1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
# License: BSD 3 clause
import inspect
import numpy as np
import pytest
from sklearn.base import is_classifier
from sklearn.datasets import make_low_rank_matrix
from sklearn.linear_model import (
ARDRegression,
BayesianRidge,
ElasticNet,
ElasticNetCV,
Lars,
LarsCV,
Lasso,
LassoCV,
LassoLarsCV,
LassoLarsIC,
LinearRegression,
LogisticRegression,
LogisticRegressionCV,
MultiTaskElasticNet,
MultiTaskElasticNetCV,
MultiTaskLasso,
MultiTaskLassoCV,
OrthogonalMatchingPursuit,
OrthogonalMatchingPursuitCV,
PoissonRegressor,
Ridge,
RidgeCV,
SGDRegressor,
TweedieRegressor,
)
# Note: GammaRegressor() and TweedieRegressor(power != 1) have a non-canonical link.
@pytest.mark.parametrize(
"model",
[
ARDRegression(),
BayesianRidge(),
ElasticNet(),
ElasticNetCV(),
Lars(),
LarsCV(),
Lasso(),
LassoCV(),
LassoLarsCV(),
LassoLarsIC(),
LinearRegression(),
# TODO: FIx SAGA which fails badly with sample_weights.
# This is a known limitation, see:
# https://github.com/scikit-learn/scikit-learn/issues/21305
pytest.param(
LogisticRegression(
penalty="elasticnet", solver="saga", l1_ratio=0.5, tol=1e-15
),
marks=pytest.mark.xfail(reason="Missing importance sampling scheme"),
),
LogisticRegressionCV(tol=1e-6),
MultiTaskElasticNet(),
MultiTaskElasticNetCV(),
MultiTaskLasso(),
MultiTaskLassoCV(),
OrthogonalMatchingPursuit(),
OrthogonalMatchingPursuitCV(),
PoissonRegressor(),
Ridge(),
RidgeCV(),
pytest.param(
SGDRegressor(tol=1e-15),
marks=pytest.mark.xfail(reason="Insufficient precision."),
),
SGDRegressor(penalty="elasticnet", max_iter=10_000),
TweedieRegressor(power=0), # same as Ridge
],
ids=lambda x: x.__class__.__name__,
)
@pytest.mark.parametrize("with_sample_weight", [False, True])
def test_balance_property(model, with_sample_weight, global_random_seed):
# Test that sum(y_predicted) == sum(y_observed) on the training set.
# This must hold for all linear models with deviance of an exponential disperson
# family as loss and the corresponding canonical link if fit_intercept=True.
# Examples:
# - squared error and identity link (most linear models)
# - Poisson deviance with log link
# - log loss with logit link
# This is known as balance property or unconditional calibration/unbiasedness.
# For reference, see Corollary 3.18, 3.20 and Chapter 5.1.5 of
# M.V. Wuthrich and M. Merz, "Statistical Foundations of Actuarial Learning and its
# Applications" (June 3, 2022). http://doi.org/10.2139/ssrn.3822407
if (
with_sample_weight
and "sample_weight" not in inspect.signature(model.fit).parameters.keys()
):
pytest.skip("Estimator does not support sample_weight.")
rel = 2e-4 # test precision
if isinstance(model, SGDRegressor):
rel = 1e-1
elif hasattr(model, "solver") and model.solver == "saga":
rel = 1e-2
rng = np.random.RandomState(global_random_seed)
n_train, n_features, n_targets = 100, 10, None
if isinstance(
model,
(MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLasso, MultiTaskLassoCV),
):
n_targets = 3
X = make_low_rank_matrix(n_samples=n_train, n_features=n_features, random_state=rng)
if n_targets:
coef = (
rng.uniform(low=-2, high=2, size=(n_features, n_targets))
/ np.max(X, axis=0)[:, None]
)
else:
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
expectation = np.exp(X @ coef + 0.5)
y = rng.poisson(lam=expectation) + 1 # strict positive, i.e. y > 0
if is_classifier(model):
y = (y > expectation + 1).astype(np.float64)
if with_sample_weight:
sw = rng.uniform(low=1, high=10, size=y.shape[0])
else:
sw = None
model.set_params(fit_intercept=True) # to be sure
if with_sample_weight:
model.fit(X, y, sample_weight=sw)
else:
model.fit(X, y)
# Assert balance property.
if is_classifier(model):
assert np.average(model.predict_proba(X)[:, 1], weights=sw) == pytest.approx(
np.average(y, weights=sw), rel=rel
)
else:
assert np.average(model.predict(X), weights=sw, axis=0) == pytest.approx(
np.average(y, weights=sw, axis=0), rel=rel
)
|