File: test_coordinate_descent.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1633 lines) | stat: -rw-r--r-- 56,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import warnings
from copy import deepcopy

import joblib
import numpy as np
import pytest
from scipy import interpolate, sparse

from sklearn.base import clone, is_classifier
from sklearn.datasets import load_diabetes, make_regression
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import (
    ElasticNet,
    ElasticNetCV,
    Lasso,
    LassoCV,
    LassoLars,
    LassoLarsCV,
    LinearRegression,
    MultiTaskElasticNet,
    MultiTaskElasticNetCV,
    MultiTaskLasso,
    MultiTaskLassoCV,
    Ridge,
    RidgeClassifier,
    RidgeClassifierCV,
    RidgeCV,
    enet_path,
    lars_path,
    lasso_path,
)
from sklearn.linear_model._coordinate_descent import _set_order
from sklearn.model_selection import (
    BaseCrossValidator,
    GridSearchCV,
    LeaveOneGroupOut,
)
from sklearn.model_selection._split import GroupsConsumerMixin
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_array
from sklearn.utils._testing import (
    TempMemmap,
    assert_allclose,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS


@pytest.mark.parametrize("order", ["C", "F"])
@pytest.mark.parametrize("input_order", ["C", "F"])
def test_set_order_dense(order, input_order):
    """Check that _set_order returns arrays with promised order."""
    X = np.array([[0], [0], [0]], order=input_order)
    y = np.array([0, 0, 0], order=input_order)
    X2, y2 = _set_order(X, y, order=order)
    if order == "C":
        assert X2.flags["C_CONTIGUOUS"]
        assert y2.flags["C_CONTIGUOUS"]
    elif order == "F":
        assert X2.flags["F_CONTIGUOUS"]
        assert y2.flags["F_CONTIGUOUS"]

    if order == input_order:
        assert X is X2
        assert y is y2


@pytest.mark.parametrize("order", ["C", "F"])
@pytest.mark.parametrize("input_order", ["C", "F"])
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
def test_set_order_sparse(order, input_order, coo_container):
    """Check that _set_order returns sparse matrices in promised format."""
    X = coo_container(np.array([[0], [0], [0]]))
    y = coo_container(np.array([0, 0, 0]))
    sparse_format = "csc" if input_order == "F" else "csr"
    X = X.asformat(sparse_format)
    y = X.asformat(sparse_format)
    X2, y2 = _set_order(X, y, order=order)

    format = "csc" if order == "F" else "csr"
    assert sparse.issparse(X2) and X2.format == format
    assert sparse.issparse(y2) and y2.format == format


def test_lasso_zero():
    # Check that the lasso can handle zero data without crashing
    X = [[0], [0], [0]]
    y = [0, 0, 0]
    clf = Lasso(alpha=0.1).fit(X, y)
    pred = clf.predict([[1], [2], [3]])
    assert_array_almost_equal(clf.coef_, [0])
    assert_array_almost_equal(pred, [0, 0, 0])
    assert_almost_equal(clf.dual_gap_, 0)


def test_enet_nonfinite_params():
    # Check ElasticNet throws ValueError when dealing with non-finite parameter
    # values
    rng = np.random.RandomState(0)
    n_samples = 10
    fmax = np.finfo(np.float64).max
    X = fmax * rng.uniform(size=(n_samples, 2))
    y = rng.randint(0, 2, size=n_samples)

    clf = ElasticNet(alpha=0.1)
    msg = "Coordinate descent iterations resulted in non-finite parameter values"
    with pytest.raises(ValueError, match=msg):
        clf.fit(X, y)


def test_lasso_toy():
    # Test Lasso on a toy example for various values of alpha.
    # When validating this against glmnet notice that glmnet divides it
    # against nobs.

    X = [[-1], [0], [1]]
    Y = [-1, 0, 1]  # just a straight line
    T = [[2], [3], [4]]  # test sample

    clf = Lasso(alpha=1e-8)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = Lasso(alpha=0.1)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.85])
    assert_array_almost_equal(pred, [1.7, 2.55, 3.4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = Lasso(alpha=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.25])
    assert_array_almost_equal(pred, [0.5, 0.75, 1.0])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = Lasso(alpha=1)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.0])
    assert_array_almost_equal(pred, [0, 0, 0])
    assert_almost_equal(clf.dual_gap_, 0)


def test_enet_toy():
    # Test ElasticNet for various parameters of alpha and l1_ratio.
    # Actually, the parameters alpha = 0 should not be allowed. However,
    # we test it as a border case.
    # ElasticNet is tested with and without precomputed Gram matrix

    X = np.array([[-1.0], [0.0], [1.0]])
    Y = [-1, 0, 1]  # just a straight line
    T = [[2.0], [3.0], [4.0]]  # test sample

    # this should be the same as lasso
    clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=True)
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)


def test_lasso_dual_gap():
    """
    Check that Lasso.dual_gap_ matches its objective formulation, with the
    datafit normalized by n_samples
    """
    X, y, _, _ = build_dataset(n_samples=10, n_features=30)
    n_samples = len(y)
    alpha = 0.01 * np.max(np.abs(X.T @ y)) / n_samples
    clf = Lasso(alpha=alpha, fit_intercept=False).fit(X, y)
    w = clf.coef_
    R = y - X @ w
    primal = 0.5 * np.mean(R**2) + clf.alpha * np.sum(np.abs(w))
    # dual pt: R / n_samples, dual constraint: norm(X.T @ theta, inf) <= alpha
    R /= np.max(np.abs(X.T @ R) / (n_samples * alpha))
    dual = 0.5 * (np.mean(y**2) - np.mean((y - R) ** 2))
    assert_allclose(clf.dual_gap_, primal - dual)


def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1):
    """
    build an ill-posed linear regression problem with many noisy features and
    comparatively few samples
    """
    random_state = np.random.RandomState(0)
    if n_targets > 1:
        w = random_state.randn(n_features, n_targets)
    else:
        w = random_state.randn(n_features)
    w[n_informative_features:] = 0.0
    X = random_state.randn(n_samples, n_features)
    y = np.dot(X, w)
    X_test = random_state.randn(n_samples, n_features)
    y_test = np.dot(X_test, w)
    return X, y, X_test, y_test


def test_lasso_cv():
    X, y, X_test, y_test = build_dataset()
    max_iter = 150
    clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, cv=3).fit(X, y)
    assert_almost_equal(clf.alpha_, 0.056, 2)

    clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True, cv=3)
    clf.fit(X, y)
    assert_almost_equal(clf.alpha_, 0.056, 2)

    # Check that the lars and the coordinate descent implementation
    # select a similar alpha
    lars = LassoLarsCV(max_iter=30, cv=3).fit(X, y)
    # for this we check that they don't fall in the grid of
    # clf.alphas further than 1
    assert (
        np.abs(
            np.searchsorted(clf.alphas_[::-1], lars.alpha_)
            - np.searchsorted(clf.alphas_[::-1], clf.alpha_)
        )
        <= 1
    )
    # check that they also give a similar MSE
    mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.mse_path_.T)
    np.testing.assert_approx_equal(
        mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2
    )

    # test set
    assert clf.score(X_test, y_test) > 0.99


def test_lasso_cv_with_some_model_selection():
    from sklearn import datasets
    from sklearn.model_selection import ShuffleSplit

    diabetes = datasets.load_diabetes()
    X = diabetes.data
    y = diabetes.target

    pipe = make_pipeline(StandardScaler(), LassoCV(cv=ShuffleSplit(random_state=0)))
    pipe.fit(X, y)


def test_lasso_cv_positive_constraint():
    X, y, X_test, y_test = build_dataset()
    max_iter = 500

    # Ensure the unconstrained fit has a negative coefficient
    clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1)
    clf_unconstrained.fit(X, y)
    assert min(clf_unconstrained.coef_) < 0

    # On same data, constrained fit has non-negative coefficients
    clf_constrained = LassoCV(
        n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1
    )
    clf_constrained.fit(X, y)
    assert min(clf_constrained.coef_) >= 0


@pytest.mark.parametrize(
    "alphas, err_type, err_msg",
    [
        ((1, -1, -100), ValueError, r"alphas\[1\] == -1, must be >= 0.0."),
        (
            (-0.1, -1.0, -10.0),
            ValueError,
            r"alphas\[0\] == -0.1, must be >= 0.0.",
        ),
        (
            (1, 1.0, "1"),
            TypeError,
            r"alphas\[2\] must be an instance of float, not str",
        ),
    ],
)
def test_lassocv_alphas_validation(alphas, err_type, err_msg):
    """Check the `alphas` validation in LassoCV."""

    n_samples, n_features = 5, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features)
    y = rng.randint(0, 2, n_samples)
    lassocv = LassoCV(alphas=alphas)
    with pytest.raises(err_type, match=err_msg):
        lassocv.fit(X, y)


def _scale_alpha_inplace(estimator, n_samples):
    """Rescale the parameter alpha from when the estimator is evoked with
    normalize set to True as if it were evoked in a Pipeline with normalize set
    to False and with a StandardScaler.
    """
    if ("alpha" not in estimator.get_params()) and (
        "alphas" not in estimator.get_params()
    ):
        return

    if isinstance(estimator, (RidgeCV, RidgeClassifierCV)):
        # alphas is not validated at this point and can be a list.
        # We convert it to a np.ndarray to make sure broadcasting
        # is used.
        alphas = np.asarray(estimator.alphas) * n_samples
        return estimator.set_params(alphas=alphas)
    if isinstance(estimator, (Lasso, LassoLars, MultiTaskLasso)):
        alpha = estimator.alpha * np.sqrt(n_samples)
    if isinstance(estimator, (Ridge, RidgeClassifier)):
        alpha = estimator.alpha * n_samples
    if isinstance(estimator, (ElasticNet, MultiTaskElasticNet)):
        if estimator.l1_ratio == 1:
            alpha = estimator.alpha * np.sqrt(n_samples)
        elif estimator.l1_ratio == 0:
            alpha = estimator.alpha * n_samples
        else:
            # To avoid silent errors in case of refactoring
            raise NotImplementedError

    estimator.set_params(alpha=alpha)


@pytest.mark.parametrize(
    "LinearModel, params",
    [
        (Lasso, {"tol": 1e-16, "alpha": 0.1}),
        (LassoCV, {"tol": 1e-16}),
        (ElasticNetCV, {}),
        (RidgeClassifier, {"solver": "sparse_cg", "alpha": 0.1}),
        (ElasticNet, {"tol": 1e-16, "l1_ratio": 1, "alpha": 0.01}),
        (ElasticNet, {"tol": 1e-16, "l1_ratio": 0, "alpha": 0.01}),
        (Ridge, {"solver": "sparse_cg", "tol": 1e-12, "alpha": 0.1}),
        (LinearRegression, {}),
        (RidgeCV, {}),
        (RidgeClassifierCV, {}),
    ],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_model_pipeline_same_dense_and_sparse(LinearModel, params, csr_container):
    # Test that linear model preceded by StandardScaler in the pipeline and
    # with normalize set to False gives the same y_pred and the same .coef_
    # given X sparse or dense

    model_dense = make_pipeline(StandardScaler(with_mean=False), LinearModel(**params))

    model_sparse = make_pipeline(StandardScaler(with_mean=False), LinearModel(**params))

    # prepare the data
    rng = np.random.RandomState(0)
    n_samples = 200
    n_features = 2
    X = rng.randn(n_samples, n_features)
    X[X < 0.1] = 0.0

    X_sparse = csr_container(X)
    y = rng.rand(n_samples)

    if is_classifier(model_dense):
        y = np.sign(y)

    model_dense.fit(X, y)
    model_sparse.fit(X_sparse, y)

    assert_allclose(model_sparse[1].coef_, model_dense[1].coef_)
    y_pred_dense = model_dense.predict(X)
    y_pred_sparse = model_sparse.predict(X_sparse)
    assert_allclose(y_pred_dense, y_pred_sparse)

    assert_allclose(model_dense[1].intercept_, model_sparse[1].intercept_)


def test_lasso_path_return_models_vs_new_return_gives_same_coefficients():
    # Test that lasso_path with lars_path style output gives the
    # same result

    # Some toy data
    X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
    y = np.array([1, 2, 3.1])
    alphas = [5.0, 1.0, 0.5]

    # Use lars_path and lasso_path(new output) with 1D linear interpolation
    # to compute the same path
    alphas_lars, _, coef_path_lars = lars_path(X, y, method="lasso")
    coef_path_cont_lars = interpolate.interp1d(
        alphas_lars[::-1], coef_path_lars[:, ::-1]
    )
    alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas)
    coef_path_cont_lasso = interpolate.interp1d(
        alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]
    )

    assert_array_almost_equal(
        coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1
    )


def test_enet_path():
    # We use a large number of samples and of informative features so that
    # the l1_ratio selected is more toward ridge than lasso
    X, y, X_test, y_test = build_dataset(
        n_samples=200, n_features=100, n_informative_features=100
    )
    max_iter = 150

    # Here we have a small number of iterations, and thus the
    # ElasticNet might not converge. This is to speed up tests
    clf = ElasticNetCV(
        alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter
    )
    ignore_warnings(clf.fit)(X, y)
    # Well-conditioned settings, we should have selected our
    # smallest penalty
    assert_almost_equal(clf.alpha_, min(clf.alphas_))
    # Non-sparse ground truth: we should have selected an elastic-net
    # that is closer to ridge than to lasso
    assert clf.l1_ratio_ == min(clf.l1_ratio)

    clf = ElasticNetCV(
        alphas=[0.01, 0.05, 0.1],
        eps=2e-3,
        l1_ratio=[0.5, 0.7],
        cv=3,
        max_iter=max_iter,
        precompute=True,
    )
    ignore_warnings(clf.fit)(X, y)

    # Well-conditioned settings, we should have selected our
    # smallest penalty
    assert_almost_equal(clf.alpha_, min(clf.alphas_))
    # Non-sparse ground truth: we should have selected an elastic-net
    # that is closer to ridge than to lasso
    assert clf.l1_ratio_ == min(clf.l1_ratio)

    # We are in well-conditioned settings with low noise: we should
    # have a good test-set performance
    assert clf.score(X_test, y_test) > 0.99

    # Multi-output/target case
    X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3)
    clf = MultiTaskElasticNetCV(
        n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter
    )
    ignore_warnings(clf.fit)(X, y)
    # We are in well-conditioned settings with low noise: we should
    # have a good test-set performance
    assert clf.score(X_test, y_test) > 0.99
    assert clf.coef_.shape == (3, 10)

    # Mono-output should have same cross-validated alpha_ and l1_ratio_
    # in both cases.
    X, y, _, _ = build_dataset(n_features=10)
    clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf1.fit(X, y)
    clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf2.fit(X, y[:, np.newaxis])
    assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_)
    assert_almost_equal(clf1.alpha_, clf2.alpha_)


def test_path_parameters():
    X, y, _, _ = build_dataset()
    max_iter = 100

    clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3)
    clf.fit(X, y)  # new params
    assert_almost_equal(0.5, clf.l1_ratio)
    assert 50 == clf.n_alphas
    assert 50 == len(clf.alphas_)


def test_warm_start():
    X, y, _, _ = build_dataset()
    clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True)
    ignore_warnings(clf.fit)(X, y)
    ignore_warnings(clf.fit)(X, y)  # do a second round with 5 iterations

    clf2 = ElasticNet(alpha=0.1, max_iter=10)
    ignore_warnings(clf2.fit)(X, y)
    assert_array_almost_equal(clf2.coef_, clf.coef_)


def test_lasso_alpha_warning():
    X = [[-1], [0], [1]]
    Y = [-1, 0, 1]  # just a straight line

    clf = Lasso(alpha=0)
    warning_message = (
        "With alpha=0, this algorithm does not "
        "converge well. You are advised to use the "
        "LinearRegression estimator"
    )
    with pytest.warns(UserWarning, match=warning_message):
        clf.fit(X, Y)


def test_lasso_positive_constraint():
    X = [[-1], [0], [1]]
    y = [1, 0, -1]  # just a straight line with negative slope

    lasso = Lasso(alpha=0.1, positive=True)
    lasso.fit(X, y)
    assert min(lasso.coef_) >= 0

    lasso = Lasso(alpha=0.1, precompute=True, positive=True)
    lasso.fit(X, y)
    assert min(lasso.coef_) >= 0


def test_enet_positive_constraint():
    X = [[-1], [0], [1]]
    y = [1, 0, -1]  # just a straight line with negative slope

    enet = ElasticNet(alpha=0.1, positive=True)
    enet.fit(X, y)
    assert min(enet.coef_) >= 0


def test_enet_cv_positive_constraint():
    X, y, X_test, y_test = build_dataset()
    max_iter = 500

    # Ensure the unconstrained fit has a negative coefficient
    enetcv_unconstrained = ElasticNetCV(
        n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1
    )
    enetcv_unconstrained.fit(X, y)
    assert min(enetcv_unconstrained.coef_) < 0

    # On same data, constrained fit has non-negative coefficients
    enetcv_constrained = ElasticNetCV(
        n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1
    )
    enetcv_constrained.fit(X, y)
    assert min(enetcv_constrained.coef_) >= 0


def test_uniform_targets():
    enet = ElasticNetCV(n_alphas=3)
    m_enet = MultiTaskElasticNetCV(n_alphas=3)
    lasso = LassoCV(n_alphas=3)
    m_lasso = MultiTaskLassoCV(n_alphas=3)

    models_single_task = (enet, lasso)
    models_multi_task = (m_enet, m_lasso)

    rng = np.random.RandomState(0)

    X_train = rng.random_sample(size=(10, 3))
    X_test = rng.random_sample(size=(10, 3))

    y1 = np.empty(10)
    y2 = np.empty((10, 2))

    for model in models_single_task:
        for y_values in (0, 5):
            y1.fill(y_values)
            assert_array_equal(model.fit(X_train, y1).predict(X_test), y1)
            assert_array_equal(model.alphas_, [np.finfo(float).resolution] * 3)

    for model in models_multi_task:
        for y_values in (0, 5):
            y2[:, 0].fill(y_values)
            y2[:, 1].fill(2 * y_values)
            assert_array_equal(model.fit(X_train, y2).predict(X_test), y2)
            assert_array_equal(model.alphas_, [np.finfo(float).resolution] * 3)


def test_multi_task_lasso_and_enet():
    X, y, X_test, y_test = build_dataset()
    Y = np.c_[y, y]
    # Y_test = np.c_[y_test, y_test]
    clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y)
    assert 0 < clf.dual_gap_ < 1e-5
    assert_array_almost_equal(clf.coef_[0], clf.coef_[1])

    clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y)
    assert 0 < clf.dual_gap_ < 1e-5
    assert_array_almost_equal(clf.coef_[0], clf.coef_[1])

    clf = MultiTaskElasticNet(alpha=1.0, tol=1e-8, max_iter=1)
    warning_message = (
        "Objective did not converge. You might want to "
        "increase the number of iterations."
    )
    with pytest.warns(ConvergenceWarning, match=warning_message):
        clf.fit(X, Y)


def test_lasso_readonly_data():
    X = np.array([[-1], [0], [1]])
    Y = np.array([-1, 0, 1])  # just a straight line
    T = np.array([[2], [3], [4]])  # test sample
    with TempMemmap((X, Y)) as (X, Y):
        clf = Lasso(alpha=0.5)
        clf.fit(X, Y)
        pred = clf.predict(T)
        assert_array_almost_equal(clf.coef_, [0.25])
        assert_array_almost_equal(pred, [0.5, 0.75, 1.0])
        assert_almost_equal(clf.dual_gap_, 0)


def test_multi_task_lasso_readonly_data():
    X, y, X_test, y_test = build_dataset()
    Y = np.c_[y, y]
    with TempMemmap((X, Y)) as (X, Y):
        Y = np.c_[y, y]
        clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y)
        assert 0 < clf.dual_gap_ < 1e-5
        assert_array_almost_equal(clf.coef_[0], clf.coef_[1])


def test_enet_multitarget():
    n_targets = 3
    X, y, _, _ = build_dataset(
        n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets
    )
    estimator = ElasticNet(alpha=0.01)
    estimator.fit(X, y)
    coef, intercept, dual_gap = (
        estimator.coef_,
        estimator.intercept_,
        estimator.dual_gap_,
    )

    for k in range(n_targets):
        estimator.fit(X, y[:, k])
        assert_array_almost_equal(coef[k, :], estimator.coef_)
        assert_array_almost_equal(intercept[k], estimator.intercept_)
        assert_array_almost_equal(dual_gap[k], estimator.dual_gap_)


def test_multioutput_enetcv_error():
    rng = np.random.RandomState(0)
    X = rng.randn(10, 2)
    y = rng.randn(10, 2)
    clf = ElasticNetCV()
    with pytest.raises(ValueError):
        clf.fit(X, y)


def test_multitask_enet_and_lasso_cv():
    X, y, _, _ = build_dataset(n_features=50, n_targets=3)
    clf = MultiTaskElasticNetCV(cv=3).fit(X, y)
    assert_almost_equal(clf.alpha_, 0.00556, 3)
    clf = MultiTaskLassoCV(cv=3).fit(X, y)
    assert_almost_equal(clf.alpha_, 0.00278, 3)

    X, y, _, _ = build_dataset(n_targets=3)
    clf = MultiTaskElasticNetCV(
        n_alphas=10, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3, cv=3
    )
    clf.fit(X, y)
    assert 0.5 == clf.l1_ratio_
    assert (3, X.shape[1]) == clf.coef_.shape
    assert (3,) == clf.intercept_.shape
    assert (2, 10, 3) == clf.mse_path_.shape
    assert (2, 10) == clf.alphas_.shape

    X, y, _, _ = build_dataset(n_targets=3)
    clf = MultiTaskLassoCV(n_alphas=10, eps=1e-3, max_iter=100, tol=1e-3, cv=3)
    clf.fit(X, y)
    assert (3, X.shape[1]) == clf.coef_.shape
    assert (3,) == clf.intercept_.shape
    assert (10, 3) == clf.mse_path_.shape
    assert 10 == len(clf.alphas_)


def test_1d_multioutput_enet_and_multitask_enet_cv():
    X, y, _, _ = build_dataset(n_features=10)
    y = y[:, np.newaxis]
    clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf.fit(X, y[:, 0])
    clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf1.fit(X, y)
    assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_)
    assert_almost_equal(clf.alpha_, clf1.alpha_)
    assert_almost_equal(clf.coef_, clf1.coef_[0])
    assert_almost_equal(clf.intercept_, clf1.intercept_[0])


def test_1d_multioutput_lasso_and_multitask_lasso_cv():
    X, y, _, _ = build_dataset(n_features=10)
    y = y[:, np.newaxis]
    clf = LassoCV(n_alphas=5, eps=2e-3)
    clf.fit(X, y[:, 0])
    clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3)
    clf1.fit(X, y)
    assert_almost_equal(clf.alpha_, clf1.alpha_)
    assert_almost_equal(clf.coef_, clf1.coef_[0])
    assert_almost_equal(clf.intercept_, clf1.intercept_[0])


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_input_dtype_enet_and_lassocv(csr_container):
    X, y, _, _ = build_dataset(n_features=10)
    clf = ElasticNetCV(n_alphas=5)
    clf.fit(csr_container(X), y)
    clf1 = ElasticNetCV(n_alphas=5)
    clf1.fit(csr_container(X, dtype=np.float32), y)
    assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6)
    assert_almost_equal(clf.coef_, clf1.coef_, decimal=6)

    clf = LassoCV(n_alphas=5)
    clf.fit(csr_container(X), y)
    clf1 = LassoCV(n_alphas=5)
    clf1.fit(csr_container(X, dtype=np.float32), y)
    assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6)
    assert_almost_equal(clf.coef_, clf1.coef_, decimal=6)


def test_elasticnet_precompute_incorrect_gram():
    # check that passing an invalid precomputed Gram matrix will raise an
    # error.
    X, y, _, _ = build_dataset()

    rng = np.random.RandomState(0)

    X_centered = X - np.average(X, axis=0)
    garbage = rng.standard_normal(X.shape)
    precompute = np.dot(garbage.T, garbage)

    clf = ElasticNet(alpha=0.01, precompute=precompute)
    msg = "Gram matrix.*did not pass validation.*"
    with pytest.raises(ValueError, match=msg):
        clf.fit(X_centered, y)


def test_elasticnet_precompute_gram_weighted_samples():
    # check the equivalence between passing a precomputed Gram matrix and
    # internal computation using sample weights.
    X, y, _, _ = build_dataset()

    rng = np.random.RandomState(0)
    sample_weight = rng.lognormal(size=y.shape)

    w_norm = sample_weight * (y.shape / np.sum(sample_weight))
    X_c = X - np.average(X, axis=0, weights=w_norm)
    X_r = X_c * np.sqrt(w_norm)[:, np.newaxis]
    gram = np.dot(X_r.T, X_r)

    clf1 = ElasticNet(alpha=0.01, precompute=gram)
    clf1.fit(X_c, y, sample_weight=sample_weight)

    clf2 = ElasticNet(alpha=0.01, precompute=False)
    clf2.fit(X, y, sample_weight=sample_weight)

    assert_allclose(clf1.coef_, clf2.coef_)


def test_elasticnet_precompute_gram():
    # Check the dtype-aware check for a precomputed Gram matrix
    # (see https://github.com/scikit-learn/scikit-learn/pull/22059
    # and https://github.com/scikit-learn/scikit-learn/issues/21997).
    # Here: (X_c.T, X_c)[2, 3] is not equal to np.dot(X_c[:, 2], X_c[:, 3])
    # but within tolerance for np.float32

    rng = np.random.RandomState(58)
    X = rng.binomial(1, 0.25, (1000, 4)).astype(np.float32)
    y = rng.rand(1000).astype(np.float32)

    X_c = X - np.average(X, axis=0)
    gram = np.dot(X_c.T, X_c)

    clf1 = ElasticNet(alpha=0.01, precompute=gram)
    clf1.fit(X_c, y)

    clf2 = ElasticNet(alpha=0.01, precompute=False)
    clf2.fit(X, y)

    assert_allclose(clf1.coef_, clf2.coef_)


def test_warm_start_convergence():
    X, y, _, _ = build_dataset()
    model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y)
    n_iter_reference = model.n_iter_

    # This dataset is not trivial enough for the model to converge in one pass.
    assert n_iter_reference > 2

    # Check that n_iter_ is invariant to multiple calls to fit
    # when warm_start=False, all else being equal.
    model.fit(X, y)
    n_iter_cold_start = model.n_iter_
    assert n_iter_cold_start == n_iter_reference

    # Fit the same model again, using a warm start: the optimizer just performs
    # a single pass before checking that it has already converged
    model.set_params(warm_start=True)
    model.fit(X, y)
    n_iter_warm_start = model.n_iter_
    assert n_iter_warm_start == 1


def test_warm_start_convergence_with_regularizer_decrement():
    X, y = load_diabetes(return_X_y=True)

    # Train a model to converge on a lightly regularized problem
    final_alpha = 1e-5
    low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y)

    # Fitting a new model on a more regularized version of the same problem.
    # Fitting with high regularization is easier it should converge faster
    # in general.
    high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y)
    assert low_reg_model.n_iter_ > high_reg_model.n_iter_

    # Fit the solution to the original, less regularized version of the
    # problem but from the solution of the highly regularized variant of
    # the problem as a better starting point. This should also converge
    # faster than the original model that starts from zero.
    warm_low_reg_model = deepcopy(high_reg_model)
    warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha)
    warm_low_reg_model.fit(X, y)
    assert low_reg_model.n_iter_ > warm_low_reg_model.n_iter_


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_random_descent(csr_container):
    # Test that both random and cyclic selection give the same results.
    # Ensure that the test models fully converge and check a wide
    # range of conditions.

    # This uses the coordinate descent algo using the gram trick.
    X, y, _, _ = build_dataset(n_samples=50, n_features=20)
    clf_cyclic = ElasticNet(selection="cyclic", tol=1e-8)
    clf_cyclic.fit(X, y)
    clf_random = ElasticNet(selection="random", tol=1e-8, random_state=42)
    clf_random.fit(X, y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # This uses the descent algo without the gram trick
    clf_cyclic = ElasticNet(selection="cyclic", tol=1e-8)
    clf_cyclic.fit(X.T, y[:20])
    clf_random = ElasticNet(selection="random", tol=1e-8, random_state=42)
    clf_random.fit(X.T, y[:20])
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Sparse Case
    clf_cyclic = ElasticNet(selection="cyclic", tol=1e-8)
    clf_cyclic.fit(csr_container(X), y)
    clf_random = ElasticNet(selection="random", tol=1e-8, random_state=42)
    clf_random.fit(csr_container(X), y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Multioutput case.
    new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
    clf_cyclic = MultiTaskElasticNet(selection="cyclic", tol=1e-8)
    clf_cyclic.fit(X, new_y)
    clf_random = MultiTaskElasticNet(selection="random", tol=1e-8, random_state=42)
    clf_random.fit(X, new_y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)


def test_enet_path_positive():
    # Test positive parameter

    X, Y, _, _ = build_dataset(n_samples=50, n_features=50, n_targets=2)

    # For mono output
    # Test that the coefs returned by positive=True in enet_path are positive
    for path in [enet_path, lasso_path]:
        pos_path_coef = path(X, Y[:, 0], positive=True)[1]
        assert np.all(pos_path_coef >= 0)

    # For multi output, positive parameter is not allowed
    # Test that an error is raised
    for path in [enet_path, lasso_path]:
        with pytest.raises(ValueError):
            path(X, Y, positive=True)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_dense_descent_paths(csr_container):
    # Test that dense and sparse input give the same input for descent paths.
    X, y, _, _ = build_dataset(n_samples=50, n_features=20)
    csr = csr_container(X)
    for path in [enet_path, lasso_path]:
        _, coefs, _ = path(X, y)
        _, sparse_coefs, _ = path(csr, y)
        assert_array_almost_equal(coefs, sparse_coefs)


@pytest.mark.parametrize("path_func", [enet_path, lasso_path])
def test_path_unknown_parameter(path_func):
    """Check that passing parameter not used by the coordinate descent solver
    will raise an error."""
    X, y, _, _ = build_dataset(n_samples=50, n_features=20)
    err_msg = "Unexpected parameters in params"
    with pytest.raises(ValueError, match=err_msg):
        path_func(X, y, normalize=True, fit_intercept=True)


def test_check_input_false():
    X, y, _, _ = build_dataset(n_samples=20, n_features=10)
    X = check_array(X, order="F", dtype="float64")
    y = check_array(X, order="F", dtype="float64")
    clf = ElasticNet(selection="cyclic", tol=1e-8)
    # Check that no error is raised if data is provided in the right format
    clf.fit(X, y, check_input=False)
    # With check_input=False, an exhaustive check is not made on y but its
    # dtype is still cast in _preprocess_data to X's dtype. So the test should
    # pass anyway
    X = check_array(X, order="F", dtype="float32")
    clf.fit(X, y, check_input=False)
    # With no input checking, providing X in C order should result in false
    # computation
    X = check_array(X, order="C", dtype="float64")
    with pytest.raises(ValueError):
        clf.fit(X, y, check_input=False)


@pytest.mark.parametrize("check_input", [True, False])
def test_enet_copy_X_True(check_input):
    X, y, _, _ = build_dataset()
    X = X.copy(order="F")

    original_X = X.copy()
    enet = ElasticNet(copy_X=True)
    enet.fit(X, y, check_input=check_input)

    assert_array_equal(original_X, X)


def test_enet_copy_X_False_check_input_False():
    X, y, _, _ = build_dataset()
    X = X.copy(order="F")

    original_X = X.copy()
    enet = ElasticNet(copy_X=False)
    enet.fit(X, y, check_input=False)

    # No copying, X is overwritten
    assert np.any(np.not_equal(original_X, X))


def test_overrided_gram_matrix():
    X, y, _, _ = build_dataset(n_samples=20, n_features=10)
    Gram = X.T.dot(X)
    clf = ElasticNet(selection="cyclic", tol=1e-8, precompute=Gram)
    warning_message = (
        "Gram matrix was provided but X was centered"
        " to fit intercept: recomputing Gram matrix."
    )
    with pytest.warns(UserWarning, match=warning_message):
        clf.fit(X, y)


@pytest.mark.parametrize("model", [ElasticNet, Lasso])
def test_lasso_non_float_y(model):
    X = [[0, 0], [1, 1], [-1, -1]]
    y = [0, 1, 2]
    y_float = [0.0, 1.0, 2.0]

    clf = model(fit_intercept=False)
    clf.fit(X, y)
    clf_float = model(fit_intercept=False)
    clf_float.fit(X, y_float)
    assert_array_equal(clf.coef_, clf_float.coef_)


def test_enet_float_precision():
    # Generate dataset
    X, y, X_test, y_test = build_dataset(n_samples=20, n_features=10)
    # Here we have a small number of iterations, and thus the
    # ElasticNet might not converge. This is to speed up tests

    for fit_intercept in [True, False]:
        coef = {}
        intercept = {}
        for dtype in [np.float64, np.float32]:
            clf = ElasticNet(
                alpha=0.5,
                max_iter=100,
                precompute=False,
                fit_intercept=fit_intercept,
            )

            X = dtype(X)
            y = dtype(y)
            ignore_warnings(clf.fit)(X, y)

            coef[("simple", dtype)] = clf.coef_
            intercept[("simple", dtype)] = clf.intercept_

            assert clf.coef_.dtype == dtype

            # test precompute Gram array
            Gram = X.T.dot(X)
            clf_precompute = ElasticNet(
                alpha=0.5,
                max_iter=100,
                precompute=Gram,
                fit_intercept=fit_intercept,
            )
            ignore_warnings(clf_precompute.fit)(X, y)
            assert_array_almost_equal(clf.coef_, clf_precompute.coef_)
            assert_array_almost_equal(clf.intercept_, clf_precompute.intercept_)

            # test multi task enet
            multi_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
            clf_multioutput = MultiTaskElasticNet(
                alpha=0.5,
                max_iter=100,
                fit_intercept=fit_intercept,
            )
            clf_multioutput.fit(X, multi_y)
            coef[("multi", dtype)] = clf_multioutput.coef_
            intercept[("multi", dtype)] = clf_multioutput.intercept_
            assert clf.coef_.dtype == dtype

        for v in ["simple", "multi"]:
            assert_array_almost_equal(
                coef[(v, np.float32)], coef[(v, np.float64)], decimal=4
            )
            assert_array_almost_equal(
                intercept[(v, np.float32)], intercept[(v, np.float64)], decimal=4
            )


def test_enet_l1_ratio():
    # Test that an error message is raised if an estimator that
    # uses _alpha_grid is called with l1_ratio=0
    msg = (
        "Automatic alpha grid generation is not supported for l1_ratio=0. "
        "Please supply a grid by providing your estimator with the "
        "appropriate `alphas=` argument."
    )
    X = np.array([[1, 2, 4, 5, 8], [3, 5, 7, 7, 8]]).T
    y = np.array([12, 10, 11, 21, 5])

    with pytest.raises(ValueError, match=msg):
        ElasticNetCV(l1_ratio=0, random_state=42).fit(X, y)

    with pytest.raises(ValueError, match=msg):
        MultiTaskElasticNetCV(l1_ratio=0, random_state=42).fit(X, y[:, None])

    # Test that l1_ratio=0 with alpha>0 produces user warning
    warning_message = (
        "Coordinate descent without L1 regularization may "
        "lead to unexpected results and is discouraged. "
        "Set l1_ratio > 0 to add L1 regularization."
    )
    est = ElasticNetCV(l1_ratio=[0], alphas=[1])
    with pytest.warns(UserWarning, match=warning_message):
        est.fit(X, y)

    # Test that l1_ratio=0 is allowed if we supply a grid manually
    alphas = [0.1, 10]
    estkwds = {"alphas": alphas, "random_state": 42}
    est_desired = ElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = ElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est_desired.fit(X, y)
        est.fit(X, y)
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)

    est_desired = MultiTaskElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = MultiTaskElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est.fit(X, y[:, None])
        est_desired.fit(X, y[:, None])
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)


def test_coef_shape_not_zero():
    est_no_intercept = Lasso(fit_intercept=False)
    est_no_intercept.fit(np.c_[np.ones(3)], np.ones(3))
    assert est_no_intercept.coef_.shape == (1,)


def test_warm_start_multitask_lasso():
    X, y, X_test, y_test = build_dataset()
    Y = np.c_[y, y]
    clf = MultiTaskLasso(alpha=0.1, max_iter=5, warm_start=True)
    ignore_warnings(clf.fit)(X, Y)
    ignore_warnings(clf.fit)(X, Y)  # do a second round with 5 iterations

    clf2 = MultiTaskLasso(alpha=0.1, max_iter=10)
    ignore_warnings(clf2.fit)(X, Y)
    assert_array_almost_equal(clf2.coef_, clf.coef_)


@pytest.mark.parametrize(
    "klass, n_classes, kwargs",
    [
        (Lasso, 1, dict(precompute=True)),
        (Lasso, 1, dict(precompute=False)),
        (MultiTaskLasso, 2, dict()),
        (MultiTaskLasso, 2, dict()),
    ],
)
def test_enet_coordinate_descent(klass, n_classes, kwargs):
    """Test that a warning is issued if model does not converge"""
    clf = klass(max_iter=2, **kwargs)
    n_samples = 5
    n_features = 2
    X = np.ones((n_samples, n_features)) * 1e50
    y = np.ones((n_samples, n_classes))
    if klass == Lasso:
        y = y.ravel()
    warning_message = (
        "Objective did not converge. You might want to"
        " increase the number of iterations."
    )
    with pytest.warns(ConvergenceWarning, match=warning_message):
        clf.fit(X, y)


def test_convergence_warnings():
    random_state = np.random.RandomState(0)
    X = random_state.standard_normal((1000, 500))
    y = random_state.standard_normal((1000, 3))

    # check that the model converges w/o convergence warnings
    with warnings.catch_warnings():
        warnings.simplefilter("error", ConvergenceWarning)
        MultiTaskElasticNet().fit(X, y)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_input_convergence_warning(csr_container):
    X, y, _, _ = build_dataset(n_samples=1000, n_features=500)

    with pytest.warns(ConvergenceWarning):
        ElasticNet(max_iter=1, tol=0).fit(csr_container(X, dtype=np.float32), y)

    # check that the model converges w/o convergence warnings
    with warnings.catch_warnings():
        warnings.simplefilter("error", ConvergenceWarning)
        Lasso().fit(csr_container(X, dtype=np.float32), y)


@pytest.mark.parametrize(
    "precompute, inner_precompute",
    [
        (True, True),
        ("auto", False),
        (False, False),
    ],
)
def test_lassoCV_does_not_set_precompute(monkeypatch, precompute, inner_precompute):
    X, y, _, _ = build_dataset()
    calls = 0

    class LassoMock(Lasso):
        def fit(self, X, y):
            super().fit(X, y)
            nonlocal calls
            calls += 1
            assert self.precompute == inner_precompute

    monkeypatch.setattr("sklearn.linear_model._coordinate_descent.Lasso", LassoMock)
    clf = LassoCV(precompute=precompute)
    clf.fit(X, y)
    assert calls > 0


def test_multi_task_lasso_cv_dtype():
    n_samples, n_features = 10, 3
    rng = np.random.RandomState(42)
    X = rng.binomial(1, 0.5, size=(n_samples, n_features))
    X = X.astype(int)  # make it explicit that X is int
    y = X[:, [0, 0]].copy()
    est = MultiTaskLassoCV(n_alphas=5, fit_intercept=True).fit(X, y)
    assert_array_almost_equal(est.coef_, [[1, 0, 0]] * 2, decimal=3)


@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [0.01])
@pytest.mark.parametrize("precompute", [False, True])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_enet_sample_weight_consistency(
    fit_intercept, alpha, precompute, sparse_container, global_random_seed
):
    """Test that the impact of sample_weight is consistent.

    Note that this test is stricter than the common test
    check_sample_weights_invariance alone and also tests sparse X.
    """
    rng = np.random.RandomState(global_random_seed)
    n_samples, n_features = 10, 5

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    if sparse_container is not None:
        X = sparse_container(X)
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        precompute=precompute,
        tol=1e-6,
        l1_ratio=0.5,
    )

    reg = ElasticNet(**params).fit(X, y)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_

    # 1) sample_weight=np.ones(..) should be equivalent to sample_weight=None
    sample_weight = np.ones_like(y)
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 2) sample_weight=None should be equivalent to sample_weight = number
    sample_weight = 123.0
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 3) scaling of sample_weight should have no effect, cf. np.average()
    sample_weight = rng.uniform(low=0.01, high=2, size=X.shape[0])
    reg = reg.fit(X, y, sample_weight=sample_weight)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_

    reg.fit(X, y, sample_weight=np.pi * sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 4) setting elements of sample_weight to 0 is equivalent to removing these samples
    sample_weight_0 = sample_weight.copy()
    sample_weight_0[-5:] = 0
    y[-5:] *= 1000  # to make excluding those samples important
    reg.fit(X, y, sample_weight=sample_weight_0)
    coef_0 = reg.coef_.copy()
    if fit_intercept:
        intercept_0 = reg.intercept_
    reg.fit(X[:-5], y[:-5], sample_weight=sample_weight[:-5])
    assert_allclose(reg.coef_, coef_0, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept_0)

    # 5) check that multiplying sample_weight by 2 is equivalent to repeating
    # corresponding samples twice
    if sparse_container is not None:
        X2 = sparse.vstack([X, X[: n_samples // 2]], format="csc")
    else:
        X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
    y2 = np.concatenate([y, y[: n_samples // 2]])
    sample_weight_1 = sample_weight.copy()
    sample_weight_1[: n_samples // 2] *= 2
    sample_weight_2 = np.concatenate(
        [sample_weight, sample_weight[: n_samples // 2]], axis=0
    )

    reg1 = ElasticNet(**params).fit(X, y, sample_weight=sample_weight_1)
    reg2 = ElasticNet(**params).fit(X2, y2, sample_weight=sample_weight_2)
    assert_allclose(reg1.coef_, reg2.coef_, rtol=1e-6)


@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS)
def test_enet_cv_sample_weight_correctness(fit_intercept, sparse_container):
    """Test that ElasticNetCV with sample weights gives correct results."""
    rng = np.random.RandomState(42)
    n_splits, n_samples, n_features = 3, 10, 5
    X = rng.rand(n_splits * n_samples, n_features)
    beta = rng.rand(n_features)
    beta[0:2] = 0
    y = X @ beta + rng.rand(n_splits * n_samples)
    sw = np.ones_like(y)
    if sparse_container is not None:
        X = sparse_container(X)
    params = dict(tol=1e-6)

    # Set alphas, otherwise the two cv models might use different ones.
    if fit_intercept:
        alphas = np.linspace(0.001, 0.01, num=91)
    else:
        alphas = np.linspace(0.01, 0.1, num=91)

    # We weight the first fold 2 times more.
    sw[:n_samples] = 2
    groups_sw = np.r_[
        np.full(n_samples, 0), np.full(n_samples, 1), np.full(n_samples, 2)
    ]
    splits_sw = list(LeaveOneGroupOut().split(X, groups=groups_sw))
    reg_sw = ElasticNetCV(
        alphas=alphas, cv=splits_sw, fit_intercept=fit_intercept, **params
    )
    reg_sw.fit(X, y, sample_weight=sw)

    # We repeat the first fold 2 times and provide splits ourselves
    if sparse_container is not None:
        X = X.toarray()
    X = np.r_[X[:n_samples], X]
    if sparse_container is not None:
        X = sparse_container(X)
    y = np.r_[y[:n_samples], y]
    groups = np.r_[
        np.full(2 * n_samples, 0), np.full(n_samples, 1), np.full(n_samples, 2)
    ]
    splits = list(LeaveOneGroupOut().split(X, groups=groups))
    reg = ElasticNetCV(alphas=alphas, cv=splits, fit_intercept=fit_intercept, **params)
    reg.fit(X, y)

    # ensure that we chose meaningful alphas, i.e. not boundaries
    assert alphas[0] < reg.alpha_ < alphas[-1]
    assert reg_sw.alpha_ == reg.alpha_
    assert_allclose(reg_sw.coef_, reg.coef_)
    assert reg_sw.intercept_ == pytest.approx(reg.intercept_)


@pytest.mark.parametrize("sample_weight", [False, True])
def test_enet_cv_grid_search(sample_weight):
    """Test that ElasticNetCV gives same result as GridSearchCV."""
    n_samples, n_features = 200, 10
    cv = 5
    X, y = make_regression(
        n_samples=n_samples,
        n_features=n_features,
        effective_rank=10,
        n_informative=n_features - 4,
        noise=10,
        random_state=0,
    )
    if sample_weight:
        sample_weight = np.linspace(1, 5, num=n_samples)
    else:
        sample_weight = None

    alphas = np.logspace(np.log10(1e-5), np.log10(1), num=10)
    l1_ratios = [0.1, 0.5, 0.9]
    reg = ElasticNetCV(cv=cv, alphas=alphas, l1_ratio=l1_ratios)
    reg.fit(X, y, sample_weight=sample_weight)

    param = {"alpha": alphas, "l1_ratio": l1_ratios}
    gs = GridSearchCV(
        estimator=ElasticNet(),
        param_grid=param,
        cv=cv,
        scoring="neg_mean_squared_error",
    ).fit(X, y, sample_weight=sample_weight)

    assert reg.l1_ratio_ == pytest.approx(gs.best_params_["l1_ratio"])
    assert reg.alpha_ == pytest.approx(gs.best_params_["alpha"])


@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("l1_ratio", [0, 0.5, 1])
@pytest.mark.parametrize("precompute", [False, True])
@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS)
def test_enet_cv_sample_weight_consistency(
    fit_intercept, l1_ratio, precompute, sparse_container
):
    """Test that the impact of sample_weight is consistent."""
    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 5

    X = rng.rand(n_samples, n_features)
    y = X.sum(axis=1) + rng.rand(n_samples)
    params = dict(
        l1_ratio=l1_ratio,
        fit_intercept=fit_intercept,
        precompute=precompute,
        tol=1e-6,
        cv=3,
    )
    if sparse_container is not None:
        X = sparse_container(X)

    if l1_ratio == 0:
        params.pop("l1_ratio", None)
        reg = LassoCV(**params).fit(X, y)
    else:
        reg = ElasticNetCV(**params).fit(X, y)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_

    # sample_weight=np.ones(..) should be equivalent to sample_weight=None
    sample_weight = np.ones_like(y)
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # sample_weight=None should be equivalent to sample_weight = number
    sample_weight = 123.0
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # scaling of sample_weight should have no effect, cf. np.average()
    sample_weight = 2 * np.ones_like(y)
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)


@pytest.mark.parametrize("estimator", [ElasticNetCV, LassoCV])
def test_linear_models_cv_fit_with_loky(estimator):
    # LinearModelsCV.fit performs inplace operations on fancy-indexed memmapped
    # data when using the loky backend, causing an error due to unexpected
    # behavior of fancy indexing of read-only memmaps (cf. numpy#14132).

    # Create a problem sufficiently large to cause memmapping (1MB).
    # Unfortunately the scikit-learn and joblib APIs do not make it possible to
    # change the max_nbyte of the inner Parallel call.
    X, y = make_regression(int(1e6) // 8 + 1, 1)
    assert X.nbytes > 1e6  # 1 MB
    with joblib.parallel_backend("loky"):
        estimator(n_jobs=2, cv=3).fit(X, y)


@pytest.mark.parametrize("check_input", [True, False])
def test_enet_sample_weight_does_not_overwrite_sample_weight(check_input):
    """Check that ElasticNet does not overwrite sample_weights."""

    rng = np.random.RandomState(0)
    n_samples, n_features = 10, 5

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)

    sample_weight_1_25 = 1.25 * np.ones_like(y)
    sample_weight = sample_weight_1_25.copy()

    reg = ElasticNet()
    reg.fit(X, y, sample_weight=sample_weight, check_input=check_input)

    assert_array_equal(sample_weight, sample_weight_1_25)


@pytest.mark.parametrize("ridge_alpha", [1e-1, 1.0, 1e6])
def test_enet_ridge_consistency(ridge_alpha):
    # Check that ElasticNet(l1_ratio=0) converges to the same solution as Ridge
    # provided that the value of alpha is adapted.
    #
    # XXX: this test does not pass for weaker regularization (lower values of
    # ridge_alpha): it could be either a problem of ElasticNet or Ridge (less
    # likely) and depends on the dataset statistics: lower values for
    # effective_rank are more problematic in particular.

    rng = np.random.RandomState(42)
    n_samples = 300
    X, y = make_regression(
        n_samples=n_samples,
        n_features=100,
        effective_rank=10,
        n_informative=50,
        random_state=rng,
    )
    sw = rng.uniform(low=0.01, high=10, size=X.shape[0])
    alpha = 1.0
    common_params = dict(
        tol=1e-12,
    )
    ridge = Ridge(alpha=alpha, **common_params).fit(X, y, sample_weight=sw)

    alpha_enet = alpha / sw.sum()
    enet = ElasticNet(alpha=alpha_enet, l1_ratio=0, **common_params).fit(
        X, y, sample_weight=sw
    )
    assert_allclose(ridge.coef_, enet.coef_)
    assert_allclose(ridge.intercept_, enet.intercept_)


@pytest.mark.parametrize(
    "estimator",
    [
        Lasso(alpha=1.0),
        ElasticNet(alpha=1.0, l1_ratio=0.1),
    ],
)
def test_sample_weight_invariance(estimator):
    rng = np.random.RandomState(42)
    X, y = make_regression(
        n_samples=100,
        n_features=300,
        effective_rank=10,
        n_informative=50,
        random_state=rng,
    )
    sw = rng.uniform(low=0.01, high=2, size=X.shape[0])
    params = dict(tol=1e-12)

    # Check that setting some weights to 0 is equivalent to trimming the
    # samples:
    cutoff = X.shape[0] // 3
    sw_with_null = sw.copy()
    sw_with_null[:cutoff] = 0.0
    X_trimmed, y_trimmed = X[cutoff:, :], y[cutoff:]
    sw_trimmed = sw[cutoff:]

    reg_trimmed = (
        clone(estimator)
        .set_params(**params)
        .fit(X_trimmed, y_trimmed, sample_weight=sw_trimmed)
    )
    reg_null_weighted = (
        clone(estimator).set_params(**params).fit(X, y, sample_weight=sw_with_null)
    )
    assert_allclose(reg_null_weighted.coef_, reg_trimmed.coef_)
    assert_allclose(reg_null_weighted.intercept_, reg_trimmed.intercept_)

    # Check that duplicating the training dataset is equivalent to multiplying
    # the weights by 2:
    X_dup = np.concatenate([X, X], axis=0)
    y_dup = np.concatenate([y, y], axis=0)
    sw_dup = np.concatenate([sw, sw], axis=0)

    reg_2sw = clone(estimator).set_params(**params).fit(X, y, sample_weight=2 * sw)
    reg_dup = (
        clone(estimator).set_params(**params).fit(X_dup, y_dup, sample_weight=sw_dup)
    )

    assert_allclose(reg_2sw.coef_, reg_dup.coef_)
    assert_allclose(reg_2sw.intercept_, reg_dup.intercept_)


def test_read_only_buffer():
    """Test that sparse coordinate descent works for read-only buffers"""

    rng = np.random.RandomState(0)
    clf = ElasticNet(alpha=0.1, copy_X=True, random_state=rng)
    X = np.asfortranarray(rng.uniform(size=(100, 10)))
    X.setflags(write=False)

    y = rng.rand(100)
    clf.fit(X, y)


@pytest.mark.parametrize(
    "EstimatorCV",
    [ElasticNetCV, LassoCV, MultiTaskElasticNetCV, MultiTaskLassoCV],
)
def test_cv_estimators_reject_params_with_no_routing_enabled(EstimatorCV):
    """Check that the models inheriting from class:`LinearModelCV` raise an
    error when any `params` are passed when routing is not enabled.
    """
    X, y = make_regression(random_state=42)
    groups = np.array([0, 1] * (len(y) // 2))
    estimator = EstimatorCV()
    msg = "is only supported if enable_metadata_routing=True"
    with pytest.raises(ValueError, match=msg):
        estimator.fit(X, y, groups=groups)


@pytest.mark.usefixtures("enable_slep006")
@pytest.mark.parametrize(
    "MultiTaskEstimatorCV",
    [MultiTaskElasticNetCV, MultiTaskLassoCV],
)
def test_multitask_cv_estimators_with_sample_weight(MultiTaskEstimatorCV):
    """Check that for :class:`MultiTaskElasticNetCV` and
    class:`MultiTaskLassoCV` if `sample_weight` is passed and the
    CV splitter does not support `sample_weight` an error is raised.
    On the other hand if the splitter does support `sample_weight`
    while `sample_weight` is passed there is no error and process
    completes smoothly as before.
    """

    class CVSplitter(BaseCrossValidator, GroupsConsumerMixin):
        def get_n_splits(self, X=None, y=None, groups=None, metadata=None):
            pass  # pragma: nocover

    class CVSplitterSampleWeight(CVSplitter):
        def split(self, X, y=None, groups=None, sample_weight=None):
            split_index = len(X) // 2
            train_indices = list(range(0, split_index))
            test_indices = list(range(split_index, len(X)))
            yield test_indices, train_indices
            yield train_indices, test_indices

    X, y = make_regression(random_state=42, n_targets=2)
    sample_weight = np.ones(X.shape[0])

    # If CV splitter does not support sample_weight an error is raised
    splitter = CVSplitter().set_split_request(groups=True)
    estimator = MultiTaskEstimatorCV(cv=splitter)
    msg = "do not support sample weights"
    with pytest.raises(ValueError, match=msg):
        estimator.fit(X, y, sample_weight=sample_weight)

    # If CV splitter does support sample_weight no error is raised
    splitter = CVSplitterSampleWeight().set_split_request(
        groups=True, sample_weight=True
    )
    estimator = MultiTaskEstimatorCV(cv=splitter)
    estimator.fit(X, y, sample_weight=sample_weight)