1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause
from math import log
import numpy as np
import pytest
from sklearn import datasets
from sklearn.linear_model import ARDRegression, BayesianRidge, Ridge
from sklearn.utils import check_random_state
from sklearn.utils._testing import (
_convert_container,
assert_almost_equal,
assert_array_almost_equal,
assert_array_less,
)
from sklearn.utils.extmath import fast_logdet
diabetes = datasets.load_diabetes()
def test_bayesian_ridge_scores():
"""Check scores attribute shape"""
X, y = diabetes.data, diabetes.target
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)
assert clf.scores_.shape == (clf.n_iter_ + 1,)
def test_bayesian_ridge_score_values():
"""Check value of score on toy example.
Compute log marginal likelihood with equation (36) in Sparse Bayesian
Learning and the Relevance Vector Machine (Tipping, 2001):
- 0.5 * (log |Id/alpha + X.X^T/lambda| +
y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
+ lambda_1 * log(lambda) - lambda_2 * lambda
+ alpha_1 * log(alpha) - alpha_2 * alpha
and check equality with the score computed during training.
"""
X, y = diabetes.data, diabetes.target
n_samples = X.shape[0]
# check with initial values of alpha and lambda (see code for the values)
eps = np.finfo(np.float64).eps
alpha_ = 1.0 / (np.var(y) + eps)
lambda_ = 1.0
# value of the parameters of the Gamma hyperpriors
alpha_1 = 0.1
alpha_2 = 0.1
lambda_1 = 0.1
lambda_2 = 0.1
# compute score using formula of docstring
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
M = 1.0 / alpha_ * np.eye(n_samples) + 1.0 / lambda_ * np.dot(X, X.T)
M_inv_dot_y = np.linalg.solve(M, y)
score += -0.5 * (
fast_logdet(M) + np.dot(y.T, M_inv_dot_y) + n_samples * log(2 * np.pi)
)
# compute score with BayesianRidge
clf = BayesianRidge(
alpha_1=alpha_1,
alpha_2=alpha_2,
lambda_1=lambda_1,
lambda_2=lambda_2,
max_iter=1,
fit_intercept=False,
compute_score=True,
)
clf.fit(X, y)
assert_almost_equal(clf.scores_[0], score, decimal=9)
def test_bayesian_ridge_parameter():
# Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_bayesian_sample_weights():
# Test correctness of the sample_weights method
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
w = np.array([4, 3, 3, 1, 1, 2, 3]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
X, y, sample_weight=w
)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_toy_bayesian_ridge_object():
# Test BayesianRidge on toy
X = np.array([[1], [2], [6], [8], [10]])
Y = np.array([1, 2, 6, 8, 10])
clf = BayesianRidge(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
def test_bayesian_initial_params():
# Test BayesianRidge with initial values (alpha_init, lambda_init)
X = np.vander(np.linspace(0, 4, 5), 4)
y = np.array([0.0, 1.0, 0.0, -1.0, 0.0]) # y = (x^3 - 6x^2 + 8x) / 3
# In this case, starting from the default initial values will increase
# the bias of the fitted curve. So, lambda_init should be small.
reg = BayesianRidge(alpha_init=1.0, lambda_init=1e-3)
# Check the R2 score nearly equals to one.
r2 = reg.fit(X, y).score(X, y)
assert_almost_equal(r2, 1.0)
def test_prediction_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression predictions for edge case of
# constant target vectors
n_samples = 4
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
expected = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
for clf in [BayesianRidge(), ARDRegression()]:
y_pred = clf.fit(X, y).predict(X)
assert_array_almost_equal(y_pred, expected)
def test_std_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression standard dev. for edge case of
# constant target vector
# The standard dev. should be relatively small (< 0.01 is tested here)
n_samples = 10
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
expected_upper_boundary = 0.01
for clf in [BayesianRidge(), ARDRegression()]:
_, y_std = clf.fit(X, y).predict(X, return_std=True)
assert_array_less(y_std, expected_upper_boundary)
def test_update_of_sigma_in_ard():
# Checks that `sigma_` is updated correctly after the last iteration
# of the ARDRegression algorithm. See issue #10128.
X = np.array([[1, 0], [0, 0]])
y = np.array([0, 0])
clf = ARDRegression(max_iter=1)
clf.fit(X, y)
# With the inputs above, ARDRegression prunes both of the two coefficients
# in the first iteration. Hence, the expected shape of `sigma_` is (0, 0).
assert clf.sigma_.shape == (0, 0)
# Ensure that no error is thrown at prediction stage
clf.predict(X, return_std=True)
def test_toy_ard_object():
# Test BayesianRegression ARD classifier
X = np.array([[1], [2], [3]])
Y = np.array([1, 2, 3])
clf = ARDRegression(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
@pytest.mark.parametrize("n_samples, n_features", ((10, 100), (100, 10)))
def test_ard_accuracy_on_easy_problem(global_random_seed, n_samples, n_features):
# Check that ARD converges with reasonable accuracy on an easy problem
# (Github issue #14055)
X = np.random.RandomState(global_random_seed).normal(size=(250, 3))
y = X[:, 1]
regressor = ARDRegression()
regressor.fit(X, y)
abs_coef_error = np.abs(1 - regressor.coef_[1])
assert abs_coef_error < 1e-10
@pytest.mark.parametrize("constructor_name", ["array", "dataframe"])
def test_return_std(constructor_name):
# Test return_std option for both Bayesian regressors
def f(X):
return np.dot(X, w) + b
def f_noise(X, noise_mult):
return f(X) + np.random.randn(X.shape[0]) * noise_mult
d = 5
n_train = 50
n_test = 10
w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
b = 1.0
X = np.random.random((n_train, d))
X = _convert_container(X, constructor_name)
X_test = np.random.random((n_test, d))
X_test = _convert_container(X_test, constructor_name)
for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
y = f_noise(X, noise_mult)
m1 = BayesianRidge()
m1.fit(X, y)
y_mean1, y_std1 = m1.predict(X_test, return_std=True)
assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)
m2 = ARDRegression()
m2.fit(X, y)
y_mean2, y_std2 = m2.predict(X_test, return_std=True)
assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
def test_update_sigma(global_random_seed):
# make sure the two update_sigma() helpers are equivalent. The woodbury
# formula is used when n_samples < n_features, and the other one is used
# otherwise.
rng = np.random.RandomState(global_random_seed)
# set n_samples == n_features to avoid instability issues when inverting
# the matrices. Using the woodbury formula would be unstable when
# n_samples > n_features
n_samples = n_features = 10
X = rng.randn(n_samples, n_features)
alpha = 1
lmbda = np.arange(1, n_features + 1)
keep_lambda = np.array([True] * n_features)
reg = ARDRegression()
sigma = reg._update_sigma(X, alpha, lmbda, keep_lambda)
sigma_woodbury = reg._update_sigma_woodbury(X, alpha, lmbda, keep_lambda)
np.testing.assert_allclose(sigma, sigma_woodbury)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_dtype_match(dtype, Estimator):
# Test that np.float32 input data is not cast to np.float64 when possible
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]], dtype=dtype)
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
model = Estimator()
# check type consistency
model.fit(X, y)
attributes = ["coef_", "sigma_"]
for attribute in attributes:
assert getattr(model, attribute).dtype == X.dtype
y_mean, y_std = model.predict(X, return_std=True)
assert y_mean.dtype == X.dtype
assert y_std.dtype == X.dtype
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_dtype_correctness(Estimator):
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
model = Estimator()
coef_32 = model.fit(X.astype(np.float32), y).coef_
coef_64 = model.fit(X.astype(np.float64), y).coef_
np.testing.assert_allclose(coef_32, coef_64, rtol=1e-4)
# TODO(1.5) remove
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_bayesian_ridge_ard_n_iter_deprecated(Estimator):
"""Check the deprecation warning of `n_iter`."""
depr_msg = (
"'n_iter' was renamed to 'max_iter' in version 1.3 and will be removed in 1.5"
)
X, y = diabetes.data, diabetes.target
model = Estimator(n_iter=5)
with pytest.warns(FutureWarning, match=depr_msg):
model.fit(X, y)
# TODO(1.5) remove
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_bayesian_ridge_ard_max_iter_and_n_iter_both_set(Estimator):
"""Check that a ValueError is raised when both `max_iter` and `n_iter` are set."""
err_msg = (
"Both `n_iter` and `max_iter` attributes were set. Attribute"
" `n_iter` was deprecated in version 1.3 and will be removed in"
" 1.5. To avoid this error, only set the `max_iter` attribute."
)
X, y = diabetes.data, diabetes.target
model = Estimator(n_iter=5, max_iter=5)
with pytest.raises(ValueError, match=err_msg):
model.fit(X, y)
|