1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
|
import warnings
from itertools import product
import numpy as np
import pytest
from scipy import linalg
from sklearn import datasets
from sklearn.datasets import (
make_classification,
make_low_rank_matrix,
make_multilabel_classification,
make_regression,
)
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import (
LinearRegression,
Ridge,
RidgeClassifier,
RidgeClassifierCV,
RidgeCV,
ridge_regression,
)
from sklearn.linear_model._ridge import (
_check_gcv_mode,
_RidgeGCV,
_solve_cholesky,
_solve_cholesky_kernel,
_solve_lbfgs,
_solve_svd,
_X_CenterStackOp,
)
from sklearn.metrics import get_scorer, make_scorer, mean_squared_error
from sklearn.model_selection import (
GridSearchCV,
GroupKFold,
KFold,
LeaveOneOut,
cross_val_predict,
)
from sklearn.preprocessing import minmax_scale
from sklearn.utils import _IS_32BIT, check_random_state
from sklearn.utils._testing import (
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.fixes import (
COO_CONTAINERS,
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
LIL_CONTAINERS,
)
SOLVERS = ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga"]
SPARSE_SOLVERS_WITH_INTERCEPT = ("sparse_cg", "sag")
SPARSE_SOLVERS_WITHOUT_INTERCEPT = ("sparse_cg", "cholesky", "lsqr", "sag", "saga")
diabetes = datasets.load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
ind = np.arange(X_diabetes.shape[0])
rng = np.random.RandomState(0)
rng.shuffle(ind)
ind = ind[:200]
X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind]
iris = datasets.load_iris()
X_iris, y_iris = iris.data, iris.target
def _accuracy_callable(y_test, y_pred):
return np.mean(y_test == y_pred)
def _mean_squared_error_callable(y_test, y_pred):
return ((y_test - y_pred) ** 2).mean()
@pytest.fixture(params=["long", "wide"])
def ols_ridge_dataset(global_random_seed, request):
"""Dataset with OLS and Ridge solutions, well conditioned X.
The construction is based on the SVD decomposition of X = U S V'.
Parameters
----------
type : {"long", "wide"}
If "long", then n_samples > n_features.
If "wide", then n_features > n_samples.
For "wide", we return the minimum norm solution w = X' (XX')^-1 y:
min ||w||_2 subject to X w = y
Returns
-------
X : ndarray
Last column of 1, i.e. intercept.
y : ndarray
coef_ols : ndarray of shape
Minimum norm OLS solutions, i.e. min ||X w - y||_2_2 (with minimum ||w||_2 in
case of ambiguity)
Last coefficient is intercept.
coef_ridge : ndarray of shape (5,)
Ridge solution with alpha=1, i.e. min ||X w - y||_2_2 + ||w||_2^2.
Last coefficient is intercept.
"""
# Make larger dim more than double as big as the smaller one.
# This helps when constructing singular matrices like (X, X).
if request.param == "long":
n_samples, n_features = 12, 4
else:
n_samples, n_features = 4, 12
k = min(n_samples, n_features)
rng = np.random.RandomState(global_random_seed)
X = make_low_rank_matrix(
n_samples=n_samples, n_features=n_features, effective_rank=k, random_state=rng
)
X[:, -1] = 1 # last columns acts as intercept
U, s, Vt = linalg.svd(X)
assert np.all(s > 1e-3) # to be sure
U1, U2 = U[:, :k], U[:, k:]
Vt1, _ = Vt[:k, :], Vt[k:, :]
if request.param == "long":
# Add a term that vanishes in the product X'y
coef_ols = rng.uniform(low=-10, high=10, size=n_features)
y = X @ coef_ols
y += U2 @ rng.normal(size=n_samples - n_features) ** 2
else:
y = rng.uniform(low=-10, high=10, size=n_samples)
# w = X'(XX')^-1 y = V s^-1 U' y
coef_ols = Vt1.T @ np.diag(1 / s) @ U1.T @ y
# Add penalty alpha * ||coef||_2^2 for alpha=1 and solve via normal equations.
# Note that the problem is well conditioned such that we get accurate results.
alpha = 1
d = alpha * np.identity(n_features)
d[-1, -1] = 0 # intercept gets no penalty
coef_ridge = linalg.solve(X.T @ X + d, X.T @ y)
# To be sure
R_OLS = y - X @ coef_ols
R_Ridge = y - X @ coef_ridge
assert np.linalg.norm(R_OLS) < np.linalg.norm(R_Ridge)
return X, y, coef_ols, coef_ridge
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression(solver, fit_intercept, ols_ridge_dataset, global_random_seed):
"""Test that Ridge converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
"""
X, y, _, coef = ols_ridge_dataset
alpha = 1.0 # because ols_ridge_dataset uses this.
params = dict(
alpha=alpha,
fit_intercept=True,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
# Calculate residuals and R2.
res_null = y - np.mean(y)
res_Ridge = y - X @ coef
R2_Ridge = 1 - np.sum(res_Ridge**2) / np.sum(res_null**2)
model = Ridge(**params)
X = X[:, :-1] # remove intercept
if fit_intercept:
intercept = coef[-1]
else:
X = X - X.mean(axis=0)
y = y - y.mean()
intercept = 0
model.fit(X, y)
coef = coef[:-1]
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
assert model.score(X, y) == pytest.approx(R2_Ridge)
# Same with sample_weight.
model = Ridge(**params).fit(X, y, sample_weight=np.ones(X.shape[0]))
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
assert model.score(X, y) == pytest.approx(R2_Ridge)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_hstacked_X(
solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
"""Test that Ridge converges for all solvers to correct solution on hstacked data.
We work with a simple constructed data set with known solution.
Fit on [X] with alpha is the same as fit on [X, X]/2 with alpha/2.
For long X, [X, X] is a singular matrix.
"""
X, y, _, coef = ols_ridge_dataset
n_samples, n_features = X.shape
alpha = 1.0 # because ols_ridge_dataset uses this.
model = Ridge(
alpha=alpha / 2,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
X = X[:, :-1] # remove intercept
X = 0.5 * np.concatenate((X, X), axis=1)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features - 1)
if fit_intercept:
intercept = coef[-1]
else:
X = X - X.mean(axis=0)
y = y - y.mean()
intercept = 0
model.fit(X, y)
coef = coef[:-1]
assert model.intercept_ == pytest.approx(intercept)
# coefficients are not all on the same magnitude, adding a small atol to
# make this test less brittle
assert_allclose(model.coef_, np.r_[coef, coef], atol=1e-8)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_vstacked_X(
solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
"""Test that Ridge converges for all solvers to correct solution on vstacked data.
We work with a simple constructed data set with known solution.
Fit on [X] with alpha is the same as fit on [X], [y]
[X], [y] with 2 * alpha.
For wide X, [X', X'] is a singular matrix.
"""
X, y, _, coef = ols_ridge_dataset
n_samples, n_features = X.shape
alpha = 1.0 # because ols_ridge_dataset uses this.
model = Ridge(
alpha=2 * alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
X = X[:, :-1] # remove intercept
X = np.concatenate((X, X), axis=0)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
y = np.r_[y, y]
if fit_intercept:
intercept = coef[-1]
else:
X = X - X.mean(axis=0)
y = y - y.mean()
intercept = 0
model.fit(X, y)
coef = coef[:-1]
assert model.intercept_ == pytest.approx(intercept)
# coefficients are not all on the same magnitude, adding a small atol to
# make this test less brittle
assert_allclose(model.coef_, coef, atol=1e-8)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized(
solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
"""Test that unpenalized Ridge = OLS converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
Note: This checks the minimum norm solution for wide X, i.e.
n_samples < n_features:
min ||w||_2 subject to X w = y
"""
X, y, coef, _ = ols_ridge_dataset
n_samples, n_features = X.shape
alpha = 0 # OLS
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
model = Ridge(**params)
# Note that cholesky might give a warning: "Singular matrix in solving dual
# problem. Using least-squares solution instead."
if fit_intercept:
X = X[:, :-1] # remove intercept
intercept = coef[-1]
coef = coef[:-1]
else:
intercept = 0
model.fit(X, y)
# FIXME: `assert_allclose(model.coef_, coef)` should work for all cases but fails
# for the wide/fat case with n_features > n_samples. The current Ridge solvers do
# NOT return the minimum norm solution with fit_intercept=True.
if n_samples > n_features or not fit_intercept:
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
else:
# As it is an underdetermined problem, residuals = 0. This shows that we get
# a solution to X w = y ....
assert_allclose(model.predict(X), y)
assert_allclose(X @ coef + intercept, y)
# But it is not the minimum norm solution. (This should be equal.)
assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
np.r_[intercept, coef]
)
pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized_hstacked_X(
solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
"""Test that unpenalized Ridge = OLS converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
OLS fit on [X] is the same as fit on [X, X]/2.
For long X, [X, X] is a singular matrix and we check against the minimum norm
solution:
min ||w||_2 subject to min ||X w - y||_2
"""
X, y, coef, _ = ols_ridge_dataset
n_samples, n_features = X.shape
alpha = 0 # OLS
model = Ridge(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
if fit_intercept:
X = X[:, :-1] # remove intercept
intercept = coef[-1]
coef = coef[:-1]
else:
intercept = 0
X = 0.5 * np.concatenate((X, X), axis=1)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
model.fit(X, y)
if n_samples > n_features or not fit_intercept:
assert model.intercept_ == pytest.approx(intercept)
if solver == "cholesky":
# Cholesky is a bad choice for singular X.
pytest.skip()
assert_allclose(model.coef_, np.r_[coef, coef])
else:
# FIXME: Same as in test_ridge_regression_unpenalized.
# As it is an underdetermined problem, residuals = 0. This shows that we get
# a solution to X w = y ....
assert_allclose(model.predict(X), y)
# But it is not the minimum norm solution. (This should be equal.)
assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
np.r_[intercept, coef, coef]
)
pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, np.r_[coef, coef])
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized_vstacked_X(
solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
"""Test that unpenalized Ridge = OLS converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
OLS fit on [X] is the same as fit on [X], [y]
[X], [y].
For wide X, [X', X'] is a singular matrix and we check against the minimum norm
solution:
min ||w||_2 subject to X w = y
"""
X, y, coef, _ = ols_ridge_dataset
n_samples, n_features = X.shape
alpha = 0 # OLS
model = Ridge(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ("sag", "saga") else 1e-10,
random_state=global_random_seed,
)
if fit_intercept:
X = X[:, :-1] # remove intercept
intercept = coef[-1]
coef = coef[:-1]
else:
intercept = 0
X = np.concatenate((X, X), axis=0)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
y = np.r_[y, y]
model.fit(X, y)
if n_samples > n_features or not fit_intercept:
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
else:
# FIXME: Same as in test_ridge_regression_unpenalized.
# As it is an underdetermined problem, residuals = 0. This shows that we get
# a solution to X w = y ....
assert_allclose(model.predict(X), y)
# But it is not the minimum norm solution. (This should be equal.)
assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
np.r_[intercept, coef]
)
pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("alpha", [1.0, 1e-2])
def test_ridge_regression_sample_weights(
solver,
fit_intercept,
sparse_container,
alpha,
ols_ridge_dataset,
global_random_seed,
):
"""Test that Ridge with sample weights gives correct results.
We use the following trick:
||y - Xw||_2 = (z - Aw)' W (z - Aw)
for z=[y, y], A' = [X', X'] (vstacked), and W[:n/2] + W[n/2:] = 1, W=diag(W)
"""
if sparse_container is not None:
if fit_intercept and solver not in SPARSE_SOLVERS_WITH_INTERCEPT:
pytest.skip()
elif not fit_intercept and solver not in SPARSE_SOLVERS_WITHOUT_INTERCEPT:
pytest.skip()
X, y, _, coef = ols_ridge_dataset
n_samples, n_features = X.shape
sw = rng.uniform(low=0, high=1, size=n_samples)
model = Ridge(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-15 if solver in ["sag", "saga"] else 1e-10,
max_iter=100_000,
random_state=global_random_seed,
)
X = X[:, :-1] # remove intercept
X = np.concatenate((X, X), axis=0)
y = np.r_[y, y]
sw = np.r_[sw, 1 - sw] * alpha
if fit_intercept:
intercept = coef[-1]
else:
X = X - X.mean(axis=0)
y = y - y.mean()
intercept = 0
if sparse_container is not None:
X = sparse_container(X)
model.fit(X, y, sample_weight=sw)
coef = coef[:-1]
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef)
def test_primal_dual_relationship():
y = y_diabetes.reshape(-1, 1)
coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2])
K = np.dot(X_diabetes, X_diabetes.T)
dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2])
coef2 = np.dot(X_diabetes.T, dual_coef).T
assert_array_almost_equal(coef, coef2)
def test_ridge_regression_convergence_fail():
rng = np.random.RandomState(0)
y = rng.randn(5)
X = rng.randn(5, 10)
warning_message = r"sparse_cg did not converge after" r" [0-9]+ iterations."
with pytest.warns(ConvergenceWarning, match=warning_message):
ridge_regression(
X, y, alpha=1.0, solver="sparse_cg", tol=0.0, max_iter=None, verbose=1
)
def test_ridge_shapes_type():
# Test shape of coef_ and intercept_
rng = np.random.RandomState(0)
n_samples, n_features = 5, 10
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
Y1 = y[:, np.newaxis]
Y = np.c_[y, 1 + y]
ridge = Ridge()
ridge.fit(X, y)
assert ridge.coef_.shape == (n_features,)
assert ridge.intercept_.shape == ()
assert isinstance(ridge.coef_, np.ndarray)
assert isinstance(ridge.intercept_, float)
ridge.fit(X, Y1)
assert ridge.coef_.shape == (1, n_features)
assert ridge.intercept_.shape == (1,)
assert isinstance(ridge.coef_, np.ndarray)
assert isinstance(ridge.intercept_, np.ndarray)
ridge.fit(X, Y)
assert ridge.coef_.shape == (2, n_features)
assert ridge.intercept_.shape == (2,)
assert isinstance(ridge.coef_, np.ndarray)
assert isinstance(ridge.intercept_, np.ndarray)
def test_ridge_intercept():
# Test intercept with multiple targets GH issue #708
rng = np.random.RandomState(0)
n_samples, n_features = 5, 10
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
Y = np.c_[y, 1.0 + y]
ridge = Ridge()
ridge.fit(X, y)
intercept = ridge.intercept_
ridge.fit(X, Y)
assert_almost_equal(ridge.intercept_[0], intercept)
assert_almost_equal(ridge.intercept_[1], intercept + 1.0)
def test_ridge_vs_lstsq():
# On alpha=0., Ridge and OLS yield the same solution.
rng = np.random.RandomState(0)
# we need more samples than features
n_samples, n_features = 5, 4
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
ridge = Ridge(alpha=0.0, fit_intercept=False)
ols = LinearRegression(fit_intercept=False)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
def test_ridge_individual_penalties():
# Tests the ridge object using individual penalties
rng = np.random.RandomState(42)
n_samples, n_features, n_targets = 20, 10, 5
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples, n_targets)
penalties = np.arange(n_targets)
coef_cholesky = np.array(
[
Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_
for alpha, target in zip(penalties, y.T)
]
)
coefs_indiv_pen = [
Ridge(alpha=penalties, solver=solver, tol=1e-12).fit(X, y).coef_
for solver in ["svd", "sparse_cg", "lsqr", "cholesky", "sag", "saga"]
]
for coef_indiv_pen in coefs_indiv_pen:
assert_array_almost_equal(coef_cholesky, coef_indiv_pen)
# Test error is raised when number of targets and penalties do not match.
ridge = Ridge(alpha=penalties[:-1])
err_msg = "Number of targets and number of penalties do not correspond: 4 != 5"
with pytest.raises(ValueError, match=err_msg):
ridge.fit(X, y)
@pytest.mark.parametrize("n_col", [(), (1,), (3,)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_X_CenterStackOp(n_col, csr_container):
rng = np.random.RandomState(0)
X = rng.randn(11, 8)
X_m = rng.randn(8)
sqrt_sw = rng.randn(len(X))
Y = rng.randn(11, *n_col)
A = rng.randn(9, *n_col)
operator = _X_CenterStackOp(csr_container(X), X_m, sqrt_sw)
reference_operator = np.hstack([X - sqrt_sw[:, None] * X_m, sqrt_sw[:, None]])
assert_allclose(reference_operator.dot(A), operator.dot(A))
assert_allclose(reference_operator.T.dot(Y), operator.T.dot(Y))
@pytest.mark.parametrize("shape", [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize("uniform_weights", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_compute_gram(shape, uniform_weights, csr_container):
rng = np.random.RandomState(0)
X = rng.randn(*shape)
if uniform_weights:
sw = np.ones(X.shape[0])
else:
sw = rng.chisquare(1, shape[0])
sqrt_sw = np.sqrt(sw)
X_mean = np.average(X, axis=0, weights=sw)
X_centered = (X - X_mean) * sqrt_sw[:, None]
true_gram = X_centered.dot(X_centered.T)
X_sparse = csr_container(X * sqrt_sw[:, None])
gcv = _RidgeGCV(fit_intercept=True)
computed_gram, computed_mean = gcv._compute_gram(X_sparse, sqrt_sw)
assert_allclose(X_mean, computed_mean)
assert_allclose(true_gram, computed_gram)
@pytest.mark.parametrize("shape", [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize("uniform_weights", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_compute_covariance(shape, uniform_weights, csr_container):
rng = np.random.RandomState(0)
X = rng.randn(*shape)
if uniform_weights:
sw = np.ones(X.shape[0])
else:
sw = rng.chisquare(1, shape[0])
sqrt_sw = np.sqrt(sw)
X_mean = np.average(X, axis=0, weights=sw)
X_centered = (X - X_mean) * sqrt_sw[:, None]
true_covariance = X_centered.T.dot(X_centered)
X_sparse = csr_container(X * sqrt_sw[:, None])
gcv = _RidgeGCV(fit_intercept=True)
computed_cov, computed_mean = gcv._compute_covariance(X_sparse, sqrt_sw)
assert_allclose(X_mean, computed_mean)
assert_allclose(true_covariance, computed_cov)
def _make_sparse_offset_regression(
n_samples=100,
n_features=100,
proportion_nonzero=0.5,
n_informative=10,
n_targets=1,
bias=13.0,
X_offset=30.0,
noise=30.0,
shuffle=True,
coef=False,
positive=False,
random_state=None,
):
X, y, c = make_regression(
n_samples=n_samples,
n_features=n_features,
n_informative=n_informative,
n_targets=n_targets,
bias=bias,
noise=noise,
shuffle=shuffle,
coef=True,
random_state=random_state,
)
if n_features == 1:
c = np.asarray([c])
X += X_offset
mask = (
np.random.RandomState(random_state).binomial(1, proportion_nonzero, X.shape) > 0
)
removed_X = X.copy()
X[~mask] = 0.0
removed_X[mask] = 0.0
y -= removed_X.dot(c)
if positive:
y += X.dot(np.abs(c) + 1 - c)
c = np.abs(c) + 1
if n_features == 1:
c = c[0]
if coef:
return X, y, c
return X, y
@pytest.mark.parametrize(
"solver, sparse_container",
(
(solver, sparse_container)
for (solver, sparse_container) in product(
["cholesky", "sag", "sparse_cg", "lsqr", "saga", "ridgecv"],
[None] + CSR_CONTAINERS,
)
if sparse_container is None or solver in ["sparse_cg", "ridgecv"]
),
)
@pytest.mark.parametrize(
"n_samples,dtype,proportion_nonzero",
[(20, "float32", 0.1), (40, "float32", 1.0), (20, "float64", 0.2)],
)
@pytest.mark.parametrize("seed", np.arange(3))
def test_solver_consistency(
solver, proportion_nonzero, n_samples, dtype, sparse_container, seed
):
alpha = 1.0
noise = 50.0 if proportion_nonzero > 0.9 else 500.0
X, y = _make_sparse_offset_regression(
bias=10,
n_features=30,
proportion_nonzero=proportion_nonzero,
noise=noise,
random_state=seed,
n_samples=n_samples,
)
# Manually scale the data to avoid pathological cases. We use
# minmax_scale to deal with the sparse case without breaking
# the sparsity pattern.
X = minmax_scale(X)
svd_ridge = Ridge(solver="svd", alpha=alpha).fit(X, y)
X = X.astype(dtype, copy=False)
y = y.astype(dtype, copy=False)
if sparse_container is not None:
X = sparse_container(X)
if solver == "ridgecv":
ridge = RidgeCV(alphas=[alpha])
else:
ridge = Ridge(solver=solver, tol=1e-10, alpha=alpha)
ridge.fit(X, y)
assert_allclose(ridge.coef_, svd_ridge.coef_, atol=1e-3, rtol=1e-3)
assert_allclose(ridge.intercept_, svd_ridge.intercept_, atol=1e-3, rtol=1e-3)
@pytest.mark.parametrize("gcv_mode", ["svd", "eigen"])
@pytest.mark.parametrize("X_container", [np.asarray] + CSR_CONTAINERS)
@pytest.mark.parametrize("X_shape", [(11, 8), (11, 20)])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
"y_shape, noise",
[
((11,), 1.0),
((11, 1), 30.0),
((11, 3), 150.0),
],
)
def test_ridge_gcv_vs_ridge_loo_cv(
gcv_mode, X_container, X_shape, y_shape, fit_intercept, noise
):
n_samples, n_features = X_shape
n_targets = y_shape[-1] if len(y_shape) == 2 else 1
X, y = _make_sparse_offset_regression(
n_samples=n_samples,
n_features=n_features,
n_targets=n_targets,
random_state=0,
shuffle=False,
noise=noise,
n_informative=5,
)
y = y.reshape(y_shape)
alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
loo_ridge = RidgeCV(
cv=n_samples,
fit_intercept=fit_intercept,
alphas=alphas,
scoring="neg_mean_squared_error",
)
gcv_ridge = RidgeCV(
gcv_mode=gcv_mode,
fit_intercept=fit_intercept,
alphas=alphas,
)
loo_ridge.fit(X, y)
X_gcv = X_container(X)
gcv_ridge.fit(X_gcv, y)
assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)
def test_ridge_loo_cv_asym_scoring():
# checking on asymmetric scoring
scoring = "explained_variance"
n_samples, n_features = 10, 5
n_targets = 1
X, y = _make_sparse_offset_regression(
n_samples=n_samples,
n_features=n_features,
n_targets=n_targets,
random_state=0,
shuffle=False,
noise=1,
n_informative=5,
)
alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
loo_ridge = RidgeCV(
cv=n_samples, fit_intercept=True, alphas=alphas, scoring=scoring
)
gcv_ridge = RidgeCV(fit_intercept=True, alphas=alphas, scoring=scoring)
loo_ridge.fit(X, y)
gcv_ridge.fit(X, y)
assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)
@pytest.mark.parametrize("gcv_mode", ["svd", "eigen"])
@pytest.mark.parametrize("X_container", [np.asarray] + CSR_CONTAINERS)
@pytest.mark.parametrize("n_features", [8, 20])
@pytest.mark.parametrize(
"y_shape, fit_intercept, noise",
[
((11,), True, 1.0),
((11, 1), True, 20.0),
((11, 3), True, 150.0),
((11, 3), False, 30.0),
],
)
def test_ridge_gcv_sample_weights(
gcv_mode, X_container, fit_intercept, n_features, y_shape, noise
):
alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
rng = np.random.RandomState(0)
n_targets = y_shape[-1] if len(y_shape) == 2 else 1
X, y = _make_sparse_offset_regression(
n_samples=11,
n_features=n_features,
n_targets=n_targets,
random_state=0,
shuffle=False,
noise=noise,
)
y = y.reshape(y_shape)
sample_weight = 3 * rng.randn(len(X))
sample_weight = (sample_weight - sample_weight.min() + 1).astype(int)
indices = np.repeat(np.arange(X.shape[0]), sample_weight)
sample_weight = sample_weight.astype(float)
X_tiled, y_tiled = X[indices], y[indices]
cv = GroupKFold(n_splits=X.shape[0])
splits = cv.split(X_tiled, y_tiled, groups=indices)
kfold = RidgeCV(
alphas=alphas,
cv=splits,
scoring="neg_mean_squared_error",
fit_intercept=fit_intercept,
)
kfold.fit(X_tiled, y_tiled)
ridge_reg = Ridge(alpha=kfold.alpha_, fit_intercept=fit_intercept)
splits = cv.split(X_tiled, y_tiled, groups=indices)
predictions = cross_val_predict(ridge_reg, X_tiled, y_tiled, cv=splits)
kfold_errors = (y_tiled - predictions) ** 2
kfold_errors = [
np.sum(kfold_errors[indices == i], axis=0) for i in np.arange(X.shape[0])
]
kfold_errors = np.asarray(kfold_errors)
X_gcv = X_container(X)
gcv_ridge = RidgeCV(
alphas=alphas,
store_cv_values=True,
gcv_mode=gcv_mode,
fit_intercept=fit_intercept,
)
gcv_ridge.fit(X_gcv, y, sample_weight=sample_weight)
if len(y_shape) == 2:
gcv_errors = gcv_ridge.cv_values_[:, :, alphas.index(kfold.alpha_)]
else:
gcv_errors = gcv_ridge.cv_values_[:, alphas.index(kfold.alpha_)]
assert kfold.alpha_ == pytest.approx(gcv_ridge.alpha_)
assert_allclose(gcv_errors, kfold_errors, rtol=1e-3)
assert_allclose(gcv_ridge.coef_, kfold.coef_, rtol=1e-3)
assert_allclose(gcv_ridge.intercept_, kfold.intercept_, rtol=1e-3)
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize(
"mode, mode_n_greater_than_p, mode_p_greater_than_n",
[
(None, "svd", "eigen"),
("auto", "svd", "eigen"),
("eigen", "eigen", "eigen"),
("svd", "svd", "svd"),
],
)
def test_check_gcv_mode_choice(
sparse_container, mode, mode_n_greater_than_p, mode_p_greater_than_n
):
X, _ = make_regression(n_samples=5, n_features=2)
if sparse_container is not None:
X = sparse_container(X)
assert _check_gcv_mode(X, mode) == mode_n_greater_than_p
assert _check_gcv_mode(X.T, mode) == mode_p_greater_than_n
def _test_ridge_loo(sparse_container):
# test that can work with both dense or sparse matrices
n_samples = X_diabetes.shape[0]
ret = []
if sparse_container is None:
X, fit_intercept = X_diabetes, True
else:
X, fit_intercept = sparse_container(X_diabetes), False
ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)
# check best alpha
ridge_gcv.fit(X, y_diabetes)
alpha_ = ridge_gcv.alpha_
ret.append(alpha_)
# check that we get same best alpha with custom loss_func
f = ignore_warnings
scoring = make_scorer(mean_squared_error, greater_is_better=False)
ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
f(ridge_gcv2.fit)(X, y_diabetes)
assert ridge_gcv2.alpha_ == pytest.approx(alpha_)
# check that we get same best alpha with custom score_func
def func(x, y):
return -mean_squared_error(x, y)
scoring = make_scorer(func)
ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
f(ridge_gcv3.fit)(X, y_diabetes)
assert ridge_gcv3.alpha_ == pytest.approx(alpha_)
# check that we get same best alpha with a scorer
scorer = get_scorer("neg_mean_squared_error")
ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
ridge_gcv4.fit(X, y_diabetes)
assert ridge_gcv4.alpha_ == pytest.approx(alpha_)
# check that we get same best alpha with sample weights
if sparse_container is None:
ridge_gcv.fit(X, y_diabetes, sample_weight=np.ones(n_samples))
assert ridge_gcv.alpha_ == pytest.approx(alpha_)
# simulate several responses
Y = np.vstack((y_diabetes, y_diabetes)).T
ridge_gcv.fit(X, Y)
Y_pred = ridge_gcv.predict(X)
ridge_gcv.fit(X, y_diabetes)
y_pred = ridge_gcv.predict(X)
assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred, rtol=1e-5)
return ret
def _test_ridge_cv(sparse_container):
X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
ridge_cv = RidgeCV()
ridge_cv.fit(X, y_diabetes)
ridge_cv.predict(X)
assert len(ridge_cv.coef_.shape) == 1
assert type(ridge_cv.intercept_) == np.float64
cv = KFold(5)
ridge_cv.set_params(cv=cv)
ridge_cv.fit(X, y_diabetes)
ridge_cv.predict(X)
assert len(ridge_cv.coef_.shape) == 1
assert type(ridge_cv.intercept_) == np.float64
@pytest.mark.parametrize(
"ridge, make_dataset",
[
(RidgeCV(store_cv_values=False), make_regression),
(RidgeClassifierCV(store_cv_values=False), make_classification),
],
)
def test_ridge_gcv_cv_values_not_stored(ridge, make_dataset):
# Check that `cv_values_` is not stored when store_cv_values is False
X, y = make_dataset(n_samples=6, random_state=42)
ridge.fit(X, y)
assert not hasattr(ridge, "cv_values_")
@pytest.mark.parametrize(
"ridge, make_dataset",
[(RidgeCV(), make_regression), (RidgeClassifierCV(), make_classification)],
)
@pytest.mark.parametrize("cv", [None, 3])
def test_ridge_best_score(ridge, make_dataset, cv):
# check that the best_score_ is store
X, y = make_dataset(n_samples=6, random_state=42)
ridge.set_params(store_cv_values=False, cv=cv)
ridge.fit(X, y)
assert hasattr(ridge, "best_score_")
assert isinstance(ridge.best_score_, float)
def test_ridge_cv_individual_penalties():
# Tests the ridge_cv object optimizing individual penalties for each target
rng = np.random.RandomState(42)
# Create random dataset with multiple targets. Each target should have
# a different optimal alpha.
n_samples, n_features, n_targets = 20, 5, 3
y = rng.randn(n_samples, n_targets)
X = (
np.dot(y[:, [0]], np.ones((1, n_features)))
+ np.dot(y[:, [1]], 0.05 * np.ones((1, n_features)))
+ np.dot(y[:, [2]], 0.001 * np.ones((1, n_features)))
+ rng.randn(n_samples, n_features)
)
alphas = (1, 100, 1000)
# Find optimal alpha for each target
optimal_alphas = [RidgeCV(alphas=alphas).fit(X, target).alpha_ for target in y.T]
# Find optimal alphas for all targets simultaneously
ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True).fit(X, y)
assert_array_equal(optimal_alphas, ridge_cv.alpha_)
# The resulting regression weights should incorporate the different
# alpha values.
assert_array_almost_equal(
Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_, ridge_cv.coef_
)
# Test shape of alpha_ and cv_values_
ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, store_cv_values=True).fit(
X, y
)
assert ridge_cv.alpha_.shape == (n_targets,)
assert ridge_cv.best_score_.shape == (n_targets,)
assert ridge_cv.cv_values_.shape == (n_samples, len(alphas), n_targets)
# Test edge case of there being only one alpha value
ridge_cv = RidgeCV(alphas=1, alpha_per_target=True, store_cv_values=True).fit(X, y)
assert ridge_cv.alpha_.shape == (n_targets,)
assert ridge_cv.best_score_.shape == (n_targets,)
assert ridge_cv.cv_values_.shape == (n_samples, n_targets, 1)
# Test edge case of there being only one target
ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, store_cv_values=True).fit(
X, y[:, 0]
)
assert np.isscalar(ridge_cv.alpha_)
assert np.isscalar(ridge_cv.best_score_)
assert ridge_cv.cv_values_.shape == (n_samples, len(alphas))
# Try with a custom scoring function
ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, scoring="r2").fit(X, y)
assert_array_equal(optimal_alphas, ridge_cv.alpha_)
assert_array_almost_equal(
Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_, ridge_cv.coef_
)
# Using a custom CV object should throw an error in combination with
# alpha_per_target=True
ridge_cv = RidgeCV(alphas=alphas, cv=LeaveOneOut(), alpha_per_target=True)
msg = "cv!=None and alpha_per_target=True are incompatible"
with pytest.raises(ValueError, match=msg):
ridge_cv.fit(X, y)
ridge_cv = RidgeCV(alphas=alphas, cv=6, alpha_per_target=True)
with pytest.raises(ValueError, match=msg):
ridge_cv.fit(X, y)
def _test_ridge_diabetes(sparse_container):
X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
ridge = Ridge(fit_intercept=False)
ridge.fit(X, y_diabetes)
return np.round(ridge.score(X, y_diabetes), 5)
def _test_multi_ridge_diabetes(sparse_container):
# simulate several responses
X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
Y = np.vstack((y_diabetes, y_diabetes)).T
n_features = X_diabetes.shape[1]
ridge = Ridge(fit_intercept=False)
ridge.fit(X, Y)
assert ridge.coef_.shape == (2, n_features)
Y_pred = ridge.predict(X)
ridge.fit(X, y_diabetes)
y_pred = ridge.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
def _test_ridge_classifiers(sparse_container):
n_classes = np.unique(y_iris).shape[0]
n_features = X_iris.shape[1]
X = X_iris if sparse_container is None else sparse_container(X_iris)
for reg in (RidgeClassifier(), RidgeClassifierCV()):
reg.fit(X, y_iris)
assert reg.coef_.shape == (n_classes, n_features)
y_pred = reg.predict(X)
assert np.mean(y_iris == y_pred) > 0.79
cv = KFold(5)
reg = RidgeClassifierCV(cv=cv)
reg.fit(X, y_iris)
y_pred = reg.predict(X)
assert np.mean(y_iris == y_pred) >= 0.8
@pytest.mark.parametrize("scoring", [None, "accuracy", _accuracy_callable])
@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_ridge_classifier_with_scoring(sparse_container, scoring, cv):
# non-regression test for #14672
# check that RidgeClassifierCV works with all sort of scoring and
# cross-validation
X = X_iris if sparse_container is None else sparse_container(X_iris)
scoring_ = make_scorer(scoring) if callable(scoring) else scoring
clf = RidgeClassifierCV(scoring=scoring_, cv=cv)
# Smoke test to check that fit/predict does not raise error
clf.fit(X, y_iris).predict(X)
@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_ridge_regression_custom_scoring(sparse_container, cv):
# check that custom scoring is working as expected
# check the tie breaking strategy (keep the first alpha tried)
def _dummy_score(y_test, y_pred):
return 0.42
X = X_iris if sparse_container is None else sparse_container(X_iris)
alphas = np.logspace(-2, 2, num=5)
clf = RidgeClassifierCV(alphas=alphas, scoring=make_scorer(_dummy_score), cv=cv)
clf.fit(X, y_iris)
assert clf.best_score_ == pytest.approx(0.42)
# In case of tie score, the first alphas will be kept
assert clf.alpha_ == pytest.approx(alphas[0])
def _test_tolerance(sparse_container):
X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
ridge = Ridge(tol=1e-5, fit_intercept=False)
ridge.fit(X, y_diabetes)
score = ridge.score(X, y_diabetes)
ridge2 = Ridge(tol=1e-3, fit_intercept=False)
ridge2.fit(X, y_diabetes)
score2 = ridge2.score(X, y_diabetes)
assert score >= score2
@pytest.mark.parametrize(
"test_func",
(
_test_ridge_loo,
_test_ridge_cv,
_test_ridge_diabetes,
_test_multi_ridge_diabetes,
_test_ridge_classifiers,
_test_tolerance,
),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dense_sparse(test_func, csr_container):
# test dense matrix
ret_dense = test_func(None)
# test sparse matrix
ret_sparse = test_func(csr_container)
# test that the outputs are the same
if ret_dense is not None and ret_sparse is not None:
assert_array_almost_equal(ret_dense, ret_sparse, decimal=3)
def test_class_weights():
# Test class weights.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
reg = RidgeClassifier(class_weight=None)
reg.fit(X, y)
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
reg = RidgeClassifier(class_weight={1: 0.001})
reg.fit(X, y)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([-1]))
# check if class_weight = 'balanced' can handle negative labels.
reg = RidgeClassifier(class_weight="balanced")
reg.fit(X, y)
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))
# class_weight = 'balanced', and class_weight = None should return
# same values when y has equal number of all labels
X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0]])
y = [1, 1, -1, -1]
reg = RidgeClassifier(class_weight=None)
reg.fit(X, y)
rega = RidgeClassifier(class_weight="balanced")
rega.fit(X, y)
assert len(rega.classes_) == 2
assert_array_almost_equal(reg.coef_, rega.coef_)
assert_array_almost_equal(reg.intercept_, rega.intercept_)
@pytest.mark.parametrize("reg", (RidgeClassifier, RidgeClassifierCV))
def test_class_weight_vs_sample_weight(reg):
"""Check class_weights resemble sample_weights behavior."""
# Iris is balanced, so no effect expected for using 'balanced' weights
reg1 = reg()
reg1.fit(iris.data, iris.target)
reg2 = reg(class_weight="balanced")
reg2.fit(iris.data, iris.target)
assert_almost_equal(reg1.coef_, reg2.coef_)
# Inflate importance of class 1, check against user-defined weights
sample_weight = np.ones(iris.target.shape)
sample_weight[iris.target == 1] *= 100
class_weight = {0: 1.0, 1: 100.0, 2: 1.0}
reg1 = reg()
reg1.fit(iris.data, iris.target, sample_weight)
reg2 = reg(class_weight=class_weight)
reg2.fit(iris.data, iris.target)
assert_almost_equal(reg1.coef_, reg2.coef_)
# Check that sample_weight and class_weight are multiplicative
reg1 = reg()
reg1.fit(iris.data, iris.target, sample_weight**2)
reg2 = reg(class_weight=class_weight)
reg2.fit(iris.data, iris.target, sample_weight)
assert_almost_equal(reg1.coef_, reg2.coef_)
def test_class_weights_cv():
# Test class weights for cross validated ridge classifier.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
reg = RidgeClassifierCV(class_weight=None, alphas=[0.01, 0.1, 1])
reg.fit(X, y)
# we give a small weights to class 1
reg = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[0.01, 0.1, 1, 10])
reg.fit(X, y)
assert_array_equal(reg.predict([[-0.2, 2]]), np.array([-1]))
@pytest.mark.parametrize(
"scoring", [None, "neg_mean_squared_error", _mean_squared_error_callable]
)
def test_ridgecv_store_cv_values(scoring):
rng = np.random.RandomState(42)
n_samples = 8
n_features = 5
x = rng.randn(n_samples, n_features)
alphas = [1e-1, 1e0, 1e1]
n_alphas = len(alphas)
scoring_ = make_scorer(scoring) if callable(scoring) else scoring
r = RidgeCV(alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_)
# with len(y.shape) == 1
y = rng.randn(n_samples)
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_alphas)
# with len(y.shape) == 2
n_targets = 3
y = rng.randn(n_samples, n_targets)
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
r = RidgeCV(cv=3, store_cv_values=True, scoring=scoring)
with pytest.raises(ValueError, match="cv!=None and store_cv_values"):
r.fit(x, y)
@pytest.mark.parametrize("scoring", [None, "accuracy", _accuracy_callable])
def test_ridge_classifier_cv_store_cv_values(scoring):
x = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y = np.array([1, 1, 1, -1, -1])
n_samples = x.shape[0]
alphas = [1e-1, 1e0, 1e1]
n_alphas = len(alphas)
scoring_ = make_scorer(scoring) if callable(scoring) else scoring
r = RidgeClassifierCV(
alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_
)
# with len(y.shape) == 1
n_targets = 1
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
# with len(y.shape) == 2
y = np.array(
[[1, 1, 1, -1, -1], [1, -1, 1, -1, 1], [-1, -1, 1, -1, -1]]
).transpose()
n_targets = y.shape[1]
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
def test_ridgecv_alphas_conversion(Estimator):
rng = np.random.RandomState(0)
alphas = (0.1, 1.0, 10.0)
n_samples, n_features = 5, 5
if Estimator is RidgeCV:
y = rng.randn(n_samples)
else:
y = rng.randint(0, 2, n_samples)
X = rng.randn(n_samples, n_features)
ridge_est = Estimator(alphas=alphas)
assert (
ridge_est.alphas is alphas
), f"`alphas` was mutated in `{Estimator.__name__}.__init__`"
ridge_est.fit(X, y)
assert_array_equal(ridge_est.alphas, np.asarray(alphas))
def test_ridgecv_sample_weight():
rng = np.random.RandomState(0)
alphas = (0.1, 1.0, 10.0)
# There are different algorithms for n_samples > n_features
# and the opposite, so test them both.
for n_samples, n_features in ((6, 5), (5, 10)):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
cv = KFold(5)
ridgecv = RidgeCV(alphas=alphas, cv=cv)
ridgecv.fit(X, y, sample_weight=sample_weight)
# Check using GridSearchCV directly
parameters = {"alpha": alphas}
gs = GridSearchCV(Ridge(), parameters, cv=cv)
gs.fit(X, y, sample_weight=sample_weight)
assert ridgecv.alpha_ == gs.best_estimator_.alpha
assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_)
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
rng = np.random.RandomState(42)
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights_OK = rng.randn(n_samples) ** 2 + 1
sample_weights_OK_1 = 1.0
sample_weights_OK_2 = 2.0
sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]
ridge = Ridge(alpha=1)
# make sure the "OK" sample weights actually work
ridge.fit(X, y, sample_weights_OK)
ridge.fit(X, y, sample_weights_OK_1)
ridge.fit(X, y, sample_weights_OK_2)
def fit_ridge_not_ok():
ridge.fit(X, y, sample_weights_not_OK)
def fit_ridge_not_ok_2():
ridge.fit(X, y, sample_weights_not_OK_2)
err_msg = "Sample weights must be 1D array or scalar"
with pytest.raises(ValueError, match=err_msg):
fit_ridge_not_ok()
err_msg = "Sample weights must be 1D array or scalar"
with pytest.raises(ValueError, match=err_msg):
fit_ridge_not_ok_2()
@pytest.mark.parametrize("n_samples,n_features", [[2, 3], [3, 2]])
@pytest.mark.parametrize(
"sparse_container",
COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
def test_sparse_design_with_sample_weights(n_samples, n_features, sparse_container):
# Sample weights must work with sparse matrices
rng = np.random.RandomState(42)
sparse_ridge = Ridge(alpha=1.0, fit_intercept=False)
dense_ridge = Ridge(alpha=1.0, fit_intercept=False)
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights = rng.randn(n_samples) ** 2 + 1
X_sparse = sparse_container(X)
sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
dense_ridge.fit(X, y, sample_weight=sample_weights)
assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6)
def test_ridgecv_int_alphas():
X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
# Integers
ridge = RidgeCV(alphas=(1, 10, 100))
ridge.fit(X, y)
@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
@pytest.mark.parametrize(
"params, err_type, err_msg",
[
({"alphas": (1, -1, -100)}, ValueError, r"alphas\[1\] == -1, must be > 0.0"),
(
{"alphas": (-0.1, -1.0, -10.0)},
ValueError,
r"alphas\[0\] == -0.1, must be > 0.0",
),
(
{"alphas": (1, 1.0, "1")},
TypeError,
r"alphas\[2\] must be an instance of float, not str",
),
],
)
def test_ridgecv_alphas_validation(Estimator, params, err_type, err_msg):
"""Check the `alphas` validation in RidgeCV and RidgeClassifierCV."""
n_samples, n_features = 5, 5
X = rng.randn(n_samples, n_features)
y = rng.randint(0, 2, n_samples)
with pytest.raises(err_type, match=err_msg):
Estimator(**params).fit(X, y)
@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
def test_ridgecv_alphas_scalar(Estimator):
"""Check the case when `alphas` is a scalar.
This case was supported in the past when `alphas` where converted
into array in `__init__`.
We add this test to ensure backward compatibility.
"""
n_samples, n_features = 5, 5
X = rng.randn(n_samples, n_features)
if Estimator is RidgeCV:
y = rng.randn(n_samples)
else:
y = rng.randint(0, 2, n_samples)
Estimator(alphas=1).fit(X, y)
def test_sparse_cg_max_iter():
reg = Ridge(solver="sparse_cg", max_iter=1)
reg.fit(X_diabetes, y_diabetes)
assert reg.coef_.shape[0] == X_diabetes.shape[1]
@ignore_warnings
def test_n_iter():
# Test that self.n_iter_ is correct.
n_targets = 2
X, y = X_diabetes, y_diabetes
y_n = np.tile(y, (n_targets, 1)).T
for max_iter in range(1, 4):
for solver in ("sag", "saga", "lsqr"):
reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
reg.fit(X, y_n)
assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))
for solver in ("sparse_cg", "svd", "cholesky"):
reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
reg.fit(X, y_n)
assert reg.n_iter_ is None
@pytest.mark.parametrize("solver", ["lsqr", "sparse_cg", "lbfgs", "auto"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse(
solver, with_sample_weight, global_random_seed, csr_container
):
"""Check that ridge finds the same coefs and intercept on dense and sparse input
in the presence of sample weights.
For now only sparse_cg and lbfgs can correctly fit an intercept
with sparse X with default tol and max_iter.
'sag' is tested separately in test_ridge_fit_intercept_sparse_sag because it
requires more iterations and should raise a warning if default max_iter is used.
Other solvers raise an exception, as checked in
test_ridge_fit_intercept_sparse_error
"""
positive = solver == "lbfgs"
X, y = _make_sparse_offset_regression(
n_features=20, random_state=global_random_seed, positive=positive
)
sample_weight = None
if with_sample_weight:
rng = np.random.RandomState(global_random_seed)
sample_weight = 1.0 + rng.uniform(size=X.shape[0])
# "auto" should switch to "sparse_cg" when X is sparse
# so the reference we use for both ("auto" and "sparse_cg") is
# Ridge(solver="sparse_cg"), fitted using the dense representation (note
# that "sparse_cg" can fit sparse or dense data)
dense_solver = "sparse_cg" if solver == "auto" else solver
dense_ridge = Ridge(solver=dense_solver, tol=1e-12, positive=positive)
sparse_ridge = Ridge(solver=solver, tol=1e-12, positive=positive)
dense_ridge.fit(X, y, sample_weight=sample_weight)
sparse_ridge.fit(csr_container(X), y, sample_weight=sample_weight)
assert_allclose(dense_ridge.intercept_, sparse_ridge.intercept_)
assert_allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=5e-7)
@pytest.mark.parametrize("solver", ["saga", "svd", "cholesky"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse_error(solver, csr_container):
X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
X_csr = csr_container(X)
sparse_ridge = Ridge(solver=solver)
err_msg = "solver='{}' does not support".format(solver)
with pytest.raises(ValueError, match=err_msg):
sparse_ridge.fit(X_csr, y)
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse_sag(
with_sample_weight, global_random_seed, csr_container
):
X, y = _make_sparse_offset_regression(
n_features=5, n_samples=20, random_state=global_random_seed, X_offset=5.0
)
if with_sample_weight:
rng = np.random.RandomState(global_random_seed)
sample_weight = 1.0 + rng.uniform(size=X.shape[0])
else:
sample_weight = None
X_csr = csr_container(X)
params = dict(
alpha=1.0, solver="sag", fit_intercept=True, tol=1e-10, max_iter=100000
)
dense_ridge = Ridge(**params)
sparse_ridge = Ridge(**params)
dense_ridge.fit(X, y, sample_weight=sample_weight)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
sparse_ridge.fit(X_csr, y, sample_weight=sample_weight)
assert_allclose(dense_ridge.intercept_, sparse_ridge.intercept_, rtol=1e-4)
assert_allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=1e-4)
with pytest.warns(UserWarning, match='"sag" solver requires.*'):
Ridge(solver="sag", fit_intercept=True, tol=1e-3, max_iter=None).fit(X_csr, y)
@pytest.mark.parametrize("return_intercept", [False, True])
@pytest.mark.parametrize("sample_weight", [None, np.ones(1000)])
@pytest.mark.parametrize("container", [np.array] + CSR_CONTAINERS)
@pytest.mark.parametrize(
"solver", ["auto", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_ridge_regression_check_arguments_validity(
return_intercept, sample_weight, container, solver
):
"""check if all combinations of arguments give valid estimations"""
# test excludes 'svd' solver because it raises exception for sparse inputs
rng = check_random_state(42)
X = rng.rand(1000, 3)
true_coefs = [1, 2, 0.1]
y = np.dot(X, true_coefs)
true_intercept = 0.0
if return_intercept:
true_intercept = 10000.0
y += true_intercept
X_testing = container(X)
alpha, tol = 1e-3, 1e-6
atol = 1e-3 if _IS_32BIT else 1e-4
positive = solver == "lbfgs"
if solver not in ["sag", "auto"] and return_intercept:
with pytest.raises(ValueError, match="In Ridge, only 'sag' solver"):
ridge_regression(
X_testing,
y,
alpha=alpha,
solver=solver,
sample_weight=sample_weight,
return_intercept=return_intercept,
positive=positive,
tol=tol,
)
return
out = ridge_regression(
X_testing,
y,
alpha=alpha,
solver=solver,
sample_weight=sample_weight,
positive=positive,
return_intercept=return_intercept,
tol=tol,
)
if return_intercept:
coef, intercept = out
assert_allclose(coef, true_coefs, rtol=0, atol=atol)
assert_allclose(intercept, true_intercept, rtol=0, atol=atol)
else:
assert_allclose(out, true_coefs, rtol=0, atol=atol)
@pytest.mark.parametrize(
"solver", ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_dtype_match(solver):
rng = np.random.RandomState(0)
alpha = 1.0
positive = solver == "lbfgs"
n_samples, n_features = 6, 5
X_64 = rng.randn(n_samples, n_features)
y_64 = rng.randn(n_samples)
X_32 = X_64.astype(np.float32)
y_32 = y_64.astype(np.float32)
tol = 2 * np.finfo(np.float32).resolution
# Check type consistency 32bits
ridge_32 = Ridge(
alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
)
ridge_32.fit(X_32, y_32)
coef_32 = ridge_32.coef_
# Check type consistency 64 bits
ridge_64 = Ridge(
alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
)
ridge_64.fit(X_64, y_64)
coef_64 = ridge_64.coef_
# Do the actual checks at once for easier debug
assert coef_32.dtype == X_32.dtype
assert coef_64.dtype == X_64.dtype
assert ridge_32.predict(X_32).dtype == X_32.dtype
assert ridge_64.predict(X_64).dtype == X_64.dtype
assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4, atol=5e-4)
def test_dtype_match_cholesky():
# Test different alphas in cholesky solver to ensure full coverage.
# This test is separated from test_dtype_match for clarity.
rng = np.random.RandomState(0)
alpha = np.array([1.0, 0.5])
n_samples, n_features, n_target = 6, 7, 2
X_64 = rng.randn(n_samples, n_features)
y_64 = rng.randn(n_samples, n_target)
X_32 = X_64.astype(np.float32)
y_32 = y_64.astype(np.float32)
# Check type consistency 32bits
ridge_32 = Ridge(alpha=alpha, solver="cholesky")
ridge_32.fit(X_32, y_32)
coef_32 = ridge_32.coef_
# Check type consistency 64 bits
ridge_64 = Ridge(alpha=alpha, solver="cholesky")
ridge_64.fit(X_64, y_64)
coef_64 = ridge_64.coef_
# Do all the checks at once, like this is easier to debug
assert coef_32.dtype == X_32.dtype
assert coef_64.dtype == X_64.dtype
assert ridge_32.predict(X_32).dtype == X_32.dtype
assert ridge_64.predict(X_64).dtype == X_64.dtype
assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
@pytest.mark.parametrize(
"solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"]
)
@pytest.mark.parametrize("seed", range(1))
def test_ridge_regression_dtype_stability(solver, seed):
random_state = np.random.RandomState(seed)
n_samples, n_features = 6, 5
X = random_state.randn(n_samples, n_features)
coef = random_state.randn(n_features)
y = np.dot(X, coef) + 0.01 * random_state.randn(n_samples)
alpha = 1.0
positive = solver == "lbfgs"
results = dict()
# XXX: Sparse CG seems to be far less numerically stable than the
# others, maybe we should not enable float32 for this one.
atol = 1e-3 if solver == "sparse_cg" else 1e-5
for current_dtype in (np.float32, np.float64):
results[current_dtype] = ridge_regression(
X.astype(current_dtype),
y.astype(current_dtype),
alpha=alpha,
solver=solver,
random_state=random_state,
sample_weight=None,
positive=positive,
max_iter=500,
tol=1e-10,
return_n_iter=False,
return_intercept=False,
)
assert results[np.float32].dtype == np.float32
assert results[np.float64].dtype == np.float64
assert_allclose(results[np.float32], results[np.float64], atol=atol)
def test_ridge_sag_with_X_fortran():
# check that Fortran array are converted when using SAG solver
X, y = make_regression(random_state=42)
# for the order of X and y to not be C-ordered arrays
X = np.asfortranarray(X)
X = X[::2, :]
y = y[::2]
Ridge(solver="sag").fit(X, y)
@pytest.mark.parametrize(
"Classifier, params",
[
(RidgeClassifier, {}),
(RidgeClassifierCV, {"cv": None}),
(RidgeClassifierCV, {"cv": 3}),
],
)
def test_ridgeclassifier_multilabel(Classifier, params):
"""Check that multilabel classification is supported and give meaningful
results."""
X, y = make_multilabel_classification(n_classes=1, random_state=0)
y = y.reshape(-1, 1)
Y = np.concatenate([y, y], axis=1)
clf = Classifier(**params).fit(X, Y)
Y_pred = clf.predict(X)
assert Y_pred.shape == Y.shape
assert_array_equal(Y_pred[:, 0], Y_pred[:, 1])
Ridge(solver="sag").fit(X, y)
@pytest.mark.parametrize("solver", ["auto", "lbfgs"])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_ridge_positive_regression_test(solver, fit_intercept, alpha):
"""Test that positive Ridge finds true positive coefficients."""
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
coef = np.array([1, -10])
if fit_intercept:
intercept = 20
y = X.dot(coef) + intercept
else:
y = X.dot(coef)
model = Ridge(
alpha=alpha, positive=True, solver=solver, fit_intercept=fit_intercept
)
model.fit(X, y)
assert np.all(model.coef_ >= 0)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_ridge_ground_truth_positive_test(fit_intercept, alpha):
"""Test that Ridge w/wo positive converges to the same solution.
Ridge with positive=True and positive=False must give the same
when the ground truth coefs are all positive.
"""
rng = np.random.RandomState(42)
X = rng.randn(300, 100)
coef = rng.uniform(0.1, 1.0, size=X.shape[1])
if fit_intercept:
intercept = 1
y = X @ coef + intercept
else:
y = X @ coef
y += rng.normal(size=X.shape[0]) * 0.01
results = []
for positive in [True, False]:
model = Ridge(
alpha=alpha, positive=positive, fit_intercept=fit_intercept, tol=1e-10
)
results.append(model.fit(X, y).coef_)
assert_allclose(*results, atol=1e-6, rtol=0)
@pytest.mark.parametrize(
"solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga"]
)
def test_ridge_positive_error_test(solver):
"""Test input validation for positive argument in Ridge."""
alpha = 0.1
X = np.array([[1, 2], [3, 4]])
coef = np.array([1, -1])
y = X @ coef
model = Ridge(alpha=alpha, positive=True, solver=solver, fit_intercept=False)
with pytest.raises(ValueError, match="does not support positive"):
model.fit(X, y)
with pytest.raises(ValueError, match="only 'lbfgs' solver can be used"):
_, _ = ridge_regression(
X, y, alpha, positive=True, solver=solver, return_intercept=False
)
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_positive_ridge_loss(alpha):
"""Check ridge loss consistency when positive argument is enabled."""
X, y = make_regression(n_samples=300, n_features=300, random_state=42)
alpha = 0.10
n_checks = 100
def ridge_loss(model, random_state=None, noise_scale=1e-8):
intercept = model.intercept_
if random_state is not None:
rng = np.random.RandomState(random_state)
coef = model.coef_ + rng.uniform(0, noise_scale, size=model.coef_.shape)
else:
coef = model.coef_
return 0.5 * np.sum((y - X @ coef - intercept) ** 2) + 0.5 * alpha * np.sum(
coef**2
)
model = Ridge(alpha=alpha).fit(X, y)
model_positive = Ridge(alpha=alpha, positive=True).fit(X, y)
# Check 1:
# Loss for solution found by Ridge(positive=False)
# is lower than that for solution found by Ridge(positive=True)
loss = ridge_loss(model)
loss_positive = ridge_loss(model_positive)
assert loss <= loss_positive
# Check 2:
# Loss for solution found by Ridge(positive=True)
# is lower than that for small random positive perturbation
# of the positive solution.
for random_state in range(n_checks):
loss_perturbed = ridge_loss(model_positive, random_state=random_state)
assert loss_positive <= loss_perturbed
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_lbfgs_solver_consistency(alpha):
"""Test that LBGFS gets almost the same coef of svd when positive=False."""
X, y = make_regression(n_samples=300, n_features=300, random_state=42)
y = np.expand_dims(y, 1)
alpha = np.asarray([alpha])
config = {
"positive": False,
"tol": 1e-16,
"max_iter": 500000,
}
coef_lbfgs = _solve_lbfgs(X, y, alpha, **config)
coef_cholesky = _solve_svd(X, y, alpha)
assert_allclose(coef_lbfgs, coef_cholesky, atol=1e-4, rtol=0)
def test_lbfgs_solver_error():
"""Test that LBFGS solver raises ConvergenceWarning."""
X = np.array([[1, -1], [1, 1]])
y = np.array([-1e10, 1e10])
model = Ridge(
alpha=0.01,
solver="lbfgs",
fit_intercept=False,
tol=1e-12,
positive=True,
max_iter=1,
)
with pytest.warns(ConvergenceWarning, match="lbfgs solver did not converge"):
model.fit(X, y)
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("data", ["tall", "wide"])
@pytest.mark.parametrize("solver", SOLVERS + ["lbfgs"])
def test_ridge_sample_weight_consistency(
fit_intercept, sparse_container, data, solver, global_random_seed
):
"""Test that the impact of sample_weight is consistent.
Note that this test is stricter than the common test
check_sample_weights_invariance alone.
"""
# filter out solver that do not support sparse input
if sparse_container is not None:
if solver == "svd" or (solver in ("cholesky", "saga") and fit_intercept):
pytest.skip("unsupported configuration")
# XXX: this test is quite sensitive to the seed used to generate the data:
# ideally we would like the test to pass for any global_random_seed but this is not
# the case at the moment.
rng = np.random.RandomState(42)
n_samples = 12
if data == "tall":
n_features = n_samples // 2
else:
n_features = n_samples * 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
if sparse_container is not None:
X = sparse_container(X)
params = dict(
fit_intercept=fit_intercept,
alpha=1.0,
solver=solver,
positive=(solver == "lbfgs"),
random_state=global_random_seed, # for sag/saga
tol=1e-12,
)
# 1) sample_weight=np.ones(..) should be equivalent to sample_weight=None
# same check as check_sample_weights_invariance(name, reg, kind="ones"), but we also
# test with sparse input.
reg = Ridge(**params).fit(X, y, sample_weight=None)
coef = reg.coef_.copy()
if fit_intercept:
intercept = reg.intercept_
sample_weight = np.ones_like(y)
reg.fit(X, y, sample_weight=sample_weight)
assert_allclose(reg.coef_, coef, rtol=1e-6)
if fit_intercept:
assert_allclose(reg.intercept_, intercept)
# 2) setting elements of sample_weight to 0 is equivalent to removing these samples
# same check as check_sample_weights_invariance(name, reg, kind="zeros"), but we
# also test with sparse input
sample_weight = rng.uniform(low=0.01, high=2, size=X.shape[0])
sample_weight[-5:] = 0
y[-5:] *= 1000 # to make excluding those samples important
reg.fit(X, y, sample_weight=sample_weight)
coef = reg.coef_.copy()
if fit_intercept:
intercept = reg.intercept_
reg.fit(X[:-5, :], y[:-5], sample_weight=sample_weight[:-5])
assert_allclose(reg.coef_, coef, rtol=1e-6)
if fit_intercept:
assert_allclose(reg.intercept_, intercept)
# 3) scaling of sample_weight should have no effect
# Note: For models with penalty, scaling the penalty term might work.
reg2 = Ridge(**params).set_params(alpha=np.pi * params["alpha"])
reg2.fit(X, y, sample_weight=np.pi * sample_weight)
if solver in ("sag", "saga") and not fit_intercept:
pytest.xfail(f"Solver {solver} does fail test for scaling of sample_weight.")
assert_allclose(reg2.coef_, coef, rtol=1e-6)
if fit_intercept:
assert_allclose(reg2.intercept_, intercept)
# 4) check that multiplying sample_weight by 2 is equivalent
# to repeating corresponding samples twice
if sparse_container is not None:
X = X.toarray()
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
y2 = np.concatenate([y, y[: n_samples // 2]])
sample_weight_1 = sample_weight.copy()
sample_weight_1[: n_samples // 2] *= 2
sample_weight_2 = np.concatenate(
[sample_weight, sample_weight[: n_samples // 2]], axis=0
)
if sparse_container is not None:
X = sparse_container(X)
X2 = sparse_container(X2)
reg1 = Ridge(**params).fit(X, y, sample_weight=sample_weight_1)
reg2 = Ridge(**params).fit(X2, y2, sample_weight=sample_weight_2)
assert_allclose(reg1.coef_, reg2.coef_)
if fit_intercept:
assert_allclose(reg1.intercept_, reg2.intercept_)
|