1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
"""
Tests for LinearModelLoss
Note that correctness of losses (which compose LinearModelLoss) is already well
covered in the _loss module.
"""
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy import linalg, optimize
from sklearn._loss.loss import (
HalfBinomialLoss,
HalfMultinomialLoss,
HalfPoissonLoss,
)
from sklearn.datasets import make_low_rank_matrix
from sklearn.linear_model._linear_loss import LinearModelLoss
from sklearn.utils.extmath import squared_norm
from sklearn.utils.fixes import CSR_CONTAINERS
# We do not need to test all losses, just what LinearModelLoss does on top of the
# base losses.
LOSSES = [HalfBinomialLoss, HalfMultinomialLoss, HalfPoissonLoss]
def random_X_y_coef(
linear_model_loss, n_samples, n_features, coef_bound=(-2, 2), seed=42
):
"""Random generate y, X and coef in valid range."""
rng = np.random.RandomState(seed)
n_dof = n_features + linear_model_loss.fit_intercept
X = make_low_rank_matrix(
n_samples=n_samples,
n_features=n_features,
random_state=rng,
)
coef = linear_model_loss.init_zero_coef(X)
if linear_model_loss.base_loss.is_multiclass:
n_classes = linear_model_loss.base_loss.n_classes
coef.flat[:] = rng.uniform(
low=coef_bound[0],
high=coef_bound[1],
size=n_classes * n_dof,
)
if linear_model_loss.fit_intercept:
raw_prediction = X @ coef[:, :-1].T + coef[:, -1]
else:
raw_prediction = X @ coef.T
proba = linear_model_loss.base_loss.link.inverse(raw_prediction)
# y = rng.choice(np.arange(n_classes), p=proba) does not work.
# See https://stackoverflow.com/a/34190035/16761084
def choice_vectorized(items, p):
s = p.cumsum(axis=1)
r = rng.rand(p.shape[0])[:, None]
k = (s < r).sum(axis=1)
return items[k]
y = choice_vectorized(np.arange(n_classes), p=proba).astype(np.float64)
else:
coef.flat[:] = rng.uniform(
low=coef_bound[0],
high=coef_bound[1],
size=n_dof,
)
if linear_model_loss.fit_intercept:
raw_prediction = X @ coef[:-1] + coef[-1]
else:
raw_prediction = X @ coef
y = linear_model_loss.base_loss.link.inverse(
raw_prediction + rng.uniform(low=-1, high=1, size=n_samples)
)
return X, y, coef
@pytest.mark.parametrize("base_loss", LOSSES)
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("n_features", [0, 1, 10])
@pytest.mark.parametrize("dtype", [None, np.float32, np.float64, np.int64])
def test_init_zero_coef(base_loss, fit_intercept, n_features, dtype):
"""Test that init_zero_coef initializes coef correctly."""
loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=fit_intercept)
rng = np.random.RandomState(42)
X = rng.normal(size=(5, n_features))
coef = loss.init_zero_coef(X, dtype=dtype)
if loss.base_loss.is_multiclass:
n_classes = loss.base_loss.n_classes
assert coef.shape == (n_classes, n_features + fit_intercept)
assert coef.flags["F_CONTIGUOUS"]
else:
assert coef.shape == (n_features + fit_intercept,)
if dtype is None:
assert coef.dtype == X.dtype
else:
assert coef.dtype == dtype
assert np.count_nonzero(coef) == 0
@pytest.mark.parametrize("base_loss", LOSSES)
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("sample_weight", [None, "range"])
@pytest.mark.parametrize("l2_reg_strength", [0, 1])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_loss_grad_hess_are_the_same(
base_loss, fit_intercept, sample_weight, l2_reg_strength, csr_container
):
"""Test that loss and gradient are the same across different functions."""
loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=fit_intercept)
X, y, coef = random_X_y_coef(
linear_model_loss=loss, n_samples=10, n_features=5, seed=42
)
if sample_weight == "range":
sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
l1 = loss.loss(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
g1 = loss.gradient(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
l2, g2 = loss.loss_gradient(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
g3, h3 = loss.gradient_hessian_product(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
if not base_loss.is_multiclass:
g4, h4, _ = loss.gradient_hessian(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
else:
with pytest.raises(NotImplementedError):
loss.gradient_hessian(
coef,
X,
y,
sample_weight=sample_weight,
l2_reg_strength=l2_reg_strength,
)
assert_allclose(l1, l2)
assert_allclose(g1, g2)
assert_allclose(g1, g3)
if not base_loss.is_multiclass:
assert_allclose(g1, g4)
assert_allclose(h4 @ g4, h3(g3))
# same for sparse X
X = csr_container(X)
l1_sp = loss.loss(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
g1_sp = loss.gradient(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
l2_sp, g2_sp = loss.loss_gradient(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
g3_sp, h3_sp = loss.gradient_hessian_product(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
if not base_loss.is_multiclass:
g4_sp, h4_sp, _ = loss.gradient_hessian(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
assert_allclose(l1, l1_sp)
assert_allclose(l1, l2_sp)
assert_allclose(g1, g1_sp)
assert_allclose(g1, g2_sp)
assert_allclose(g1, g3_sp)
assert_allclose(h3(g1), h3_sp(g1_sp))
if not base_loss.is_multiclass:
assert_allclose(g1, g4_sp)
assert_allclose(h4 @ g4, h4_sp @ g1_sp)
@pytest.mark.parametrize("base_loss", LOSSES)
@pytest.mark.parametrize("sample_weight", [None, "range"])
@pytest.mark.parametrize("l2_reg_strength", [0, 1])
@pytest.mark.parametrize("X_container", CSR_CONTAINERS + [None])
def test_loss_gradients_hessp_intercept(
base_loss, sample_weight, l2_reg_strength, X_container
):
"""Test that loss and gradient handle intercept correctly."""
loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=False)
loss_inter = LinearModelLoss(base_loss=base_loss(), fit_intercept=True)
n_samples, n_features = 10, 5
X, y, coef = random_X_y_coef(
linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
)
X[:, -1] = 1 # make last column of 1 to mimic intercept term
X_inter = X[
:, :-1
] # exclude intercept column as it is added automatically by loss_inter
if X_container is not None:
X = X_container(X)
if sample_weight == "range":
sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
l, g = loss.loss_gradient(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
_, hessp = loss.gradient_hessian_product(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
l_inter, g_inter = loss_inter.loss_gradient(
coef, X_inter, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
_, hessp_inter = loss_inter.gradient_hessian_product(
coef, X_inter, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
# Note, that intercept gets no L2 penalty.
assert l == pytest.approx(
l_inter + 0.5 * l2_reg_strength * squared_norm(coef.T[-1])
)
g_inter_corrected = g_inter
g_inter_corrected.T[-1] += l2_reg_strength * coef.T[-1]
assert_allclose(g, g_inter_corrected)
s = np.random.RandomState(42).randn(*coef.shape)
h = hessp(s)
h_inter = hessp_inter(s)
h_inter_corrected = h_inter
h_inter_corrected.T[-1] += l2_reg_strength * s.T[-1]
assert_allclose(h, h_inter_corrected)
@pytest.mark.parametrize("base_loss", LOSSES)
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("sample_weight", [None, "range"])
@pytest.mark.parametrize("l2_reg_strength", [0, 1])
def test_gradients_hessians_numerically(
base_loss, fit_intercept, sample_weight, l2_reg_strength
):
"""Test gradients and hessians with numerical derivatives.
Gradient should equal the numerical derivatives of the loss function.
Hessians should equal the numerical derivatives of gradients.
"""
loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=fit_intercept)
n_samples, n_features = 10, 5
X, y, coef = random_X_y_coef(
linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
)
coef = coef.ravel(order="F") # this is important only for multinomial loss
if sample_weight == "range":
sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
# 1. Check gradients numerically
eps = 1e-6
g, hessp = loss.gradient_hessian_product(
coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
)
# Use a trick to get central finite difference of accuracy 4 (five-point stencil)
# https://en.wikipedia.org/wiki/Numerical_differentiation
# https://en.wikipedia.org/wiki/Finite_difference_coefficient
# approx_g1 = (f(x + eps) - f(x - eps)) / (2*eps)
approx_g1 = optimize.approx_fprime(
coef,
lambda coef: loss.loss(
coef - eps,
X,
y,
sample_weight=sample_weight,
l2_reg_strength=l2_reg_strength,
),
2 * eps,
)
# approx_g2 = (f(x + 2*eps) - f(x - 2*eps)) / (4*eps)
approx_g2 = optimize.approx_fprime(
coef,
lambda coef: loss.loss(
coef - 2 * eps,
X,
y,
sample_weight=sample_weight,
l2_reg_strength=l2_reg_strength,
),
4 * eps,
)
# Five-point stencil approximation
# See: https://en.wikipedia.org/wiki/Five-point_stencil#1D_first_derivative
approx_g = (4 * approx_g1 - approx_g2) / 3
assert_allclose(g, approx_g, rtol=1e-2, atol=1e-8)
# 2. Check hessp numerically along the second direction of the gradient
vector = np.zeros_like(g)
vector[1] = 1
hess_col = hessp(vector)
# Computation of the Hessian is particularly fragile to numerical errors when doing
# simple finite differences. Here we compute the grad along a path in the direction
# of the vector and then use a least-square regression to estimate the slope
eps = 1e-3
d_x = np.linspace(-eps, eps, 30)
d_grad = np.array(
[
loss.gradient(
coef + t * vector,
X,
y,
sample_weight=sample_weight,
l2_reg_strength=l2_reg_strength,
)
for t in d_x
]
)
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_allclose(approx_hess_col, hess_col, rtol=1e-3)
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_multinomial_coef_shape(fit_intercept):
"""Test that multinomial LinearModelLoss respects shape of coef."""
loss = LinearModelLoss(base_loss=HalfMultinomialLoss(), fit_intercept=fit_intercept)
n_samples, n_features = 10, 5
X, y, coef = random_X_y_coef(
linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
)
s = np.random.RandomState(42).randn(*coef.shape)
l, g = loss.loss_gradient(coef, X, y)
g1 = loss.gradient(coef, X, y)
g2, hessp = loss.gradient_hessian_product(coef, X, y)
h = hessp(s)
assert g.shape == coef.shape
assert h.shape == coef.shape
assert_allclose(g, g1)
assert_allclose(g, g2)
coef_r = coef.ravel(order="F")
s_r = s.ravel(order="F")
l_r, g_r = loss.loss_gradient(coef_r, X, y)
g1_r = loss.gradient(coef_r, X, y)
g2_r, hessp_r = loss.gradient_hessian_product(coef_r, X, y)
h_r = hessp_r(s_r)
assert g_r.shape == coef_r.shape
assert h_r.shape == coef_r.shape
assert_allclose(g_r, g1_r)
assert_allclose(g_r, g2_r)
assert_allclose(g, g_r.reshape(loss.base_loss.n_classes, -1, order="F"))
assert_allclose(h, h_r.reshape(loss.base_loss.n_classes, -1, order="F"))
|