File: test_quantile.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (306 lines) | stat: -rw-r--r-- 11,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Authors: David Dale <dale.david@mail.ru>
#          Christian Lorentzen <lorentzen.ch@gmail.com>
# License: BSD 3 clause

import numpy as np
import pytest
from pytest import approx
from scipy.optimize import minimize

from sklearn.datasets import make_regression
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import HuberRegressor, QuantileRegressor
from sklearn.metrics import mean_pinball_loss
from sklearn.utils._testing import assert_allclose, skip_if_32bit
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    parse_version,
    sp_version,
)


@pytest.fixture
def X_y_data():
    X, y = make_regression(n_samples=10, n_features=1, random_state=0, noise=1)
    return X, y


@pytest.fixture
def default_solver():
    return "highs" if sp_version >= parse_version("1.6.0") else "interior-point"


@pytest.mark.skipif(
    parse_version(sp_version.base_version) >= parse_version("1.11"),
    reason="interior-point solver is not available in SciPy 1.11",
)
@pytest.mark.parametrize("solver", ["interior-point", "revised simplex"])
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_incompatible_solver_for_sparse_input(X_y_data, solver, csc_container):
    X, y = X_y_data
    X_sparse = csc_container(X)
    err_msg = (
        f"Solver {solver} does not support sparse X. Use solver 'highs' for example."
    )
    with pytest.raises(ValueError, match=err_msg):
        QuantileRegressor(solver=solver).fit(X_sparse, y)


@pytest.mark.parametrize("solver", ("highs-ds", "highs-ipm", "highs"))
@pytest.mark.skipif(
    sp_version >= parse_version("1.6.0"),
    reason="Solvers are available as of scipy 1.6.0",
)
def test_too_new_solver_methods_raise_error(X_y_data, solver):
    """Test that highs solver raises for scipy<1.6.0."""
    X, y = X_y_data
    with pytest.raises(ValueError, match="scipy>=1.6.0"):
        QuantileRegressor(solver=solver).fit(X, y)


@pytest.mark.parametrize(
    "quantile, alpha, intercept, coef",
    [
        # for 50% quantile w/o regularization, any slope in [1, 10] is okay
        [0.5, 0, 1, None],
        # if positive error costs more, the slope is maximal
        [0.51, 0, 1, 10],
        # if negative error costs more, the slope is minimal
        [0.49, 0, 1, 1],
        # for a small lasso penalty, the slope is also minimal
        [0.5, 0.01, 1, 1],
        # for a large lasso penalty, the model predicts the constant median
        [0.5, 100, 2, 0],
    ],
)
def test_quantile_toy_example(quantile, alpha, intercept, coef, default_solver):
    # test how different parameters affect a small intuitive example
    X = [[0], [1], [1]]
    y = [1, 2, 11]
    model = QuantileRegressor(
        quantile=quantile, alpha=alpha, solver=default_solver
    ).fit(X, y)
    assert_allclose(model.intercept_, intercept, atol=1e-2)
    if coef is not None:
        assert_allclose(model.coef_[0], coef, atol=1e-2)
    if alpha < 100:
        assert model.coef_[0] >= 1
    assert model.coef_[0] <= 10


@pytest.mark.parametrize("fit_intercept", [True, False])
def test_quantile_equals_huber_for_low_epsilon(fit_intercept, default_solver):
    X, y = make_regression(n_samples=100, n_features=20, random_state=0, noise=1.0)
    alpha = 1e-4
    huber = HuberRegressor(
        epsilon=1 + 1e-4, alpha=alpha, fit_intercept=fit_intercept
    ).fit(X, y)
    quant = QuantileRegressor(
        alpha=alpha, fit_intercept=fit_intercept, solver=default_solver
    ).fit(X, y)
    assert_allclose(huber.coef_, quant.coef_, atol=1e-1)
    if fit_intercept:
        assert huber.intercept_ == approx(quant.intercept_, abs=1e-1)
        # check that we still predict fraction
        assert np.mean(y < quant.predict(X)) == approx(0.5, abs=1e-1)


@pytest.mark.parametrize("q", [0.5, 0.9, 0.05])
def test_quantile_estimates_calibration(q, default_solver):
    # Test that model estimates percentage of points below the prediction
    X, y = make_regression(n_samples=1000, n_features=20, random_state=0, noise=1.0)
    quant = QuantileRegressor(
        quantile=q,
        alpha=0,
        solver=default_solver,
    ).fit(X, y)
    assert np.mean(y < quant.predict(X)) == approx(q, abs=1e-2)


def test_quantile_sample_weight(default_solver):
    # test that with unequal sample weights we still estimate weighted fraction
    n = 1000
    X, y = make_regression(n_samples=n, n_features=5, random_state=0, noise=10.0)
    weight = np.ones(n)
    # when we increase weight of upper observations,
    # estimate of quantile should go up
    weight[y > y.mean()] = 100
    quant = QuantileRegressor(quantile=0.5, alpha=1e-8, solver=default_solver)
    quant.fit(X, y, sample_weight=weight)
    fraction_below = np.mean(y < quant.predict(X))
    assert fraction_below > 0.5
    weighted_fraction_below = np.average(y < quant.predict(X), weights=weight)
    assert weighted_fraction_below == approx(0.5, abs=3e-2)


@pytest.mark.skipif(
    sp_version < parse_version("1.6.0"),
    reason="The `highs` solver is available from the 1.6.0 scipy version",
)
@pytest.mark.parametrize("quantile", [0.2, 0.5, 0.8])
def test_asymmetric_error(quantile, default_solver):
    """Test quantile regression for asymmetric distributed targets."""
    n_samples = 1000
    rng = np.random.RandomState(42)
    X = np.concatenate(
        (
            np.abs(rng.randn(n_samples)[:, None]),
            -rng.randint(2, size=(n_samples, 1)),
        ),
        axis=1,
    )
    intercept = 1.23
    coef = np.array([0.5, -2])
    #  Take care that X @ coef + intercept > 0
    assert np.min(X @ coef + intercept) > 0
    # For an exponential distribution with rate lambda, e.g. exp(-lambda * x),
    # the quantile at level q is:
    #   quantile(q) = - log(1 - q) / lambda
    #   scale = 1/lambda = -quantile(q) / log(1 - q)
    y = rng.exponential(
        scale=-(X @ coef + intercept) / np.log(1 - quantile), size=n_samples
    )
    model = QuantileRegressor(
        quantile=quantile,
        alpha=0,
        solver=default_solver,
    ).fit(X, y)
    # This test can be made to pass with any solver but in the interest
    # of sparing continuous integration resources, the test is performed
    # with the fastest solver only.

    assert model.intercept_ == approx(intercept, rel=0.2)
    assert_allclose(model.coef_, coef, rtol=0.6)
    assert_allclose(np.mean(model.predict(X) > y), quantile, atol=1e-2)

    # Now compare to Nelder-Mead optimization with L1 penalty
    alpha = 0.01
    model.set_params(alpha=alpha).fit(X, y)
    model_coef = np.r_[model.intercept_, model.coef_]

    def func(coef):
        loss = mean_pinball_loss(y, X @ coef[1:] + coef[0], alpha=quantile)
        L1 = np.sum(np.abs(coef[1:]))
        return loss + alpha * L1

    res = minimize(
        fun=func,
        x0=[1, 0, -1],
        method="Nelder-Mead",
        tol=1e-12,
        options={"maxiter": 2000},
    )

    assert func(model_coef) == approx(func(res.x))
    assert_allclose(model.intercept_, res.x[0])
    assert_allclose(model.coef_, res.x[1:])
    assert_allclose(np.mean(model.predict(X) > y), quantile, atol=1e-2)


@pytest.mark.parametrize("quantile", [0.2, 0.5, 0.8])
def test_equivariance(quantile, default_solver):
    """Test equivariace of quantile regression.

    See Koenker (2005) Quantile Regression, Chapter 2.2.3.
    """
    rng = np.random.RandomState(42)
    n_samples, n_features = 100, 5
    X, y = make_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_features,
        noise=0,
        random_state=rng,
        shuffle=False,
    )
    # make y asymmetric
    y += rng.exponential(scale=100, size=y.shape)
    params = dict(alpha=0, solver=default_solver)
    model1 = QuantileRegressor(quantile=quantile, **params).fit(X, y)

    # coef(q; a*y, X) = a * coef(q; y, X)
    a = 2.5
    model2 = QuantileRegressor(quantile=quantile, **params).fit(X, a * y)
    assert model2.intercept_ == approx(a * model1.intercept_, rel=1e-5)
    assert_allclose(model2.coef_, a * model1.coef_, rtol=1e-5)

    # coef(1-q; -a*y, X) = -a * coef(q; y, X)
    model2 = QuantileRegressor(quantile=1 - quantile, **params).fit(X, -a * y)
    assert model2.intercept_ == approx(-a * model1.intercept_, rel=1e-5)
    assert_allclose(model2.coef_, -a * model1.coef_, rtol=1e-5)

    # coef(q; y + X @ g, X) = coef(q; y, X) + g
    g_intercept, g_coef = rng.randn(), rng.randn(n_features)
    model2 = QuantileRegressor(quantile=quantile, **params)
    model2.fit(X, y + X @ g_coef + g_intercept)
    assert model2.intercept_ == approx(model1.intercept_ + g_intercept)
    assert_allclose(model2.coef_, model1.coef_ + g_coef, rtol=1e-6)

    # coef(q; y, X @ A) = A^-1 @ coef(q; y, X)
    A = rng.randn(n_features, n_features)
    model2 = QuantileRegressor(quantile=quantile, **params)
    model2.fit(X @ A, y)
    assert model2.intercept_ == approx(model1.intercept_, rel=1e-5)
    assert_allclose(model2.coef_, np.linalg.solve(A, model1.coef_), rtol=1e-5)


@pytest.mark.skipif(
    parse_version(sp_version.base_version) >= parse_version("1.11"),
    reason="interior-point solver is not available in SciPy 1.11",
)
@pytest.mark.filterwarnings("ignore:`method='interior-point'` is deprecated")
def test_linprog_failure():
    """Test that linprog fails."""
    X = np.linspace(0, 10, num=10).reshape(-1, 1)
    y = np.linspace(0, 10, num=10)
    reg = QuantileRegressor(
        alpha=0, solver="interior-point", solver_options={"maxiter": 1}
    )

    msg = "Linear programming for QuantileRegressor did not succeed."
    with pytest.warns(ConvergenceWarning, match=msg):
        reg.fit(X, y)


@skip_if_32bit
@pytest.mark.skipif(
    sp_version <= parse_version("1.6.0"),
    reason="Solvers are available as of scipy 1.6.0",
)
@pytest.mark.parametrize(
    "sparse_container", CSC_CONTAINERS + CSR_CONTAINERS + COO_CONTAINERS
)
@pytest.mark.parametrize("solver", ["highs", "highs-ds", "highs-ipm"])
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_sparse_input(sparse_container, solver, fit_intercept, default_solver):
    """Test that sparse and dense X give same results."""
    X, y = make_regression(n_samples=100, n_features=20, random_state=1, noise=1.0)
    X_sparse = sparse_container(X)
    alpha = 1e-4
    quant_dense = QuantileRegressor(
        alpha=alpha, fit_intercept=fit_intercept, solver=default_solver
    ).fit(X, y)
    quant_sparse = QuantileRegressor(
        alpha=alpha, fit_intercept=fit_intercept, solver=solver
    ).fit(X_sparse, y)
    assert_allclose(quant_sparse.coef_, quant_dense.coef_, rtol=1e-2)
    if fit_intercept:
        assert quant_sparse.intercept_ == approx(quant_dense.intercept_)
        # check that we still predict fraction
        assert 0.45 <= np.mean(y < quant_sparse.predict(X_sparse)) <= 0.57


def test_error_interior_point_future(X_y_data, monkeypatch):
    """Check that we will raise a proper error when requesting
    `solver='interior-point'` in SciPy >= 1.11.
    """
    X, y = X_y_data
    import sklearn.linear_model._quantile

    with monkeypatch.context() as m:
        m.setattr(sklearn.linear_model._quantile, "sp_version", parse_version("1.11.0"))
        err_msg = "Solver interior-point is not anymore available in SciPy >= 1.11.0."
        with pytest.raises(ValueError, match=err_msg):
            QuantileRegressor(solver="interior-point").fit(X, y)