prediction)
# y is the indice of the correct class of current sample.
if class_ind == y:
gradient_ptr[class_ind] -= 1.0
gradient_ptr[class_ind] *= sample_weight
def __reduce__(self):
return MultinomialLogLoss{{name_suffix}}, ()
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef inline {{c_type}} _soft_thresholding{{name_suffix}}({{c_type}} x, {{c_type}} shrinkage) noexcept nogil:
return fmax{{name_suffix}}(x - shrinkage, 0) - fmax{{name_suffix}}(- x - shrinkage, 0)
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
def sag{{name_suffix}}(
SequentialDataset{{name_suffix}} dataset,
{{c_type}}[:, ::1] weights_array,
{{c_type}}[::1] intercept_array,
int n_samples,
int n_features,
int n_classes,
double tol,
int max_iter,
str loss_function,
double step_size,
double alpha,
double beta,
{{c_type}}[:, ::1] sum_gradient_init,
{{c_type}}[:, ::1] gradient_memory_init,
bint[::1] seen_init,
int num_seen,
bint fit_intercept,
{{c_type}}[::1] intercept_sum_gradient_init,
double intercept_decay,
bint saga,
bint verbose
):
"""Stochastic Average Gradient (SAG) and SAGA solvers.
Used in Ridge and LogisticRegression.
Some implementation details:
- Just-in-time (JIT) update: In SAG(A), the average-gradient update is
collinear with the drawn sample X_i. Therefore, if the data is sparse, the
random sample X_i will change the average gradient only on features j where
X_ij != 0. In some cases, the average gradient on feature j might change
only after k random samples with no change. In these cases, instead of
applying k times the same gradient step on feature j, we apply the gradient
step only once, scaled by k. This is called the "just-in-time update", and
it is performed in `lagged_update{{name_suffix}}`. This function also
applies the proximal operator after the gradient step (if L1 regularization
is used in SAGA).
- Weight scale: In SAG(A), the weights are scaled down at each iteration
due to the L2 regularization. To avoid updating all the weights at each
iteration, the weight scale is factored out in a separate variable `wscale`
which is only used in the JIT update. When this variable is too small, it
is reset for numerical stability using the function
`scale_weights{{name_suffix}}`. This reset requires applying all remaining
JIT updates. This reset is also performed every `n_samples` iterations
before each convergence check, so when the algorithm stops, we are sure
that there is no remaining JIT updates.
Reference
---------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
(section 4.3)
:arxiv:`Defazio, A., Bach F. & Lacoste-Julien S. (2014).
"SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives" <1407.0202>`
"""
# the data pointer for x, the current sample
cdef {{c_type}} *x_data_ptr = NULL
# the index pointer for the column of the data
cdef int *x_ind_ptr = NULL
# the number of non-zero features for current sample
cdef int xnnz = -1
# the label value for current sample
# the label value for current sample
cdef {{c_type}} y
# the sample weight
cdef {{c_type}} sample_weight
# helper variable for indexes
cdef int f_idx, s_idx, feature_ind, class_ind, j
# the number of pass through all samples
cdef int n_iter = 0
# helper to track iterations through samples
cdef int sample_itr
# the index (row number) of the current sample
cdef int sample_ind
# the maximum change in weights, used to compute stopping criteria
cdef {{c_type}} max_change
# a holder variable for the max weight, used to compute stopping criteria
cdef {{c_type}} max_weight
# the start time of the fit
cdef time_t start_time
# the end time of the fit
cdef time_t end_time
# precomputation since the step size does not change in this implementation
cdef {{c_type}} wscale_update = 1.0 - step_size * alpha
# helper for cumulative sum
cdef {{c_type}} cum_sum
# the pointer to the coef_ or weights
cdef {{c_type}}* weights = &weights_array[0, 0]
# the sum of gradients for each feature
cdef {{c_type}}* sum_gradient = &sum_gradient_init[0, 0]
# the previously seen gradient for each sample
cdef {{c_type}}* gradient_memory = &gradient_memory_init[0, 0]
# the cumulative sums needed for JIT params
cdef {{c_type}}[::1] cumulative_sums = np.empty(n_samples, dtype={{np_type}}, order="c")
# the index for the last time this feature was updated
cdef int[::1] feature_hist = np.zeros(n_features, dtype=np.int32, order="c")
# the previous weights to use to compute stopping criteria
cdef {{c_type}}[:, ::1] previous_weights_array = np.zeros((n_features, n_classes), dtype={{np_type}}, order="c")
cdef {{c_type}}* previous_weights = &previous_weights_array[0, 0]
cdef {{c_type}}[::1] prediction = np.zeros(n_classes, dtype={{np_type}}, order="c")
cdef {{c_type}}[::1] gradient = np.zeros(n_classes, dtype={{np_type}}, order="c")
# Intermediate variable that need declaration since cython cannot infer when templating
cdef {{c_type}} val
# Bias correction term in saga
cdef {{c_type}} gradient_correction
# the scalar used for multiplying z
cdef {{c_type}} wscale = 1.0
# return value (-1 if an error occurred, 0 otherwise)
cdef int status = 0
# the cumulative sums for each iteration for the sparse implementation
cumulative_sums[0] = 0.0
# the multipliative scale needed for JIT params
cdef {{c_type}}[::1] cumulative_sums_prox
cdef {{c_type}}* cumulative_sums_prox_ptr
cdef bint prox = beta > 0 and saga
# Loss function to optimize
cdef LossFunction loss
# Whether the loss function is multinomial
cdef bint multinomial = False
# Multinomial loss function
cdef MultinomialLogLoss{{name_suffix}} multiloss
if loss_function == "multinomial":
multinomial = True
multiloss = MultinomialLogLoss{{name_suffix}}()
elif loss_function == "log":
loss = Log()
elif loss_function == "squared":
loss = SquaredLoss()
else:
raise ValueError("Invalid loss parameter: got %s instead of "
"one of ('log', 'squared', 'multinomial')"
% loss_function)
if prox:
cumulative_sums_prox = np.empty(n_samples, dtype={{np_type}}, order="c")
cumulative_sums_prox_ptr = &cumulative_sums_prox[0]
else:
cumulative_sums_prox = None
cumulative_sums_prox_ptr = NULL
with nogil:
start_time = time(NULL)
for n_iter in range(max_iter):
for sample_itr in range(n_samples):
# extract a random sample
sample_ind = dataset.random(&x_data_ptr, &x_ind_ptr, &xnnz, &y, &sample_weight)
# cached index for gradient_memory
s_idx = sample_ind * n_classes
# update the number of samples seen and the seen array
if seen_init[sample_ind] == 0:
num_seen += 1
seen_init[sample_ind] = 1
# make the weight updates (just-in-time gradient step, and prox operator)
if sample_itr > 0:
status = lagged_update{{name_suffix}}(
weights=weights,
wscale=wscale,
xnnz=xnnz,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=sample_itr,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
x_ind_ptr=x_ind_ptr,
reset=False,
n_iter=n_iter
)
if status == -1:
break
# find the current prediction
predict_sample{{name_suffix}}(
x_data_ptr=x_data_ptr,
x_ind_ptr=x_ind_ptr,
xnnz=xnnz,
w_data_ptr=weights,
wscale=wscale,
intercept=&intercept_array[0],
prediction=&prediction[0],
n_classes=n_classes
)
# compute the gradient for this sample, given the prediction
if multinomial:
multiloss.dloss(&prediction[0], y, n_classes, sample_weight, &gradient[0])
else:
gradient[0] = loss.dloss(prediction[0], y) * sample_weight
# L2 regularization by simply rescaling the weights
wscale *= wscale_update
# make the updates to the sum of gradients
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
f_idx = feature_ind * n_classes
for class_ind in range(n_classes):
gradient_correction = \
val * (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
if saga:
# Note that this is not the main gradient step,
# which is performed just-in-time in lagged_update.
# This part is done outside the JIT update
# as it does not depend on the average gradient.
# The prox operator is applied after the JIT update
weights[f_idx + class_ind] -= \
(gradient_correction * step_size
* (1 - 1. / num_seen) / wscale)
sum_gradient[f_idx + class_ind] += gradient_correction
# fit the intercept
if fit_intercept:
for class_ind in range(n_classes):
gradient_correction = (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
intercept_sum_gradient_init[class_ind] += gradient_correction
gradient_correction *= step_size * (1. - 1. / num_seen)
if saga:
intercept_array[class_ind] -= \
(step_size * intercept_sum_gradient_init[class_ind] /
num_seen * intercept_decay) + gradient_correction
else:
intercept_array[class_ind] -= \
(step_size * intercept_sum_gradient_init[class_ind] /
num_seen * intercept_decay)
# check to see that the intercept is not inf or NaN
if not skl_isfinite{{name_suffix}}(intercept_array[class_ind]):
status = -1
break
# Break from the n_samples outer loop if an error happened
# in the fit_intercept n_classes inner loop
if status == -1:
break
# update the gradient memory for this sample
for class_ind in range(n_classes):
gradient_memory[s_idx + class_ind] = gradient[class_ind]
if sample_itr == 0:
cumulative_sums[0] = step_size / (wscale * num_seen)
if prox:
cumulative_sums_prox[0] = step_size * beta / wscale
else:
cumulative_sums[sample_itr] = \
(cumulative_sums[sample_itr - 1] +
step_size / (wscale * num_seen))
if prox:
cumulative_sums_prox[sample_itr] = \
(cumulative_sums_prox[sample_itr - 1] +
step_size * beta / wscale)
# If wscale gets too small, we need to reset the scale.
# This also resets the just-in-time update system.
if wscale < 1e-9:
if verbose:
with gil:
print("rescaling...")
status = scale_weights{{name_suffix}}(
weights=weights,
wscale=&wscale,
n_features=n_features,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=sample_itr,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
n_iter=n_iter
)
if status == -1:
break
# Break from the n_iter outer loop if an error happened in the
# n_samples inner loop
if status == -1:
break
# We scale the weights every n_samples iterations and reset the
# just-in-time update system for numerical stability.
# Because this reset is done before every convergence check, we are
# sure there is no remaining lagged update when the algorithm stops.
status = scale_weights{{name_suffix}}(
weights=weights,
wscale=&wscale,
n_features=n_features,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=n_samples - 1,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
n_iter=n_iter
)
if status == -1:
break
# check if the stopping criteria is reached
max_change = 0.0
max_weight = 0.0
for idx in range(n_features * n_classes):
max_weight = fmax{{name_suffix}}(max_weight, fabs(weights[idx]))
max_change = fmax{{name_suffix}}(max_change, fabs(weights[idx] - previous_weights[idx]))
previous_weights[idx] = weights[idx]
if ((max_weight != 0 and max_change / max_weight <= tol)
or max_weight == 0 and max_change == 0):
if verbose:
end_time = time(NULL)
with gil:
print("convergence after %d epochs took %d seconds" %
(n_iter + 1, end_time - start_time))
break
elif verbose:
printf('Epoch %d, change: %.8f\n', n_iter + 1,
max_change / max_weight)
n_iter += 1
# We do the error treatment here based on error code in status to avoid
# re-acquiring the GIL within the cython code, which slows the computation
# when the sag/saga solver is used concurrently in multiple Python threads.
if status == -1:
raise ValueError(("Floating-point under-/overflow occurred at epoch"
" #%d. Scaling input data with StandardScaler or"
" MinMaxScaler might help.") % n_iter)
if verbose and n_iter >= max_iter:
end_time = time(NULL)
print(("max_iter reached after %d seconds") %
(end_time - start_time))
return num_seen, n_iter
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef int scale_weights{{name_suffix}}(
{{c_type}}* weights,
{{c_type}}* wscale,
int n_features,
int n_samples,
int n_classes,
int sample_itr,
{{c_type}}* cumulative_sums,
{{c_type}}* cumulative_sums_prox,
int* feature_hist,
bint prox,
{{c_type}}* sum_gradient,
int n_iter
) noexcept nogil:
"""Scale the weights and reset wscale to 1.0 for numerical stability, and
reset the just-in-time (JIT) update system.
See `sag{{name_suffix}}`'s docstring about the JIT update system.
wscale = (1 - step_size * alpha) ** (n_iter * n_samples + sample_itr)
can become very small, so we reset it every n_samples iterations to 1.0 for
numerical stability. To be able to scale, we first need to update every
coefficients and reset the just-in-time update system.
This also limits the size of `cumulative_sums`.
"""
cdef int status
status = lagged_update{{name_suffix}}(
weights,
wscale[0],
n_features,
n_samples,
n_classes,
sample_itr + 1,
cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox,
sum_gradient,
NULL,
True,
n_iter
)
# if lagged update succeeded, reset wscale to 1.0
if status == 0:
wscale[0] = 1.0
return status
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef int lagged_update{{name_suffix}}(
{{c_type}}* weights,
{{c_type}} wscale,
int xnnz,
int n_samples,
int n_classes,
int sample_itr,
{{c_type}}* cumulative_sums,
{{c_type}}* cumulative_sums_prox,
int* feature_hist,
bint prox,
{{c_type}}* sum_gradient,
int* x_ind_ptr,
bint reset,
int n_iter
) noexcept nogil:
"""Hard perform the JIT updates for non-zero features of present sample.
See `sag{{name_suffix}}`'s docstring about the JIT update system.
The updates that awaits are kept in memory using cumulative_sums,
cumulative_sums_prox, wscale and feature_hist. See original SAGA paper
(Defazio et al. 2014) for details. If reset=True, we also reset wscale to
1 (this is done at the end of each epoch).
"""
cdef int feature_ind, class_ind, idx, f_idx, lagged_ind, last_update_ind
cdef {{c_type}} cum_sum, grad_step, prox_step, cum_sum_prox
for feature_ind in range(xnnz):
if not reset:
feature_ind = x_ind_ptr[feature_ind]
f_idx = feature_ind * n_classes
cum_sum = cumulative_sums[sample_itr - 1]
if prox:
cum_sum_prox = cumulative_sums_prox[sample_itr - 1]
if feature_hist[feature_ind] != 0:
cum_sum -= cumulative_sums[feature_hist[feature_ind] - 1]
if prox:
cum_sum_prox -= cumulative_sums_prox[feature_hist[feature_ind] - 1]
if not prox:
for class_ind in range(n_classes):
idx = f_idx + class_ind
weights[idx] -= cum_sum * sum_gradient[idx]
if reset:
weights[idx] *= wscale
if not skl_isfinite{{name_suffix}}(weights[idx]):
# returning here does not require the gil as the return
# type is a C integer
return -1
else:
for class_ind in range(n_classes):
idx = f_idx + class_ind
if fabs(sum_gradient[idx] * cum_sum) < cum_sum_prox:
# In this case, we can perform all the gradient steps and
# all the proximal steps in this order, which is more
# efficient than unrolling all the lagged updates.
# Idea taken from scikit-learn-contrib/lightning.
weights[idx] -= cum_sum * sum_gradient[idx]
weights[idx] = _soft_thresholding{{name_suffix}}(weights[idx],
cum_sum_prox)
else:
last_update_ind = feature_hist[feature_ind]
if last_update_ind == -1:
last_update_ind = sample_itr - 1
for lagged_ind in range(sample_itr - 1,
last_update_ind - 1, -1):
if lagged_ind > 0:
grad_step = (cumulative_sums[lagged_ind]
- cumulative_sums[lagged_ind - 1])
prox_step = (cumulative_sums_prox[lagged_ind]
- cumulative_sums_prox[lagged_ind - 1])
else:
grad_step = cumulative_sums[lagged_ind]
prox_step = cumulative_sums_prox[lagged_ind]
weights[idx] -= sum_gradient[idx] * grad_step
weights[idx] = _soft_thresholding{{name_suffix}}(weights[idx],
prox_step)
if reset:
weights[idx] *= wscale
# check to see that the weight is not inf or NaN
if not skl_isfinite{{name_suffix}}(weights[idx]):
return -1
if reset:
feature_hist[feature_ind] = sample_itr % n_samples
else:
feature_hist[feature_ind] = sample_itr
if reset:
cumulative_sums[sample_itr - 1] = 0.0
if prox:
cumulative_sums_prox[sample_itr - 1] = 0.0
return 0
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef void predict_sample{{name_suffix}}(
{{c_type}}* x_data_ptr,
int* x_ind_ptr,
int xnnz,
{{c_type}}* w_data_ptr,
{{c_type}} wscale,
{{c_type}}* intercept,
{{c_type}}* prediction,
int n_classes
) noexcept nogil:
"""Compute the prediction given sparse sample x and dense weight w.
Parameters
----------
x_data_ptr : pointer
Pointer to the data of the sample x
x_ind_ptr : pointer
Pointer to the indices of the sample x
xnnz : int
Number of non-zero element in the sample x
w_data_ptr : pointer
Pointer to the data of the weights w
wscale : {{c_type}}
Scale of the weights w
intercept : pointer
Pointer to the intercept
prediction : pointer
Pointer to store the resulting prediction
n_classes : int
Number of classes in multinomial case. Equals 1 in binary case.
"""
cdef int feature_ind, class_ind, j
cdef {{c_type}} innerprod
for class_ind in range(n_classes):
innerprod = 0.0
# Compute the dot product only on non-zero elements of x
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
innerprod += (w_data_ptr[feature_ind * n_classes + class_ind] *
x_data_ptr[j])
prediction[class_ind] = wscale * innerprod + intercept[class_ind]
{{endfor}}
def _multinomial_grad_loss_all_samples(
SequentialDataset64 dataset,
double[:, ::1] weights_array,
double[::1] intercept_array,
int n_samples,
int n_features,
int n_classes
):
"""Compute multinomial gradient and loss across all samples.
Used for testing purpose only.
"""
cdef double *x_data_ptr = NULL
cdef int *x_ind_ptr = NULL
cdef int xnnz = -1
cdef double y
cdef double sample_weight
cdef double wscale = 1.0
cdef int i, j, class_ind, feature_ind
cdef double val
cdef double sum_loss = 0.0
cdef MultinomialLogLoss64 multiloss = MultinomialLogLoss64()
cdef double[:, ::1] sum_gradient_array = np.zeros((n_features, n_classes), dtype=np.double, order="c")
cdef double* sum_gradient = &sum_gradient_array[0, 0]
cdef double[::1] prediction = np.zeros(n_classes, dtype=np.double, order="c")
cdef double[::1] gradient = np.zeros(n_classes, dtype=np.double, order="c")
with nogil:
for i in range(n_samples):
# get next sample on the dataset
dataset.next(
&x_data_ptr,
&x_ind_ptr,
&xnnz,
&y,
&sample_weight
)
# prediction of the multinomial classifier for the sample
predict_sample64(
x_data_ptr,
x_ind_ptr,
xnnz,
&weights_array[0, 0],
wscale,
&intercept_array[0],
&prediction[0],
n_classes
)
# compute the gradient for this sample, given the prediction
multiloss.dloss(&prediction[0], y, n_classes, sample_weight, &gradient[0])
# compute the loss for this sample, given the prediction
sum_loss += multiloss._loss(&prediction[0], y, n_classes, sample_weight)
# update the sum of the gradient
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
for class_ind in range(n_classes):
sum_gradient[feature_ind * n_classes + class_ind] += gradient[class_ind] * val
return sum_loss, sum_gradient_array
|