File: test_bayes.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (329 lines) | stat: -rw-r--r-- 11,584 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause

from math import log

import numpy as np
import pytest

from sklearn import datasets
from sklearn.linear_model import ARDRegression, BayesianRidge, Ridge
from sklearn.utils import check_random_state
from sklearn.utils._testing import (
    _convert_container,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_less,
)
from sklearn.utils.extmath import fast_logdet

diabetes = datasets.load_diabetes()


def test_bayesian_ridge_scores():
    """Check scores attribute shape"""
    X, y = diabetes.data, diabetes.target

    clf = BayesianRidge(compute_score=True)
    clf.fit(X, y)

    assert clf.scores_.shape == (clf.n_iter_ + 1,)


def test_bayesian_ridge_score_values():
    """Check value of score on toy example.

    Compute log marginal likelihood with equation (36) in Sparse Bayesian
    Learning and the Relevance Vector Machine (Tipping, 2001):

    - 0.5 * (log |Id/alpha + X.X^T/lambda| +
             y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
    + lambda_1 * log(lambda) - lambda_2 * lambda
    + alpha_1 * log(alpha) - alpha_2 * alpha

    and check equality with the score computed during training.
    """

    X, y = diabetes.data, diabetes.target
    n_samples = X.shape[0]
    # check with initial values of alpha and lambda (see code for the values)
    eps = np.finfo(np.float64).eps
    alpha_ = 1.0 / (np.var(y) + eps)
    lambda_ = 1.0

    # value of the parameters of the Gamma hyperpriors
    alpha_1 = 0.1
    alpha_2 = 0.1
    lambda_1 = 0.1
    lambda_2 = 0.1

    # compute score using formula of docstring
    score = lambda_1 * log(lambda_) - lambda_2 * lambda_
    score += alpha_1 * log(alpha_) - alpha_2 * alpha_
    M = 1.0 / alpha_ * np.eye(n_samples) + 1.0 / lambda_ * np.dot(X, X.T)
    M_inv_dot_y = np.linalg.solve(M, y)
    score += -0.5 * (
        fast_logdet(M) + np.dot(y.T, M_inv_dot_y) + n_samples * log(2 * np.pi)
    )

    # compute score with BayesianRidge
    clf = BayesianRidge(
        alpha_1=alpha_1,
        alpha_2=alpha_2,
        lambda_1=lambda_1,
        lambda_2=lambda_2,
        max_iter=1,
        fit_intercept=False,
        compute_score=True,
    )
    clf.fit(X, y)

    assert_almost_equal(clf.scores_[0], score, decimal=9)


def test_bayesian_ridge_parameter():
    # Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
    X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
    y = np.array([1, 2, 3, 2, 0, 4, 5]).T

    # A Ridge regression model using an alpha value equal to the ratio of
    # lambda_ and alpha_ from the Bayesian Ridge model must be identical
    br_model = BayesianRidge(compute_score=True).fit(X, y)
    rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
    assert_array_almost_equal(rr_model.coef_, br_model.coef_)
    assert_almost_equal(rr_model.intercept_, br_model.intercept_)


def test_bayesian_sample_weights():
    # Test correctness of the sample_weights method
    X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
    y = np.array([1, 2, 3, 2, 0, 4, 5]).T
    w = np.array([4, 3, 3, 1, 1, 2, 3]).T

    # A Ridge regression model using an alpha value equal to the ratio of
    # lambda_ and alpha_ from the Bayesian Ridge model must be identical
    br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
    rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
        X, y, sample_weight=w
    )
    assert_array_almost_equal(rr_model.coef_, br_model.coef_)
    assert_almost_equal(rr_model.intercept_, br_model.intercept_)


def test_toy_bayesian_ridge_object():
    # Test BayesianRidge on toy
    X = np.array([[1], [2], [6], [8], [10]])
    Y = np.array([1, 2, 6, 8, 10])
    clf = BayesianRidge(compute_score=True)
    clf.fit(X, Y)

    # Check that the model could approximately learn the identity function
    test = [[1], [3], [4]]
    assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)


def test_bayesian_initial_params():
    # Test BayesianRidge with initial values (alpha_init, lambda_init)
    X = np.vander(np.linspace(0, 4, 5), 4)
    y = np.array([0.0, 1.0, 0.0, -1.0, 0.0])  # y = (x^3 - 6x^2 + 8x) / 3

    # In this case, starting from the default initial values will increase
    # the bias of the fitted curve. So, lambda_init should be small.
    reg = BayesianRidge(alpha_init=1.0, lambda_init=1e-3)
    # Check the R2 score nearly equals to one.
    r2 = reg.fit(X, y).score(X, y)
    assert_almost_equal(r2, 1.0)


def test_prediction_bayesian_ridge_ard_with_constant_input():
    # Test BayesianRidge and ARDRegression predictions for edge case of
    # constant target vectors
    n_samples = 4
    n_features = 5
    random_state = check_random_state(42)
    constant_value = random_state.rand()
    X = random_state.random_sample((n_samples, n_features))
    y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
    expected = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)

    for clf in [BayesianRidge(), ARDRegression()]:
        y_pred = clf.fit(X, y).predict(X)
        assert_array_almost_equal(y_pred, expected)


def test_std_bayesian_ridge_ard_with_constant_input():
    # Test BayesianRidge and ARDRegression standard dev. for edge case of
    # constant target vector
    # The standard dev. should be relatively small (< 0.01 is tested here)
    n_samples = 10
    n_features = 5
    random_state = check_random_state(42)
    constant_value = random_state.rand()
    X = random_state.random_sample((n_samples, n_features))
    y = np.full(n_samples, constant_value, dtype=np.array(constant_value).dtype)
    expected_upper_boundary = 0.01

    for clf in [BayesianRidge(), ARDRegression()]:
        _, y_std = clf.fit(X, y).predict(X, return_std=True)
        assert_array_less(y_std, expected_upper_boundary)


def test_update_of_sigma_in_ard():
    # Checks that `sigma_` is updated correctly after the last iteration
    # of the ARDRegression algorithm. See issue #10128.
    X = np.array([[1, 0], [0, 0]])
    y = np.array([0, 0])
    clf = ARDRegression(max_iter=1)
    clf.fit(X, y)
    # With the inputs above, ARDRegression prunes both of the two coefficients
    # in the first iteration. Hence, the expected shape of `sigma_` is (0, 0).
    assert clf.sigma_.shape == (0, 0)
    # Ensure that no error is thrown at prediction stage
    clf.predict(X, return_std=True)


def test_toy_ard_object():
    # Test BayesianRegression ARD classifier
    X = np.array([[1], [2], [3]])
    Y = np.array([1, 2, 3])
    clf = ARDRegression(compute_score=True)
    clf.fit(X, Y)

    # Check that the model could approximately learn the identity function
    test = [[1], [3], [4]]
    assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)


@pytest.mark.parametrize("n_samples, n_features", ((10, 100), (100, 10)))
def test_ard_accuracy_on_easy_problem(global_random_seed, n_samples, n_features):
    # Check that ARD converges with reasonable accuracy on an easy problem
    # (Github issue #14055)
    X = np.random.RandomState(global_random_seed).normal(size=(250, 3))
    y = X[:, 1]

    regressor = ARDRegression()
    regressor.fit(X, y)

    abs_coef_error = np.abs(1 - regressor.coef_[1])
    assert abs_coef_error < 1e-10


@pytest.mark.parametrize("constructor_name", ["array", "dataframe"])
def test_return_std(constructor_name):
    # Test return_std option for both Bayesian regressors
    def f(X):
        return np.dot(X, w) + b

    def f_noise(X, noise_mult):
        return f(X) + np.random.randn(X.shape[0]) * noise_mult

    d = 5
    n_train = 50
    n_test = 10

    w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
    b = 1.0

    X = np.random.random((n_train, d))
    X = _convert_container(X, constructor_name)

    X_test = np.random.random((n_test, d))
    X_test = _convert_container(X_test, constructor_name)

    for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
        y = f_noise(X, noise_mult)

        m1 = BayesianRidge()
        m1.fit(X, y)
        y_mean1, y_std1 = m1.predict(X_test, return_std=True)
        assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)

        m2 = ARDRegression()
        m2.fit(X, y)
        y_mean2, y_std2 = m2.predict(X_test, return_std=True)
        assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)


def test_update_sigma(global_random_seed):
    # make sure the two update_sigma() helpers are equivalent. The woodbury
    # formula is used when n_samples < n_features, and the other one is used
    # otherwise.

    rng = np.random.RandomState(global_random_seed)

    # set n_samples == n_features to avoid instability issues when inverting
    # the matrices. Using the woodbury formula would be unstable when
    # n_samples > n_features
    n_samples = n_features = 10
    X = rng.randn(n_samples, n_features)
    alpha = 1
    lmbda = np.arange(1, n_features + 1)
    keep_lambda = np.array([True] * n_features)

    reg = ARDRegression()

    sigma = reg._update_sigma(X, alpha, lmbda, keep_lambda)
    sigma_woodbury = reg._update_sigma_woodbury(X, alpha, lmbda, keep_lambda)

    np.testing.assert_allclose(sigma, sigma_woodbury)


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_dtype_match(dtype, Estimator):
    # Test that np.float32 input data is not cast to np.float64 when possible
    X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]], dtype=dtype)
    y = np.array([1, 2, 3, 2, 0, 4, 5]).T

    model = Estimator()
    # check type consistency
    model.fit(X, y)
    attributes = ["coef_", "sigma_"]
    for attribute in attributes:
        assert getattr(model, attribute).dtype == X.dtype

    y_mean, y_std = model.predict(X, return_std=True)
    assert y_mean.dtype == X.dtype
    assert y_std.dtype == X.dtype


@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_dtype_correctness(Estimator):
    X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
    y = np.array([1, 2, 3, 2, 0, 4, 5]).T
    model = Estimator()
    coef_32 = model.fit(X.astype(np.float32), y).coef_
    coef_64 = model.fit(X.astype(np.float64), y).coef_
    np.testing.assert_allclose(coef_32, coef_64, rtol=1e-4)


# TODO(1.5) remove
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_bayesian_ridge_ard_n_iter_deprecated(Estimator):
    """Check the deprecation warning of `n_iter`."""
    depr_msg = (
        "'n_iter' was renamed to 'max_iter' in version 1.3 and will be removed in 1.5"
    )
    X, y = diabetes.data, diabetes.target
    model = Estimator(n_iter=5)

    with pytest.warns(FutureWarning, match=depr_msg):
        model.fit(X, y)


# TODO(1.5) remove
@pytest.mark.parametrize("Estimator", [BayesianRidge, ARDRegression])
def test_bayesian_ridge_ard_max_iter_and_n_iter_both_set(Estimator):
    """Check that a ValueError is raised when both `max_iter` and `n_iter` are set."""
    err_msg = (
        "Both `n_iter` and `max_iter` attributes were set. Attribute"
        " `n_iter` was deprecated in version 1.3 and will be removed in"
        " 1.5. To avoid this error, only set the `max_iter` attribute."
    )
    X, y = diabetes.data, diabetes.target
    model = Estimator(n_iter=5, max_iter=5)

    with pytest.raises(ValueError, match=err_msg):
        model.fit(X, y)