File: test_base.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (789 lines) | stat: -rw-r--r-- 27,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Maria Telenczuk <https://github.com/maikia>
#
# License: BSD 3 clause

import warnings

import numpy as np
import pytest
from scipy import linalg, sparse

from sklearn.datasets import load_iris, make_regression, make_sparse_uncorrelated
from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import (
    _preprocess_data,
    _rescale_data,
    make_dataset,
)
from sklearn.preprocessing import add_dummy_feature
from sklearn.utils._testing import (
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
)
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    LIL_CONTAINERS,
)

rtol = 1e-6


def test_linear_regression():
    # Test LinearRegression on a simple dataset.
    # a simple dataset
    X = [[1], [2]]
    Y = [1, 2]

    reg = LinearRegression()
    reg.fit(X, Y)

    assert_array_almost_equal(reg.coef_, [1])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [1, 2])

    # test it also for degenerate input
    X = [[1]]
    Y = [0]

    reg = LinearRegression()
    reg.fit(X, Y)
    assert_array_almost_equal(reg.coef_, [0])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [0])


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_linear_regression_sample_weights(
    sparse_container, fit_intercept, global_random_seed
):
    rng = np.random.RandomState(global_random_seed)

    # It would not work with under-determined systems
    n_samples, n_features = 6, 5

    X = rng.normal(size=(n_samples, n_features))
    if sparse_container is not None:
        X = sparse_container(X)
    y = rng.normal(size=n_samples)

    sample_weight = 1.0 + rng.uniform(size=n_samples)

    # LinearRegression with explicit sample_weight
    reg = LinearRegression(fit_intercept=fit_intercept)
    reg.fit(X, y, sample_weight=sample_weight)
    coefs1 = reg.coef_
    inter1 = reg.intercept_

    assert reg.coef_.shape == (X.shape[1],)  # sanity checks

    # Closed form of the weighted least square
    # theta = (X^T W X)^(-1) @ X^T W y
    W = np.diag(sample_weight)
    X_aug = X if not fit_intercept else add_dummy_feature(X)

    Xw = X_aug.T @ W @ X_aug
    yw = X_aug.T @ W @ y
    coefs2 = linalg.solve(Xw, yw)

    if not fit_intercept:
        assert_allclose(coefs1, coefs2)
    else:
        assert_allclose(coefs1, coefs2[1:])
        assert_allclose(inter1, coefs2[0])


def test_raises_value_error_if_positive_and_sparse():
    error_msg = "Sparse data was passed for X, but dense data is required."
    # X must not be sparse if positive == True
    X = sparse.eye(10)
    y = np.ones(10)

    reg = LinearRegression(positive=True)

    with pytest.raises(TypeError, match=error_msg):
        reg.fit(X, y)


@pytest.mark.parametrize("n_samples, n_features", [(2, 3), (3, 2)])
def test_raises_value_error_if_sample_weights_greater_than_1d(n_samples, n_features):
    # Sample weights must be either scalar or 1D
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    sample_weights_OK = rng.randn(n_samples) ** 2 + 1
    sample_weights_OK_1 = 1.0
    sample_weights_OK_2 = 2.0

    reg = LinearRegression()

    # make sure the "OK" sample weights actually work
    reg.fit(X, y, sample_weights_OK)
    reg.fit(X, y, sample_weights_OK_1)
    reg.fit(X, y, sample_weights_OK_2)


def test_fit_intercept():
    # Test assertions on betas shape.
    X2 = np.array([[0.38349978, 0.61650022], [0.58853682, 0.41146318]])
    X3 = np.array(
        [[0.27677969, 0.70693172, 0.01628859], [0.08385139, 0.20692515, 0.70922346]]
    )
    y = np.array([1, 1])

    lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y)
    lr2_with_intercept = LinearRegression().fit(X2, y)

    lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y)
    lr3_with_intercept = LinearRegression().fit(X3, y)

    assert lr2_with_intercept.coef_.shape == lr2_without_intercept.coef_.shape
    assert lr3_with_intercept.coef_.shape == lr3_without_intercept.coef_.shape
    assert lr2_without_intercept.coef_.ndim == lr3_without_intercept.coef_.ndim


def test_linear_regression_sparse(global_random_seed):
    # Test that linear regression also works with sparse data
    rng = np.random.RandomState(global_random_seed)
    n = 100
    X = sparse.eye(n, n)
    beta = rng.rand(n)
    y = X @ beta

    ols = LinearRegression()
    ols.fit(X, y.ravel())
    assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)

    assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)


@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_linear_regression_sparse_equal_dense(fit_intercept, csr_container):
    # Test that linear regression agrees between sparse and dense
    rng = np.random.RandomState(0)
    n_samples = 200
    n_features = 2
    X = rng.randn(n_samples, n_features)
    X[X < 0.1] = 0.0
    Xcsr = csr_container(X)
    y = rng.rand(n_samples)
    params = dict(fit_intercept=fit_intercept)
    clf_dense = LinearRegression(**params)
    clf_sparse = LinearRegression(**params)
    clf_dense.fit(X, y)
    clf_sparse.fit(Xcsr, y)
    assert clf_dense.intercept_ == pytest.approx(clf_sparse.intercept_)
    assert_allclose(clf_dense.coef_, clf_sparse.coef_)


def test_linear_regression_multiple_outcome():
    # Test multiple-outcome linear regressions
    rng = np.random.RandomState(0)
    X, y = make_regression(random_state=rng)

    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    reg = LinearRegression()
    reg.fit((X), Y)
    assert reg.coef_.shape == (2, n_features)
    Y_pred = reg.predict(X)
    reg.fit(X, y)
    y_pred = reg.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)


@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
def test_linear_regression_sparse_multiple_outcome(global_random_seed, coo_container):
    # Test multiple-outcome linear regressions with sparse data
    rng = np.random.RandomState(global_random_seed)
    X, y = make_sparse_uncorrelated(random_state=rng)
    X = coo_container(X)
    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    ols = LinearRegression()
    ols.fit(X, Y)
    assert ols.coef_.shape == (2, n_features)
    Y_pred = ols.predict(X)
    ols.fit(X, y.ravel())
    y_pred = ols.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)


def test_linear_regression_positive():
    # Test nonnegative LinearRegression on a simple dataset.
    X = [[1], [2]]
    y = [1, 2]

    reg = LinearRegression(positive=True)
    reg.fit(X, y)

    assert_array_almost_equal(reg.coef_, [1])
    assert_array_almost_equal(reg.intercept_, [0])
    assert_array_almost_equal(reg.predict(X), [1, 2])

    # test it also for degenerate input
    X = [[1]]
    y = [0]

    reg = LinearRegression(positive=True)
    reg.fit(X, y)
    assert_allclose(reg.coef_, [0])
    assert_allclose(reg.intercept_, [0])
    assert_allclose(reg.predict(X), [0])


def test_linear_regression_positive_multiple_outcome(global_random_seed):
    # Test multiple-outcome nonnegative linear regressions
    rng = np.random.RandomState(global_random_seed)
    X, y = make_sparse_uncorrelated(random_state=rng)
    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    ols = LinearRegression(positive=True)
    ols.fit(X, Y)
    assert ols.coef_.shape == (2, n_features)
    assert np.all(ols.coef_ >= 0.0)
    Y_pred = ols.predict(X)
    ols.fit(X, y.ravel())
    y_pred = ols.predict(X)
    assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred)


def test_linear_regression_positive_vs_nonpositive(global_random_seed):
    # Test differences with LinearRegression when positive=False.
    rng = np.random.RandomState(global_random_seed)
    X, y = make_sparse_uncorrelated(random_state=rng)

    reg = LinearRegression(positive=True)
    reg.fit(X, y)
    regn = LinearRegression(positive=False)
    regn.fit(X, y)

    assert np.mean((reg.coef_ - regn.coef_) ** 2) > 1e-3


def test_linear_regression_positive_vs_nonpositive_when_positive(global_random_seed):
    # Test LinearRegression fitted coefficients
    # when the problem is positive.
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 4
    X = rng.rand(n_samples, n_features)
    y = X[:, 0] + 2 * X[:, 1] + 3 * X[:, 2] + 1.5 * X[:, 3]

    reg = LinearRegression(positive=True)
    reg.fit(X, y)
    regn = LinearRegression(positive=False)
    regn.fit(X, y)

    assert np.mean((reg.coef_ - regn.coef_) ** 2) < 1e-6


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("use_sw", [True, False])
def test_inplace_data_preprocessing(sparse_container, use_sw, global_random_seed):
    # Check that the data is not modified inplace by the linear regression
    # estimator.
    rng = np.random.RandomState(global_random_seed)
    original_X_data = rng.randn(10, 12)
    original_y_data = rng.randn(10, 2)
    orginal_sw_data = rng.rand(10)

    if sparse_container is not None:
        X = sparse_container(original_X_data)
    else:
        X = original_X_data.copy()
    y = original_y_data.copy()
    # XXX: Note hat y_sparse is not supported (broken?) in the current
    # implementation of LinearRegression.

    if use_sw:
        sample_weight = orginal_sw_data.copy()
    else:
        sample_weight = None

    # Do not allow inplace preprocessing of X and y:
    reg = LinearRegression()
    reg.fit(X, y, sample_weight=sample_weight)
    if sparse_container is not None:
        assert_allclose(X.toarray(), original_X_data)
    else:
        assert_allclose(X, original_X_data)
    assert_allclose(y, original_y_data)

    if use_sw:
        assert_allclose(sample_weight, orginal_sw_data)

    # Allow inplace preprocessing of X and y
    reg = LinearRegression(copy_X=False)
    reg.fit(X, y, sample_weight=sample_weight)
    if sparse_container is not None:
        # No optimization relying on the inplace modification of sparse input
        # data has been implemented at this time.
        assert_allclose(X.toarray(), original_X_data)
    else:
        # X has been offset (and optionally rescaled by sample weights)
        # inplace. The 0.42 threshold is arbitrary and has been found to be
        # robust to any random seed in the admissible range.
        assert np.linalg.norm(X - original_X_data) > 0.42

    # y should not have been modified inplace by LinearRegression.fit.
    assert_allclose(y, original_y_data)

    if use_sw:
        # Sample weights have no reason to ever be modified inplace.
        assert_allclose(sample_weight, orginal_sw_data)


def test_linear_regression_pd_sparse_dataframe_warning():
    pd = pytest.importorskip("pandas")

    # Warning is raised only when some of the columns is sparse
    df = pd.DataFrame({"0": np.random.randn(10)})
    for col in range(1, 4):
        arr = np.random.randn(10)
        arr[:8] = 0
        # all columns but the first column is sparse
        if col != 0:
            arr = pd.arrays.SparseArray(arr, fill_value=0)
        df[str(col)] = arr

    msg = "pandas.DataFrame with sparse columns found."

    reg = LinearRegression()
    with pytest.warns(UserWarning, match=msg):
        reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])

    # does not warn when the whole dataframe is sparse
    df["0"] = pd.arrays.SparseArray(df["0"], fill_value=0)
    assert hasattr(df, "sparse")

    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])


def test_preprocess_data(global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    expected_X_mean = np.mean(X, axis=0)
    expected_y_mean = np.mean(y, axis=0)

    Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(X, y, fit_intercept=False)
    assert_array_almost_equal(X_mean, np.zeros(n_features))
    assert_array_almost_equal(y_mean, 0)
    assert_array_almost_equal(X_scale, np.ones(n_features))
    assert_array_almost_equal(Xt, X)
    assert_array_almost_equal(yt, y)

    Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(X, y, fit_intercept=True)
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_scale, np.ones(n_features))
    assert_array_almost_equal(Xt, X - expected_X_mean)
    assert_array_almost_equal(yt, y - expected_y_mean)


@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS)
def test_preprocess_data_multioutput(global_random_seed, sparse_container):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 3
    n_outputs = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples, n_outputs)
    expected_y_mean = np.mean(y, axis=0)

    if sparse_container is not None:
        X = sparse_container(X)

    _, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=False)
    assert_array_almost_equal(y_mean, np.zeros(n_outputs))
    assert_array_almost_equal(yt, y)

    _, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(yt, y - y_mean)


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_preprocess_data_weighted(sparse_container, global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 4
    # Generate random data with 50% of zero values to make sure
    # that the sparse variant of this test is actually sparse. This also
    # shifts the mean value for each columns in X further away from
    # zero.
    X = rng.rand(n_samples, n_features)
    X[X < 0.5] = 0.0

    # Scale the first feature of X to be 10 larger than the other to
    # better check the impact of feature scaling.
    X[:, 0] *= 10

    # Constant non-zero feature.
    X[:, 2] = 1.0

    # Constant zero feature (non-materialized in the sparse case)
    X[:, 3] = 0.0
    y = rng.rand(n_samples)

    sample_weight = rng.rand(n_samples)
    expected_X_mean = np.average(X, axis=0, weights=sample_weight)
    expected_y_mean = np.average(y, axis=0, weights=sample_weight)

    X_sample_weight_avg = np.average(X, weights=sample_weight, axis=0)
    X_sample_weight_var = np.average(
        (X - X_sample_weight_avg) ** 2, weights=sample_weight, axis=0
    )
    constant_mask = X_sample_weight_var < 10 * np.finfo(X.dtype).eps
    assert_array_equal(constant_mask, [0, 0, 1, 1])
    expected_X_scale = np.sqrt(X_sample_weight_var) * np.sqrt(sample_weight.sum())

    # near constant features should not be scaled
    expected_X_scale[constant_mask] = 1

    if sparse_container is not None:
        X = sparse_container(X)

    # normalize is False
    Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(
        X,
        y,
        fit_intercept=True,
        sample_weight=sample_weight,
    )
    assert_array_almost_equal(X_mean, expected_X_mean)
    assert_array_almost_equal(y_mean, expected_y_mean)
    assert_array_almost_equal(X_scale, np.ones(n_features))
    if sparse_container is not None:
        assert_array_almost_equal(Xt.toarray(), X.toarray())
    else:
        assert_array_almost_equal(Xt, X - expected_X_mean)
    assert_array_almost_equal(yt, y - expected_y_mean)


@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_sparse_preprocess_data_offsets(global_random_seed, lil_container):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 2
    X = sparse.rand(n_samples, n_features, density=0.5, random_state=rng)
    X = lil_container(X)
    y = rng.rand(n_samples)
    XA = X.toarray()

    Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(X, y, fit_intercept=False)
    assert_array_almost_equal(X_mean, np.zeros(n_features))
    assert_array_almost_equal(y_mean, 0)
    assert_array_almost_equal(X_scale, np.ones(n_features))
    assert_array_almost_equal(Xt.toarray(), XA)
    assert_array_almost_equal(yt, y)

    Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(X, y, fit_intercept=True)
    assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
    assert_array_almost_equal(y_mean, np.mean(y, axis=0))
    assert_array_almost_equal(X_scale, np.ones(n_features))
    assert_array_almost_equal(Xt.toarray(), XA)
    assert_array_almost_equal(yt, y - np.mean(y, axis=0))


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csr_preprocess_data(csr_container):
    # Test output format of _preprocess_data, when input is csr
    X, y = make_regression()
    X[X < 2.5] = 0.0
    csr = csr_container(X)
    csr_, y, _, _, _ = _preprocess_data(csr, y, fit_intercept=True)
    assert csr_.format == "csr"


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("to_copy", (True, False))
def test_preprocess_copy_data_no_checks(sparse_container, to_copy):
    X, y = make_regression()
    X[X < 2.5] = 0.0

    if sparse_container is not None:
        X = sparse_container(X)

    X_, y_, _, _, _ = _preprocess_data(
        X, y, fit_intercept=True, copy=to_copy, check_input=False
    )

    if to_copy and sparse_container is not None:
        assert not np.may_share_memory(X_.data, X.data)
    elif to_copy:
        assert not np.may_share_memory(X_, X)
    elif sparse_container is not None:
        assert np.may_share_memory(X_.data, X.data)
    else:
        assert np.may_share_memory(X_, X)


def test_dtype_preprocess_data(global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 2
    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)

    X_32 = np.asarray(X, dtype=np.float32)
    y_32 = np.asarray(y, dtype=np.float32)
    X_64 = np.asarray(X, dtype=np.float64)
    y_64 = np.asarray(y, dtype=np.float64)

    for fit_intercept in [True, False]:
        Xt_32, yt_32, X_mean_32, y_mean_32, X_scale_32 = _preprocess_data(
            X_32,
            y_32,
            fit_intercept=fit_intercept,
        )

        Xt_64, yt_64, X_mean_64, y_mean_64, X_scale_64 = _preprocess_data(
            X_64,
            y_64,
            fit_intercept=fit_intercept,
        )

        Xt_3264, yt_3264, X_mean_3264, y_mean_3264, X_scale_3264 = _preprocess_data(
            X_32,
            y_64,
            fit_intercept=fit_intercept,
        )

        Xt_6432, yt_6432, X_mean_6432, y_mean_6432, X_scale_6432 = _preprocess_data(
            X_64,
            y_32,
            fit_intercept=fit_intercept,
        )

        assert Xt_32.dtype == np.float32
        assert yt_32.dtype == np.float32
        assert X_mean_32.dtype == np.float32
        assert y_mean_32.dtype == np.float32
        assert X_scale_32.dtype == np.float32

        assert Xt_64.dtype == np.float64
        assert yt_64.dtype == np.float64
        assert X_mean_64.dtype == np.float64
        assert y_mean_64.dtype == np.float64
        assert X_scale_64.dtype == np.float64

        assert Xt_3264.dtype == np.float32
        assert yt_3264.dtype == np.float32
        assert X_mean_3264.dtype == np.float32
        assert y_mean_3264.dtype == np.float32
        assert X_scale_3264.dtype == np.float32

        assert Xt_6432.dtype == np.float64
        assert yt_6432.dtype == np.float64
        assert X_mean_6432.dtype == np.float64
        assert y_mean_6432.dtype == np.float64
        assert X_scale_6432.dtype == np.float64

        assert X_32.dtype == np.float32
        assert y_32.dtype == np.float32
        assert X_64.dtype == np.float64
        assert y_64.dtype == np.float64

        assert_array_almost_equal(Xt_32, Xt_64)
        assert_array_almost_equal(yt_32, yt_64)
        assert_array_almost_equal(X_mean_32, X_mean_64)
        assert_array_almost_equal(y_mean_32, y_mean_64)
        assert_array_almost_equal(X_scale_32, X_scale_64)


@pytest.mark.parametrize("n_targets", [None, 2])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_rescale_data(n_targets, sparse_container, global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 200
    n_features = 2

    sample_weight = 1.0 + rng.rand(n_samples)
    X = rng.rand(n_samples, n_features)
    if n_targets is None:
        y = rng.rand(n_samples)
    else:
        y = rng.rand(n_samples, n_targets)

    expected_sqrt_sw = np.sqrt(sample_weight)
    expected_rescaled_X = X * expected_sqrt_sw[:, np.newaxis]

    if n_targets is None:
        expected_rescaled_y = y * expected_sqrt_sw
    else:
        expected_rescaled_y = y * expected_sqrt_sw[:, np.newaxis]

    if sparse_container is not None:
        X = sparse_container(X)
        if n_targets is None:
            y = sparse_container(y.reshape(-1, 1))
        else:
            y = sparse_container(y)

    rescaled_X, rescaled_y, sqrt_sw = _rescale_data(X, y, sample_weight)

    assert_allclose(sqrt_sw, expected_sqrt_sw)

    if sparse_container is not None:
        rescaled_X = rescaled_X.toarray()
        rescaled_y = rescaled_y.toarray()
        if n_targets is None:
            rescaled_y = rescaled_y.ravel()

    assert_allclose(rescaled_X, expected_rescaled_X)
    assert_allclose(rescaled_y, expected_rescaled_y)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_fused_types_make_dataset(csr_container):
    iris = load_iris()

    X_32 = iris.data.astype(np.float32)
    y_32 = iris.target.astype(np.float32)
    X_csr_32 = csr_container(X_32)
    sample_weight_32 = np.arange(y_32.size, dtype=np.float32)

    X_64 = iris.data.astype(np.float64)
    y_64 = iris.target.astype(np.float64)
    X_csr_64 = csr_container(X_64)
    sample_weight_64 = np.arange(y_64.size, dtype=np.float64)

    # array
    dataset_32, _ = make_dataset(X_32, y_32, sample_weight_32)
    dataset_64, _ = make_dataset(X_64, y_64, sample_weight_64)
    xi_32, yi_32, _, _ = dataset_32._next_py()
    xi_64, yi_64, _, _ = dataset_64._next_py()
    xi_data_32, _, _ = xi_32
    xi_data_64, _, _ = xi_64

    assert xi_data_32.dtype == np.float32
    assert xi_data_64.dtype == np.float64
    assert_allclose(yi_64, yi_32, rtol=rtol)

    # csr
    datasetcsr_32, _ = make_dataset(X_csr_32, y_32, sample_weight_32)
    datasetcsr_64, _ = make_dataset(X_csr_64, y_64, sample_weight_64)
    xicsr_32, yicsr_32, _, _ = datasetcsr_32._next_py()
    xicsr_64, yicsr_64, _, _ = datasetcsr_64._next_py()
    xicsr_data_32, _, _ = xicsr_32
    xicsr_data_64, _, _ = xicsr_64

    assert xicsr_data_32.dtype == np.float32
    assert xicsr_data_64.dtype == np.float64

    assert_allclose(xicsr_data_64, xicsr_data_32, rtol=rtol)
    assert_allclose(yicsr_64, yicsr_32, rtol=rtol)

    assert_array_equal(xi_data_32, xicsr_data_32)
    assert_array_equal(xi_data_64, xicsr_data_64)
    assert_array_equal(yi_32, yicsr_32)
    assert_array_equal(yi_64, yicsr_64)


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_linear_regression_sample_weight_consistency(
    sparse_container, fit_intercept, global_random_seed
):
    """Test that the impact of sample_weight is consistent.

    Note that this test is stricter than the common test
    check_sample_weights_invariance alone and also tests sparse X.
    It is very similar to test_enet_sample_weight_consistency.
    """
    rng = np.random.RandomState(global_random_seed)
    n_samples, n_features = 10, 5

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    if sparse_container is not None:
        X = sparse_container(X)
    params = dict(fit_intercept=fit_intercept)

    reg = LinearRegression(**params).fit(X, y, sample_weight=None)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_

    # 1) sample_weight=np.ones(..) must be equivalent to sample_weight=None
    # same check as check_sample_weights_invariance(name, reg, kind="ones"), but we also
    # test with sparse input.
    sample_weight = np.ones_like(y)
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 2) sample_weight=None should be equivalent to sample_weight = number
    sample_weight = 123.0
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 3) scaling of sample_weight should have no effect, cf. np.average()
    sample_weight = rng.uniform(low=0.01, high=2, size=X.shape[0])
    reg = reg.fit(X, y, sample_weight=sample_weight)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_

    reg.fit(X, y, sample_weight=np.pi * sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6 if sparse_container is None else 1e-5)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 4) setting elements of sample_weight to 0 is equivalent to removing these samples
    sample_weight_0 = sample_weight.copy()
    sample_weight_0[-5:] = 0
    y[-5:] *= 1000  # to make excluding those samples important
    reg.fit(X, y, sample_weight=sample_weight_0)
    coef_0 = reg.coef_.copy()
    if fit_intercept:
        intercept_0 = reg.intercept_
    reg.fit(X[:-5], y[:-5], sample_weight=sample_weight[:-5])
    if fit_intercept and sparse_container is None:
        # FIXME: https://github.com/scikit-learn/scikit-learn/issues/26164
        # This often fails, e.g. when calling
        # SKLEARN_TESTS_GLOBAL_RANDOM_SEED="all" pytest \
        # sklearn/linear_model/tests/test_base.py\
        # ::test_linear_regression_sample_weight_consistency
        pass
    else:
        assert_allclose(reg.coef_, coef_0, rtol=1e-5)
        if fit_intercept:
            assert_allclose(reg.intercept_, intercept_0)

    # 5) check that multiplying sample_weight by 2 is equivalent to repeating
    # corresponding samples twice
    if sparse_container is not None:
        X2 = sparse.vstack([X, X[: n_samples // 2]], format="csc")
    else:
        X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
    y2 = np.concatenate([y, y[: n_samples // 2]])
    sample_weight_1 = sample_weight.copy()
    sample_weight_1[: n_samples // 2] *= 2
    sample_weight_2 = np.concatenate(
        [sample_weight, sample_weight[: n_samples // 2]], axis=0
    )

    reg1 = LinearRegression(**params).fit(X, y, sample_weight=sample_weight_1)
    reg2 = LinearRegression(**params).fit(X2, y2, sample_weight=sample_weight_2)
    assert_allclose(reg1.coef_, reg2.coef_, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg1.intercept_, reg2.intercept_)