File: test_ridge.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (2064 lines) | stat: -rw-r--r-- 70,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
import warnings
from itertools import product

import numpy as np
import pytest
from scipy import linalg

from sklearn import datasets
from sklearn.datasets import (
    make_classification,
    make_low_rank_matrix,
    make_multilabel_classification,
    make_regression,
)
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import (
    LinearRegression,
    Ridge,
    RidgeClassifier,
    RidgeClassifierCV,
    RidgeCV,
    ridge_regression,
)
from sklearn.linear_model._ridge import (
    _check_gcv_mode,
    _RidgeGCV,
    _solve_cholesky,
    _solve_cholesky_kernel,
    _solve_lbfgs,
    _solve_svd,
    _X_CenterStackOp,
)
from sklearn.metrics import get_scorer, make_scorer, mean_squared_error
from sklearn.model_selection import (
    GridSearchCV,
    GroupKFold,
    KFold,
    LeaveOneOut,
    cross_val_predict,
)
from sklearn.preprocessing import minmax_scale
from sklearn.utils import _IS_32BIT, check_random_state
from sklearn.utils._testing import (
    assert_allclose,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DOK_CONTAINERS,
    LIL_CONTAINERS,
)

SOLVERS = ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga"]
SPARSE_SOLVERS_WITH_INTERCEPT = ("sparse_cg", "sag")
SPARSE_SOLVERS_WITHOUT_INTERCEPT = ("sparse_cg", "cholesky", "lsqr", "sag", "saga")

diabetes = datasets.load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
ind = np.arange(X_diabetes.shape[0])
rng = np.random.RandomState(0)
rng.shuffle(ind)
ind = ind[:200]
X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind]

iris = datasets.load_iris()
X_iris, y_iris = iris.data, iris.target


def _accuracy_callable(y_test, y_pred):
    return np.mean(y_test == y_pred)


def _mean_squared_error_callable(y_test, y_pred):
    return ((y_test - y_pred) ** 2).mean()


@pytest.fixture(params=["long", "wide"])
def ols_ridge_dataset(global_random_seed, request):
    """Dataset with OLS and Ridge solutions, well conditioned X.

    The construction is based on the SVD decomposition of X = U S V'.

    Parameters
    ----------
    type : {"long", "wide"}
        If "long", then n_samples > n_features.
        If "wide", then n_features > n_samples.

    For "wide", we return the minimum norm solution w = X' (XX')^-1 y:

        min ||w||_2 subject to X w = y

    Returns
    -------
    X : ndarray
        Last column of 1, i.e. intercept.
    y : ndarray
    coef_ols : ndarray of shape
        Minimum norm OLS solutions, i.e. min ||X w - y||_2_2 (with minimum ||w||_2 in
        case of ambiguity)
        Last coefficient is intercept.
    coef_ridge : ndarray of shape (5,)
        Ridge solution with alpha=1, i.e. min ||X w - y||_2_2 + ||w||_2^2.
        Last coefficient is intercept.
    """
    # Make larger dim more than double as big as the smaller one.
    # This helps when constructing singular matrices like (X, X).
    if request.param == "long":
        n_samples, n_features = 12, 4
    else:
        n_samples, n_features = 4, 12
    k = min(n_samples, n_features)
    rng = np.random.RandomState(global_random_seed)
    X = make_low_rank_matrix(
        n_samples=n_samples, n_features=n_features, effective_rank=k, random_state=rng
    )
    X[:, -1] = 1  # last columns acts as intercept
    U, s, Vt = linalg.svd(X)
    assert np.all(s > 1e-3)  # to be sure
    U1, U2 = U[:, :k], U[:, k:]
    Vt1, _ = Vt[:k, :], Vt[k:, :]

    if request.param == "long":
        # Add a term that vanishes in the product X'y
        coef_ols = rng.uniform(low=-10, high=10, size=n_features)
        y = X @ coef_ols
        y += U2 @ rng.normal(size=n_samples - n_features) ** 2
    else:
        y = rng.uniform(low=-10, high=10, size=n_samples)
        # w = X'(XX')^-1 y = V s^-1 U' y
        coef_ols = Vt1.T @ np.diag(1 / s) @ U1.T @ y

    # Add penalty alpha * ||coef||_2^2 for alpha=1 and solve via normal equations.
    # Note that the problem is well conditioned such that we get accurate results.
    alpha = 1
    d = alpha * np.identity(n_features)
    d[-1, -1] = 0  # intercept gets no penalty
    coef_ridge = linalg.solve(X.T @ X + d, X.T @ y)

    # To be sure
    R_OLS = y - X @ coef_ols
    R_Ridge = y - X @ coef_ridge
    assert np.linalg.norm(R_OLS) < np.linalg.norm(R_Ridge)

    return X, y, coef_ols, coef_ridge


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression(solver, fit_intercept, ols_ridge_dataset, global_random_seed):
    """Test that Ridge converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    """
    X, y, _, coef = ols_ridge_dataset
    alpha = 1.0  # because ols_ridge_dataset uses this.
    params = dict(
        alpha=alpha,
        fit_intercept=True,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )

    # Calculate residuals and R2.
    res_null = y - np.mean(y)
    res_Ridge = y - X @ coef
    R2_Ridge = 1 - np.sum(res_Ridge**2) / np.sum(res_null**2)

    model = Ridge(**params)
    X = X[:, :-1]  # remove intercept
    if fit_intercept:
        intercept = coef[-1]
    else:
        X = X - X.mean(axis=0)
        y = y - y.mean()
        intercept = 0
    model.fit(X, y)
    coef = coef[:-1]

    assert model.intercept_ == pytest.approx(intercept)
    assert_allclose(model.coef_, coef)
    assert model.score(X, y) == pytest.approx(R2_Ridge)

    # Same with sample_weight.
    model = Ridge(**params).fit(X, y, sample_weight=np.ones(X.shape[0]))
    assert model.intercept_ == pytest.approx(intercept)
    assert_allclose(model.coef_, coef)
    assert model.score(X, y) == pytest.approx(R2_Ridge)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_hstacked_X(
    solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
    """Test that Ridge converges for all solvers to correct solution on hstacked data.

    We work with a simple constructed data set with known solution.
    Fit on [X] with alpha is the same as fit on [X, X]/2 with alpha/2.
    For long X, [X, X] is a singular matrix.
    """
    X, y, _, coef = ols_ridge_dataset
    n_samples, n_features = X.shape
    alpha = 1.0  # because ols_ridge_dataset uses this.

    model = Ridge(
        alpha=alpha / 2,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )
    X = X[:, :-1]  # remove intercept
    X = 0.5 * np.concatenate((X, X), axis=1)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features - 1)
    if fit_intercept:
        intercept = coef[-1]
    else:
        X = X - X.mean(axis=0)
        y = y - y.mean()
        intercept = 0
    model.fit(X, y)
    coef = coef[:-1]

    assert model.intercept_ == pytest.approx(intercept)
    # coefficients are not all on the same magnitude, adding a small atol to
    # make this test less brittle
    assert_allclose(model.coef_, np.r_[coef, coef], atol=1e-8)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_vstacked_X(
    solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
    """Test that Ridge converges for all solvers to correct solution on vstacked data.

    We work with a simple constructed data set with known solution.
    Fit on [X] with alpha is the same as fit on [X], [y]
                                                [X], [y] with 2 * alpha.
    For wide X, [X', X'] is a singular matrix.
    """
    X, y, _, coef = ols_ridge_dataset
    n_samples, n_features = X.shape
    alpha = 1.0  # because ols_ridge_dataset uses this.

    model = Ridge(
        alpha=2 * alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )
    X = X[:, :-1]  # remove intercept
    X = np.concatenate((X, X), axis=0)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
    y = np.r_[y, y]
    if fit_intercept:
        intercept = coef[-1]
    else:
        X = X - X.mean(axis=0)
        y = y - y.mean()
        intercept = 0
    model.fit(X, y)
    coef = coef[:-1]

    assert model.intercept_ == pytest.approx(intercept)
    # coefficients are not all on the same magnitude, adding a small atol to
    # make this test less brittle
    assert_allclose(model.coef_, coef, atol=1e-8)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized(
    solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
    """Test that unpenalized Ridge = OLS converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    Note: This checks the minimum norm solution for wide X, i.e.
    n_samples < n_features:
        min ||w||_2 subject to X w = y
    """
    X, y, coef, _ = ols_ridge_dataset
    n_samples, n_features = X.shape
    alpha = 0  # OLS
    params = dict(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )

    model = Ridge(**params)
    # Note that cholesky might give a warning: "Singular matrix in solving dual
    # problem. Using least-squares solution instead."
    if fit_intercept:
        X = X[:, :-1]  # remove intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        intercept = 0
    model.fit(X, y)

    # FIXME: `assert_allclose(model.coef_, coef)` should work for all cases but fails
    # for the wide/fat case with n_features > n_samples. The current Ridge solvers do
    # NOT return the minimum norm solution with fit_intercept=True.
    if n_samples > n_features or not fit_intercept:
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef)
    else:
        # As it is an underdetermined problem, residuals = 0. This shows that we get
        # a solution to X w = y ....
        assert_allclose(model.predict(X), y)
        assert_allclose(X @ coef + intercept, y)
        # But it is not the minimum norm solution. (This should be equal.)
        assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
            np.r_[intercept, coef]
        )

        pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized_hstacked_X(
    solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
    """Test that unpenalized Ridge = OLS converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    OLS fit on [X] is the same as fit on [X, X]/2.
    For long X, [X, X] is a singular matrix and we check against the minimum norm
    solution:
        min ||w||_2 subject to min ||X w - y||_2
    """
    X, y, coef, _ = ols_ridge_dataset
    n_samples, n_features = X.shape
    alpha = 0  # OLS

    model = Ridge(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )
    if fit_intercept:
        X = X[:, :-1]  # remove intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        intercept = 0
    X = 0.5 * np.concatenate((X, X), axis=1)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
    model.fit(X, y)

    if n_samples > n_features or not fit_intercept:
        assert model.intercept_ == pytest.approx(intercept)
        if solver == "cholesky":
            # Cholesky is a bad choice for singular X.
            pytest.skip()
        assert_allclose(model.coef_, np.r_[coef, coef])
    else:
        # FIXME: Same as in test_ridge_regression_unpenalized.
        # As it is an underdetermined problem, residuals = 0. This shows that we get
        # a solution to X w = y ....
        assert_allclose(model.predict(X), y)
        # But it is not the minimum norm solution. (This should be equal.)
        assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
            np.r_[intercept, coef, coef]
        )

        pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, np.r_[coef, coef])


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_ridge_regression_unpenalized_vstacked_X(
    solver, fit_intercept, ols_ridge_dataset, global_random_seed
):
    """Test that unpenalized Ridge = OLS converges for all solvers to correct solution.

    We work with a simple constructed data set with known solution.
    OLS fit on [X] is the same as fit on [X], [y]
                                         [X], [y].
    For wide X, [X', X'] is a singular matrix and we check against the minimum norm
    solution:
        min ||w||_2 subject to X w = y
    """
    X, y, coef, _ = ols_ridge_dataset
    n_samples, n_features = X.shape
    alpha = 0  # OLS

    model = Ridge(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ("sag", "saga") else 1e-10,
        random_state=global_random_seed,
    )

    if fit_intercept:
        X = X[:, :-1]  # remove intercept
        intercept = coef[-1]
        coef = coef[:-1]
    else:
        intercept = 0
    X = np.concatenate((X, X), axis=0)
    assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
    y = np.r_[y, y]
    model.fit(X, y)

    if n_samples > n_features or not fit_intercept:
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef)
    else:
        # FIXME: Same as in test_ridge_regression_unpenalized.
        # As it is an underdetermined problem, residuals = 0. This shows that we get
        # a solution to X w = y ....
        assert_allclose(model.predict(X), y)
        # But it is not the minimum norm solution. (This should be equal.)
        assert np.linalg.norm(np.r_[model.intercept_, model.coef_]) > np.linalg.norm(
            np.r_[intercept, coef]
        )

        pytest.xfail(reason="Ridge does not provide the minimum norm solution.")
        assert model.intercept_ == pytest.approx(intercept)
        assert_allclose(model.coef_, coef)


@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("alpha", [1.0, 1e-2])
def test_ridge_regression_sample_weights(
    solver,
    fit_intercept,
    sparse_container,
    alpha,
    ols_ridge_dataset,
    global_random_seed,
):
    """Test that Ridge with sample weights gives correct results.

    We use the following trick:
        ||y - Xw||_2 = (z - Aw)' W (z - Aw)
    for z=[y, y], A' = [X', X'] (vstacked), and W[:n/2] + W[n/2:] = 1, W=diag(W)
    """
    if sparse_container is not None:
        if fit_intercept and solver not in SPARSE_SOLVERS_WITH_INTERCEPT:
            pytest.skip()
        elif not fit_intercept and solver not in SPARSE_SOLVERS_WITHOUT_INTERCEPT:
            pytest.skip()
    X, y, _, coef = ols_ridge_dataset
    n_samples, n_features = X.shape
    sw = rng.uniform(low=0, high=1, size=n_samples)

    model = Ridge(
        alpha=alpha,
        fit_intercept=fit_intercept,
        solver=solver,
        tol=1e-15 if solver in ["sag", "saga"] else 1e-10,
        max_iter=100_000,
        random_state=global_random_seed,
    )
    X = X[:, :-1]  # remove intercept
    X = np.concatenate((X, X), axis=0)
    y = np.r_[y, y]
    sw = np.r_[sw, 1 - sw] * alpha
    if fit_intercept:
        intercept = coef[-1]
    else:
        X = X - X.mean(axis=0)
        y = y - y.mean()
        intercept = 0
    if sparse_container is not None:
        X = sparse_container(X)
    model.fit(X, y, sample_weight=sw)
    coef = coef[:-1]

    assert model.intercept_ == pytest.approx(intercept)
    assert_allclose(model.coef_, coef)


def test_primal_dual_relationship():
    y = y_diabetes.reshape(-1, 1)
    coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2])
    K = np.dot(X_diabetes, X_diabetes.T)
    dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2])
    coef2 = np.dot(X_diabetes.T, dual_coef).T
    assert_array_almost_equal(coef, coef2)


def test_ridge_regression_convergence_fail():
    rng = np.random.RandomState(0)
    y = rng.randn(5)
    X = rng.randn(5, 10)
    warning_message = r"sparse_cg did not converge after" r" [0-9]+ iterations."
    with pytest.warns(ConvergenceWarning, match=warning_message):
        ridge_regression(
            X, y, alpha=1.0, solver="sparse_cg", tol=0.0, max_iter=None, verbose=1
        )


def test_ridge_shapes_type():
    # Test shape of coef_ and intercept_
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y1 = y[:, np.newaxis]
    Y = np.c_[y, 1 + y]

    ridge = Ridge()

    ridge.fit(X, y)
    assert ridge.coef_.shape == (n_features,)
    assert ridge.intercept_.shape == ()
    assert isinstance(ridge.coef_, np.ndarray)
    assert isinstance(ridge.intercept_, float)

    ridge.fit(X, Y1)
    assert ridge.coef_.shape == (1, n_features)
    assert ridge.intercept_.shape == (1,)
    assert isinstance(ridge.coef_, np.ndarray)
    assert isinstance(ridge.intercept_, np.ndarray)

    ridge.fit(X, Y)
    assert ridge.coef_.shape == (2, n_features)
    assert ridge.intercept_.shape == (2,)
    assert isinstance(ridge.coef_, np.ndarray)
    assert isinstance(ridge.intercept_, np.ndarray)


def test_ridge_intercept():
    # Test intercept with multiple targets GH issue #708
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y = np.c_[y, 1.0 + y]

    ridge = Ridge()

    ridge.fit(X, y)
    intercept = ridge.intercept_

    ridge.fit(X, Y)
    assert_almost_equal(ridge.intercept_[0], intercept)
    assert_almost_equal(ridge.intercept_[1], intercept + 1.0)


def test_ridge_vs_lstsq():
    # On alpha=0., Ridge and OLS yield the same solution.

    rng = np.random.RandomState(0)
    # we need more samples than features
    n_samples, n_features = 5, 4
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=0.0, fit_intercept=False)
    ols = LinearRegression(fit_intercept=False)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)


def test_ridge_individual_penalties():
    # Tests the ridge object using individual penalties

    rng = np.random.RandomState(42)

    n_samples, n_features, n_targets = 20, 10, 5
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples, n_targets)

    penalties = np.arange(n_targets)

    coef_cholesky = np.array(
        [
            Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_
            for alpha, target in zip(penalties, y.T)
        ]
    )

    coefs_indiv_pen = [
        Ridge(alpha=penalties, solver=solver, tol=1e-12).fit(X, y).coef_
        for solver in ["svd", "sparse_cg", "lsqr", "cholesky", "sag", "saga"]
    ]
    for coef_indiv_pen in coefs_indiv_pen:
        assert_array_almost_equal(coef_cholesky, coef_indiv_pen)

    # Test error is raised when number of targets and penalties do not match.
    ridge = Ridge(alpha=penalties[:-1])
    err_msg = "Number of targets and number of penalties do not correspond: 4 != 5"
    with pytest.raises(ValueError, match=err_msg):
        ridge.fit(X, y)


@pytest.mark.parametrize("n_col", [(), (1,), (3,)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_X_CenterStackOp(n_col, csr_container):
    rng = np.random.RandomState(0)
    X = rng.randn(11, 8)
    X_m = rng.randn(8)
    sqrt_sw = rng.randn(len(X))
    Y = rng.randn(11, *n_col)
    A = rng.randn(9, *n_col)
    operator = _X_CenterStackOp(csr_container(X), X_m, sqrt_sw)
    reference_operator = np.hstack([X - sqrt_sw[:, None] * X_m, sqrt_sw[:, None]])
    assert_allclose(reference_operator.dot(A), operator.dot(A))
    assert_allclose(reference_operator.T.dot(Y), operator.T.dot(Y))


@pytest.mark.parametrize("shape", [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize("uniform_weights", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_compute_gram(shape, uniform_weights, csr_container):
    rng = np.random.RandomState(0)
    X = rng.randn(*shape)
    if uniform_weights:
        sw = np.ones(X.shape[0])
    else:
        sw = rng.chisquare(1, shape[0])
    sqrt_sw = np.sqrt(sw)
    X_mean = np.average(X, axis=0, weights=sw)
    X_centered = (X - X_mean) * sqrt_sw[:, None]
    true_gram = X_centered.dot(X_centered.T)
    X_sparse = csr_container(X * sqrt_sw[:, None])
    gcv = _RidgeGCV(fit_intercept=True)
    computed_gram, computed_mean = gcv._compute_gram(X_sparse, sqrt_sw)
    assert_allclose(X_mean, computed_mean)
    assert_allclose(true_gram, computed_gram)


@pytest.mark.parametrize("shape", [(10, 1), (13, 9), (3, 7), (2, 2), (20, 20)])
@pytest.mark.parametrize("uniform_weights", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_compute_covariance(shape, uniform_weights, csr_container):
    rng = np.random.RandomState(0)
    X = rng.randn(*shape)
    if uniform_weights:
        sw = np.ones(X.shape[0])
    else:
        sw = rng.chisquare(1, shape[0])
    sqrt_sw = np.sqrt(sw)
    X_mean = np.average(X, axis=0, weights=sw)
    X_centered = (X - X_mean) * sqrt_sw[:, None]
    true_covariance = X_centered.T.dot(X_centered)
    X_sparse = csr_container(X * sqrt_sw[:, None])
    gcv = _RidgeGCV(fit_intercept=True)
    computed_cov, computed_mean = gcv._compute_covariance(X_sparse, sqrt_sw)
    assert_allclose(X_mean, computed_mean)
    assert_allclose(true_covariance, computed_cov)


def _make_sparse_offset_regression(
    n_samples=100,
    n_features=100,
    proportion_nonzero=0.5,
    n_informative=10,
    n_targets=1,
    bias=13.0,
    X_offset=30.0,
    noise=30.0,
    shuffle=True,
    coef=False,
    positive=False,
    random_state=None,
):
    X, y, c = make_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_informative=n_informative,
        n_targets=n_targets,
        bias=bias,
        noise=noise,
        shuffle=shuffle,
        coef=True,
        random_state=random_state,
    )
    if n_features == 1:
        c = np.asarray([c])
    X += X_offset
    mask = (
        np.random.RandomState(random_state).binomial(1, proportion_nonzero, X.shape) > 0
    )
    removed_X = X.copy()
    X[~mask] = 0.0
    removed_X[mask] = 0.0
    y -= removed_X.dot(c)
    if positive:
        y += X.dot(np.abs(c) + 1 - c)
        c = np.abs(c) + 1
    if n_features == 1:
        c = c[0]
    if coef:
        return X, y, c
    return X, y


@pytest.mark.parametrize(
    "solver, sparse_container",
    (
        (solver, sparse_container)
        for (solver, sparse_container) in product(
            ["cholesky", "sag", "sparse_cg", "lsqr", "saga", "ridgecv"],
            [None] + CSR_CONTAINERS,
        )
        if sparse_container is None or solver in ["sparse_cg", "ridgecv"]
    ),
)
@pytest.mark.parametrize(
    "n_samples,dtype,proportion_nonzero",
    [(20, "float32", 0.1), (40, "float32", 1.0), (20, "float64", 0.2)],
)
@pytest.mark.parametrize("seed", np.arange(3))
def test_solver_consistency(
    solver, proportion_nonzero, n_samples, dtype, sparse_container, seed
):
    alpha = 1.0
    noise = 50.0 if proportion_nonzero > 0.9 else 500.0
    X, y = _make_sparse_offset_regression(
        bias=10,
        n_features=30,
        proportion_nonzero=proportion_nonzero,
        noise=noise,
        random_state=seed,
        n_samples=n_samples,
    )

    # Manually scale the data to avoid pathological cases. We use
    # minmax_scale to deal with the sparse case without breaking
    # the sparsity pattern.
    X = minmax_scale(X)

    svd_ridge = Ridge(solver="svd", alpha=alpha).fit(X, y)
    X = X.astype(dtype, copy=False)
    y = y.astype(dtype, copy=False)
    if sparse_container is not None:
        X = sparse_container(X)
    if solver == "ridgecv":
        ridge = RidgeCV(alphas=[alpha])
    else:
        ridge = Ridge(solver=solver, tol=1e-10, alpha=alpha)
    ridge.fit(X, y)
    assert_allclose(ridge.coef_, svd_ridge.coef_, atol=1e-3, rtol=1e-3)
    assert_allclose(ridge.intercept_, svd_ridge.intercept_, atol=1e-3, rtol=1e-3)


@pytest.mark.parametrize("gcv_mode", ["svd", "eigen"])
@pytest.mark.parametrize("X_container", [np.asarray] + CSR_CONTAINERS)
@pytest.mark.parametrize("X_shape", [(11, 8), (11, 20)])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
    "y_shape, noise",
    [
        ((11,), 1.0),
        ((11, 1), 30.0),
        ((11, 3), 150.0),
    ],
)
def test_ridge_gcv_vs_ridge_loo_cv(
    gcv_mode, X_container, X_shape, y_shape, fit_intercept, noise
):
    n_samples, n_features = X_shape
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_targets=n_targets,
        random_state=0,
        shuffle=False,
        noise=noise,
        n_informative=5,
    )
    y = y.reshape(y_shape)

    alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
    loo_ridge = RidgeCV(
        cv=n_samples,
        fit_intercept=fit_intercept,
        alphas=alphas,
        scoring="neg_mean_squared_error",
    )
    gcv_ridge = RidgeCV(
        gcv_mode=gcv_mode,
        fit_intercept=fit_intercept,
        alphas=alphas,
    )

    loo_ridge.fit(X, y)

    X_gcv = X_container(X)
    gcv_ridge.fit(X_gcv, y)

    assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
    assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)


def test_ridge_loo_cv_asym_scoring():
    # checking on asymmetric scoring
    scoring = "explained_variance"
    n_samples, n_features = 10, 5
    n_targets = 1
    X, y = _make_sparse_offset_regression(
        n_samples=n_samples,
        n_features=n_features,
        n_targets=n_targets,
        random_state=0,
        shuffle=False,
        noise=1,
        n_informative=5,
    )

    alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
    loo_ridge = RidgeCV(
        cv=n_samples, fit_intercept=True, alphas=alphas, scoring=scoring
    )

    gcv_ridge = RidgeCV(fit_intercept=True, alphas=alphas, scoring=scoring)

    loo_ridge.fit(X, y)
    gcv_ridge.fit(X, y)

    assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
    assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)


@pytest.mark.parametrize("gcv_mode", ["svd", "eigen"])
@pytest.mark.parametrize("X_container", [np.asarray] + CSR_CONTAINERS)
@pytest.mark.parametrize("n_features", [8, 20])
@pytest.mark.parametrize(
    "y_shape, fit_intercept, noise",
    [
        ((11,), True, 1.0),
        ((11, 1), True, 20.0),
        ((11, 3), True, 150.0),
        ((11, 3), False, 30.0),
    ],
)
def test_ridge_gcv_sample_weights(
    gcv_mode, X_container, fit_intercept, n_features, y_shape, noise
):
    alphas = [1e-3, 0.1, 1.0, 10.0, 1e3]
    rng = np.random.RandomState(0)
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(
        n_samples=11,
        n_features=n_features,
        n_targets=n_targets,
        random_state=0,
        shuffle=False,
        noise=noise,
    )
    y = y.reshape(y_shape)

    sample_weight = 3 * rng.randn(len(X))
    sample_weight = (sample_weight - sample_weight.min() + 1).astype(int)
    indices = np.repeat(np.arange(X.shape[0]), sample_weight)
    sample_weight = sample_weight.astype(float)
    X_tiled, y_tiled = X[indices], y[indices]

    cv = GroupKFold(n_splits=X.shape[0])
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    kfold = RidgeCV(
        alphas=alphas,
        cv=splits,
        scoring="neg_mean_squared_error",
        fit_intercept=fit_intercept,
    )
    kfold.fit(X_tiled, y_tiled)

    ridge_reg = Ridge(alpha=kfold.alpha_, fit_intercept=fit_intercept)
    splits = cv.split(X_tiled, y_tiled, groups=indices)
    predictions = cross_val_predict(ridge_reg, X_tiled, y_tiled, cv=splits)
    kfold_errors = (y_tiled - predictions) ** 2
    kfold_errors = [
        np.sum(kfold_errors[indices == i], axis=0) for i in np.arange(X.shape[0])
    ]
    kfold_errors = np.asarray(kfold_errors)

    X_gcv = X_container(X)
    gcv_ridge = RidgeCV(
        alphas=alphas,
        store_cv_values=True,
        gcv_mode=gcv_mode,
        fit_intercept=fit_intercept,
    )
    gcv_ridge.fit(X_gcv, y, sample_weight=sample_weight)
    if len(y_shape) == 2:
        gcv_errors = gcv_ridge.cv_values_[:, :, alphas.index(kfold.alpha_)]
    else:
        gcv_errors = gcv_ridge.cv_values_[:, alphas.index(kfold.alpha_)]

    assert kfold.alpha_ == pytest.approx(gcv_ridge.alpha_)
    assert_allclose(gcv_errors, kfold_errors, rtol=1e-3)
    assert_allclose(gcv_ridge.coef_, kfold.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, kfold.intercept_, rtol=1e-3)


@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize(
    "mode, mode_n_greater_than_p, mode_p_greater_than_n",
    [
        (None, "svd", "eigen"),
        ("auto", "svd", "eigen"),
        ("eigen", "eigen", "eigen"),
        ("svd", "svd", "svd"),
    ],
)
def test_check_gcv_mode_choice(
    sparse_container, mode, mode_n_greater_than_p, mode_p_greater_than_n
):
    X, _ = make_regression(n_samples=5, n_features=2)
    if sparse_container is not None:
        X = sparse_container(X)
    assert _check_gcv_mode(X, mode) == mode_n_greater_than_p
    assert _check_gcv_mode(X.T, mode) == mode_p_greater_than_n


def _test_ridge_loo(sparse_container):
    # test that can work with both dense or sparse matrices
    n_samples = X_diabetes.shape[0]

    ret = []

    if sparse_container is None:
        X, fit_intercept = X_diabetes, True
    else:
        X, fit_intercept = sparse_container(X_diabetes), False
    ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)

    # check best alpha
    ridge_gcv.fit(X, y_diabetes)
    alpha_ = ridge_gcv.alpha_
    ret.append(alpha_)

    # check that we get same best alpha with custom loss_func
    f = ignore_warnings
    scoring = make_scorer(mean_squared_error, greater_is_better=False)
    ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv2.fit)(X, y_diabetes)
    assert ridge_gcv2.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with custom score_func
    def func(x, y):
        return -mean_squared_error(x, y)

    scoring = make_scorer(func)
    ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv3.fit)(X, y_diabetes)
    assert ridge_gcv3.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with a scorer
    scorer = get_scorer("neg_mean_squared_error")
    ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
    ridge_gcv4.fit(X, y_diabetes)
    assert ridge_gcv4.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with sample weights
    if sparse_container is None:
        ridge_gcv.fit(X, y_diabetes, sample_weight=np.ones(n_samples))
        assert ridge_gcv.alpha_ == pytest.approx(alpha_)

    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T

    ridge_gcv.fit(X, Y)
    Y_pred = ridge_gcv.predict(X)
    ridge_gcv.fit(X, y_diabetes)
    y_pred = ridge_gcv.predict(X)

    assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred, rtol=1e-5)

    return ret


def _test_ridge_cv(sparse_container):
    X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
    ridge_cv = RidgeCV()
    ridge_cv.fit(X, y_diabetes)
    ridge_cv.predict(X)

    assert len(ridge_cv.coef_.shape) == 1
    assert type(ridge_cv.intercept_) == np.float64

    cv = KFold(5)
    ridge_cv.set_params(cv=cv)
    ridge_cv.fit(X, y_diabetes)
    ridge_cv.predict(X)

    assert len(ridge_cv.coef_.shape) == 1
    assert type(ridge_cv.intercept_) == np.float64


@pytest.mark.parametrize(
    "ridge, make_dataset",
    [
        (RidgeCV(store_cv_values=False), make_regression),
        (RidgeClassifierCV(store_cv_values=False), make_classification),
    ],
)
def test_ridge_gcv_cv_values_not_stored(ridge, make_dataset):
    # Check that `cv_values_` is not stored when store_cv_values is False
    X, y = make_dataset(n_samples=6, random_state=42)
    ridge.fit(X, y)
    assert not hasattr(ridge, "cv_values_")


@pytest.mark.parametrize(
    "ridge, make_dataset",
    [(RidgeCV(), make_regression), (RidgeClassifierCV(), make_classification)],
)
@pytest.mark.parametrize("cv", [None, 3])
def test_ridge_best_score(ridge, make_dataset, cv):
    # check that the best_score_ is store
    X, y = make_dataset(n_samples=6, random_state=42)
    ridge.set_params(store_cv_values=False, cv=cv)
    ridge.fit(X, y)
    assert hasattr(ridge, "best_score_")
    assert isinstance(ridge.best_score_, float)


def test_ridge_cv_individual_penalties():
    # Tests the ridge_cv object optimizing individual penalties for each target

    rng = np.random.RandomState(42)

    # Create random dataset with multiple targets. Each target should have
    # a different optimal alpha.
    n_samples, n_features, n_targets = 20, 5, 3
    y = rng.randn(n_samples, n_targets)
    X = (
        np.dot(y[:, [0]], np.ones((1, n_features)))
        + np.dot(y[:, [1]], 0.05 * np.ones((1, n_features)))
        + np.dot(y[:, [2]], 0.001 * np.ones((1, n_features)))
        + rng.randn(n_samples, n_features)
    )

    alphas = (1, 100, 1000)

    # Find optimal alpha for each target
    optimal_alphas = [RidgeCV(alphas=alphas).fit(X, target).alpha_ for target in y.T]

    # Find optimal alphas for all targets simultaneously
    ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True).fit(X, y)
    assert_array_equal(optimal_alphas, ridge_cv.alpha_)

    # The resulting regression weights should incorporate the different
    # alpha values.
    assert_array_almost_equal(
        Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_, ridge_cv.coef_
    )

    # Test shape of alpha_ and cv_values_
    ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, store_cv_values=True).fit(
        X, y
    )
    assert ridge_cv.alpha_.shape == (n_targets,)
    assert ridge_cv.best_score_.shape == (n_targets,)
    assert ridge_cv.cv_values_.shape == (n_samples, len(alphas), n_targets)

    # Test edge case of there being only one alpha value
    ridge_cv = RidgeCV(alphas=1, alpha_per_target=True, store_cv_values=True).fit(X, y)
    assert ridge_cv.alpha_.shape == (n_targets,)
    assert ridge_cv.best_score_.shape == (n_targets,)
    assert ridge_cv.cv_values_.shape == (n_samples, n_targets, 1)

    # Test edge case of there being only one target
    ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, store_cv_values=True).fit(
        X, y[:, 0]
    )
    assert np.isscalar(ridge_cv.alpha_)
    assert np.isscalar(ridge_cv.best_score_)
    assert ridge_cv.cv_values_.shape == (n_samples, len(alphas))

    # Try with a custom scoring function
    ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True, scoring="r2").fit(X, y)
    assert_array_equal(optimal_alphas, ridge_cv.alpha_)
    assert_array_almost_equal(
        Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_, ridge_cv.coef_
    )

    # Using a custom CV object should throw an error in combination with
    # alpha_per_target=True
    ridge_cv = RidgeCV(alphas=alphas, cv=LeaveOneOut(), alpha_per_target=True)
    msg = "cv!=None and alpha_per_target=True are incompatible"
    with pytest.raises(ValueError, match=msg):
        ridge_cv.fit(X, y)
    ridge_cv = RidgeCV(alphas=alphas, cv=6, alpha_per_target=True)
    with pytest.raises(ValueError, match=msg):
        ridge_cv.fit(X, y)


def _test_ridge_diabetes(sparse_container):
    X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
    ridge = Ridge(fit_intercept=False)
    ridge.fit(X, y_diabetes)
    return np.round(ridge.score(X, y_diabetes), 5)


def _test_multi_ridge_diabetes(sparse_container):
    # simulate several responses
    X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)
    Y = np.vstack((y_diabetes, y_diabetes)).T
    n_features = X_diabetes.shape[1]

    ridge = Ridge(fit_intercept=False)
    ridge.fit(X, Y)
    assert ridge.coef_.shape == (2, n_features)
    Y_pred = ridge.predict(X)
    ridge.fit(X, y_diabetes)
    y_pred = ridge.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)


def _test_ridge_classifiers(sparse_container):
    n_classes = np.unique(y_iris).shape[0]
    n_features = X_iris.shape[1]
    X = X_iris if sparse_container is None else sparse_container(X_iris)

    for reg in (RidgeClassifier(), RidgeClassifierCV()):
        reg.fit(X, y_iris)
        assert reg.coef_.shape == (n_classes, n_features)
        y_pred = reg.predict(X)
        assert np.mean(y_iris == y_pred) > 0.79

    cv = KFold(5)
    reg = RidgeClassifierCV(cv=cv)
    reg.fit(X, y_iris)
    y_pred = reg.predict(X)
    assert np.mean(y_iris == y_pred) >= 0.8


@pytest.mark.parametrize("scoring", [None, "accuracy", _accuracy_callable])
@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_ridge_classifier_with_scoring(sparse_container, scoring, cv):
    # non-regression test for #14672
    # check that RidgeClassifierCV works with all sort of scoring and
    # cross-validation
    X = X_iris if sparse_container is None else sparse_container(X_iris)
    scoring_ = make_scorer(scoring) if callable(scoring) else scoring
    clf = RidgeClassifierCV(scoring=scoring_, cv=cv)
    # Smoke test to check that fit/predict does not raise error
    clf.fit(X, y_iris).predict(X)


@pytest.mark.parametrize("cv", [None, KFold(5)])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
def test_ridge_regression_custom_scoring(sparse_container, cv):
    # check that custom scoring is working as expected
    # check the tie breaking strategy (keep the first alpha tried)

    def _dummy_score(y_test, y_pred):
        return 0.42

    X = X_iris if sparse_container is None else sparse_container(X_iris)
    alphas = np.logspace(-2, 2, num=5)
    clf = RidgeClassifierCV(alphas=alphas, scoring=make_scorer(_dummy_score), cv=cv)
    clf.fit(X, y_iris)
    assert clf.best_score_ == pytest.approx(0.42)
    # In case of tie score, the first alphas will be kept
    assert clf.alpha_ == pytest.approx(alphas[0])


def _test_tolerance(sparse_container):
    X = X_diabetes if sparse_container is None else sparse_container(X_diabetes)

    ridge = Ridge(tol=1e-5, fit_intercept=False)
    ridge.fit(X, y_diabetes)
    score = ridge.score(X, y_diabetes)

    ridge2 = Ridge(tol=1e-3, fit_intercept=False)
    ridge2.fit(X, y_diabetes)
    score2 = ridge2.score(X, y_diabetes)

    assert score >= score2


@pytest.mark.parametrize(
    "test_func",
    (
        _test_ridge_loo,
        _test_ridge_cv,
        _test_ridge_diabetes,
        _test_multi_ridge_diabetes,
        _test_ridge_classifiers,
        _test_tolerance,
    ),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dense_sparse(test_func, csr_container):
    # test dense matrix
    ret_dense = test_func(None)
    # test sparse matrix
    ret_sparse = test_func(csr_container)
    # test that the outputs are the same
    if ret_dense is not None and ret_sparse is not None:
        assert_array_almost_equal(ret_dense, ret_sparse, decimal=3)


def test_class_weights():
    # Test class weights.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    reg = RidgeClassifier(class_weight=None)
    reg.fit(X, y)
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    reg = RidgeClassifier(class_weight={1: 0.001})
    reg.fit(X, y)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([-1]))

    # check if class_weight = 'balanced' can handle negative labels.
    reg = RidgeClassifier(class_weight="balanced")
    reg.fit(X, y)
    assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))

    # class_weight = 'balanced', and class_weight = None should return
    # same values when y has equal number of all labels
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0]])
    y = [1, 1, -1, -1]
    reg = RidgeClassifier(class_weight=None)
    reg.fit(X, y)
    rega = RidgeClassifier(class_weight="balanced")
    rega.fit(X, y)
    assert len(rega.classes_) == 2
    assert_array_almost_equal(reg.coef_, rega.coef_)
    assert_array_almost_equal(reg.intercept_, rega.intercept_)


@pytest.mark.parametrize("reg", (RidgeClassifier, RidgeClassifierCV))
def test_class_weight_vs_sample_weight(reg):
    """Check class_weights resemble sample_weights behavior."""

    # Iris is balanced, so no effect expected for using 'balanced' weights
    reg1 = reg()
    reg1.fit(iris.data, iris.target)
    reg2 = reg(class_weight="balanced")
    reg2.fit(iris.data, iris.target)
    assert_almost_equal(reg1.coef_, reg2.coef_)

    # Inflate importance of class 1, check against user-defined weights
    sample_weight = np.ones(iris.target.shape)
    sample_weight[iris.target == 1] *= 100
    class_weight = {0: 1.0, 1: 100.0, 2: 1.0}
    reg1 = reg()
    reg1.fit(iris.data, iris.target, sample_weight)
    reg2 = reg(class_weight=class_weight)
    reg2.fit(iris.data, iris.target)
    assert_almost_equal(reg1.coef_, reg2.coef_)

    # Check that sample_weight and class_weight are multiplicative
    reg1 = reg()
    reg1.fit(iris.data, iris.target, sample_weight**2)
    reg2 = reg(class_weight=class_weight)
    reg2.fit(iris.data, iris.target, sample_weight)
    assert_almost_equal(reg1.coef_, reg2.coef_)


def test_class_weights_cv():
    # Test class weights for cross validated ridge classifier.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    reg = RidgeClassifierCV(class_weight=None, alphas=[0.01, 0.1, 1])
    reg.fit(X, y)

    # we give a small weights to class 1
    reg = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[0.01, 0.1, 1, 10])
    reg.fit(X, y)

    assert_array_equal(reg.predict([[-0.2, 2]]), np.array([-1]))


@pytest.mark.parametrize(
    "scoring", [None, "neg_mean_squared_error", _mean_squared_error_callable]
)
def test_ridgecv_store_cv_values(scoring):
    rng = np.random.RandomState(42)

    n_samples = 8
    n_features = 5
    x = rng.randn(n_samples, n_features)
    alphas = [1e-1, 1e0, 1e1]
    n_alphas = len(alphas)

    scoring_ = make_scorer(scoring) if callable(scoring) else scoring

    r = RidgeCV(alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_)

    # with len(y.shape) == 1
    y = rng.randn(n_samples)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_alphas)

    # with len(y.shape) == 2
    n_targets = 3
    y = rng.randn(n_samples, n_targets)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)

    r = RidgeCV(cv=3, store_cv_values=True, scoring=scoring)
    with pytest.raises(ValueError, match="cv!=None and store_cv_values"):
        r.fit(x, y)


@pytest.mark.parametrize("scoring", [None, "accuracy", _accuracy_callable])
def test_ridge_classifier_cv_store_cv_values(scoring):
    x = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = np.array([1, 1, 1, -1, -1])

    n_samples = x.shape[0]
    alphas = [1e-1, 1e0, 1e1]
    n_alphas = len(alphas)

    scoring_ = make_scorer(scoring) if callable(scoring) else scoring

    r = RidgeClassifierCV(
        alphas=alphas, cv=None, store_cv_values=True, scoring=scoring_
    )

    # with len(y.shape) == 1
    n_targets = 1
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)

    # with len(y.shape) == 2
    y = np.array(
        [[1, 1, 1, -1, -1], [1, -1, 1, -1, 1], [-1, -1, 1, -1, -1]]
    ).transpose()
    n_targets = y.shape[1]
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)


@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
def test_ridgecv_alphas_conversion(Estimator):
    rng = np.random.RandomState(0)
    alphas = (0.1, 1.0, 10.0)

    n_samples, n_features = 5, 5
    if Estimator is RidgeCV:
        y = rng.randn(n_samples)
    else:
        y = rng.randint(0, 2, n_samples)
    X = rng.randn(n_samples, n_features)

    ridge_est = Estimator(alphas=alphas)
    assert (
        ridge_est.alphas is alphas
    ), f"`alphas` was mutated in `{Estimator.__name__}.__init__`"

    ridge_est.fit(X, y)
    assert_array_equal(ridge_est.alphas, np.asarray(alphas))


def test_ridgecv_sample_weight():
    rng = np.random.RandomState(0)
    alphas = (0.1, 1.0, 10.0)

    # There are different algorithms for n_samples > n_features
    # and the opposite, so test them both.
    for n_samples, n_features in ((6, 5), (5, 10)):
        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        cv = KFold(5)
        ridgecv = RidgeCV(alphas=alphas, cv=cv)
        ridgecv.fit(X, y, sample_weight=sample_weight)

        # Check using GridSearchCV directly
        parameters = {"alpha": alphas}
        gs = GridSearchCV(Ridge(), parameters, cv=cv)
        gs.fit(X, y, sample_weight=sample_weight)

        assert ridgecv.alpha_ == gs.best_estimator_.alpha
        assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_)


def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples) ** 2 + 1
        sample_weights_OK_1 = 1.0
        sample_weights_OK_2 = 2.0
        sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
        sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]

        ridge = Ridge(alpha=1)

        # make sure the "OK" sample weights actually work
        ridge.fit(X, y, sample_weights_OK)
        ridge.fit(X, y, sample_weights_OK_1)
        ridge.fit(X, y, sample_weights_OK_2)

        def fit_ridge_not_ok():
            ridge.fit(X, y, sample_weights_not_OK)

        def fit_ridge_not_ok_2():
            ridge.fit(X, y, sample_weights_not_OK_2)

        err_msg = "Sample weights must be 1D array or scalar"
        with pytest.raises(ValueError, match=err_msg):
            fit_ridge_not_ok()

        err_msg = "Sample weights must be 1D array or scalar"
        with pytest.raises(ValueError, match=err_msg):
            fit_ridge_not_ok_2()


@pytest.mark.parametrize("n_samples,n_features", [[2, 3], [3, 2]])
@pytest.mark.parametrize(
    "sparse_container",
    COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
def test_sparse_design_with_sample_weights(n_samples, n_features, sparse_container):
    # Sample weights must work with sparse matrices
    rng = np.random.RandomState(42)

    sparse_ridge = Ridge(alpha=1.0, fit_intercept=False)
    dense_ridge = Ridge(alpha=1.0, fit_intercept=False)

    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    sample_weights = rng.randn(n_samples) ** 2 + 1
    X_sparse = sparse_container(X)
    sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
    dense_ridge.fit(X, y, sample_weight=sample_weights)

    assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6)


def test_ridgecv_int_alphas():
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    # Integers
    ridge = RidgeCV(alphas=(1, 10, 100))
    ridge.fit(X, y)


@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
@pytest.mark.parametrize(
    "params, err_type, err_msg",
    [
        ({"alphas": (1, -1, -100)}, ValueError, r"alphas\[1\] == -1, must be > 0.0"),
        (
            {"alphas": (-0.1, -1.0, -10.0)},
            ValueError,
            r"alphas\[0\] == -0.1, must be > 0.0",
        ),
        (
            {"alphas": (1, 1.0, "1")},
            TypeError,
            r"alphas\[2\] must be an instance of float, not str",
        ),
    ],
)
def test_ridgecv_alphas_validation(Estimator, params, err_type, err_msg):
    """Check the `alphas` validation in RidgeCV and RidgeClassifierCV."""

    n_samples, n_features = 5, 5
    X = rng.randn(n_samples, n_features)
    y = rng.randint(0, 2, n_samples)

    with pytest.raises(err_type, match=err_msg):
        Estimator(**params).fit(X, y)


@pytest.mark.parametrize("Estimator", [RidgeCV, RidgeClassifierCV])
def test_ridgecv_alphas_scalar(Estimator):
    """Check the case when `alphas` is a scalar.
    This case was supported in the past when `alphas` where converted
    into array in `__init__`.
    We add this test to ensure backward compatibility.
    """

    n_samples, n_features = 5, 5
    X = rng.randn(n_samples, n_features)
    if Estimator is RidgeCV:
        y = rng.randn(n_samples)
    else:
        y = rng.randint(0, 2, n_samples)

    Estimator(alphas=1).fit(X, y)


def test_sparse_cg_max_iter():
    reg = Ridge(solver="sparse_cg", max_iter=1)
    reg.fit(X_diabetes, y_diabetes)
    assert reg.coef_.shape[0] == X_diabetes.shape[1]


@ignore_warnings
def test_n_iter():
    # Test that self.n_iter_ is correct.
    n_targets = 2
    X, y = X_diabetes, y_diabetes
    y_n = np.tile(y, (n_targets, 1)).T

    for max_iter in range(1, 4):
        for solver in ("sag", "saga", "lsqr"):
            reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
            reg.fit(X, y_n)
            assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))

    for solver in ("sparse_cg", "svd", "cholesky"):
        reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
        reg.fit(X, y_n)
        assert reg.n_iter_ is None


@pytest.mark.parametrize("solver", ["lsqr", "sparse_cg", "lbfgs", "auto"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse(
    solver, with_sample_weight, global_random_seed, csr_container
):
    """Check that ridge finds the same coefs and intercept on dense and sparse input
    in the presence of sample weights.

    For now only sparse_cg and lbfgs can correctly fit an intercept
    with sparse X with default tol and max_iter.
    'sag' is tested separately in test_ridge_fit_intercept_sparse_sag because it
    requires more iterations and should raise a warning if default max_iter is used.
    Other solvers raise an exception, as checked in
    test_ridge_fit_intercept_sparse_error
    """
    positive = solver == "lbfgs"
    X, y = _make_sparse_offset_regression(
        n_features=20, random_state=global_random_seed, positive=positive
    )

    sample_weight = None
    if with_sample_weight:
        rng = np.random.RandomState(global_random_seed)
        sample_weight = 1.0 + rng.uniform(size=X.shape[0])

    # "auto" should switch to "sparse_cg" when X is sparse
    # so the reference we use for both ("auto" and "sparse_cg") is
    # Ridge(solver="sparse_cg"), fitted using the dense representation (note
    # that "sparse_cg" can fit sparse or dense data)
    dense_solver = "sparse_cg" if solver == "auto" else solver
    dense_ridge = Ridge(solver=dense_solver, tol=1e-12, positive=positive)
    sparse_ridge = Ridge(solver=solver, tol=1e-12, positive=positive)

    dense_ridge.fit(X, y, sample_weight=sample_weight)
    sparse_ridge.fit(csr_container(X), y, sample_weight=sample_weight)

    assert_allclose(dense_ridge.intercept_, sparse_ridge.intercept_)
    assert_allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=5e-7)


@pytest.mark.parametrize("solver", ["saga", "svd", "cholesky"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse_error(solver, csr_container):
    X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
    X_csr = csr_container(X)
    sparse_ridge = Ridge(solver=solver)
    err_msg = "solver='{}' does not support".format(solver)
    with pytest.raises(ValueError, match=err_msg):
        sparse_ridge.fit(X_csr, y)


@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_ridge_fit_intercept_sparse_sag(
    with_sample_weight, global_random_seed, csr_container
):
    X, y = _make_sparse_offset_regression(
        n_features=5, n_samples=20, random_state=global_random_seed, X_offset=5.0
    )
    if with_sample_weight:
        rng = np.random.RandomState(global_random_seed)
        sample_weight = 1.0 + rng.uniform(size=X.shape[0])
    else:
        sample_weight = None
    X_csr = csr_container(X)

    params = dict(
        alpha=1.0, solver="sag", fit_intercept=True, tol=1e-10, max_iter=100000
    )
    dense_ridge = Ridge(**params)
    sparse_ridge = Ridge(**params)
    dense_ridge.fit(X, y, sample_weight=sample_weight)
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        sparse_ridge.fit(X_csr, y, sample_weight=sample_weight)
    assert_allclose(dense_ridge.intercept_, sparse_ridge.intercept_, rtol=1e-4)
    assert_allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=1e-4)
    with pytest.warns(UserWarning, match='"sag" solver requires.*'):
        Ridge(solver="sag", fit_intercept=True, tol=1e-3, max_iter=None).fit(X_csr, y)


@pytest.mark.parametrize("return_intercept", [False, True])
@pytest.mark.parametrize("sample_weight", [None, np.ones(1000)])
@pytest.mark.parametrize("container", [np.array] + CSR_CONTAINERS)
@pytest.mark.parametrize(
    "solver", ["auto", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_ridge_regression_check_arguments_validity(
    return_intercept, sample_weight, container, solver
):
    """check if all combinations of arguments give valid estimations"""

    # test excludes 'svd' solver because it raises exception for sparse inputs

    rng = check_random_state(42)
    X = rng.rand(1000, 3)
    true_coefs = [1, 2, 0.1]
    y = np.dot(X, true_coefs)
    true_intercept = 0.0
    if return_intercept:
        true_intercept = 10000.0
    y += true_intercept
    X_testing = container(X)

    alpha, tol = 1e-3, 1e-6
    atol = 1e-3 if _IS_32BIT else 1e-4

    positive = solver == "lbfgs"

    if solver not in ["sag", "auto"] and return_intercept:
        with pytest.raises(ValueError, match="In Ridge, only 'sag' solver"):
            ridge_regression(
                X_testing,
                y,
                alpha=alpha,
                solver=solver,
                sample_weight=sample_weight,
                return_intercept=return_intercept,
                positive=positive,
                tol=tol,
            )
        return

    out = ridge_regression(
        X_testing,
        y,
        alpha=alpha,
        solver=solver,
        sample_weight=sample_weight,
        positive=positive,
        return_intercept=return_intercept,
        tol=tol,
    )

    if return_intercept:
        coef, intercept = out
        assert_allclose(coef, true_coefs, rtol=0, atol=atol)
        assert_allclose(intercept, true_intercept, rtol=0, atol=atol)
    else:
        assert_allclose(out, true_coefs, rtol=0, atol=atol)


@pytest.mark.parametrize(
    "solver", ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_dtype_match(solver):
    rng = np.random.RandomState(0)
    alpha = 1.0
    positive = solver == "lbfgs"

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    tol = 2 * np.finfo(np.float32).resolution
    # Check type consistency 32bits
    ridge_32 = Ridge(
        alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
    )
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(
        alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
    )
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do the actual checks at once for easier debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4, atol=5e-4)


def test_dtype_match_cholesky():
    # Test different alphas in cholesky solver to ensure full coverage.
    # This test is separated from test_dtype_match for clarity.
    rng = np.random.RandomState(0)
    alpha = np.array([1.0, 0.5])

    n_samples, n_features, n_target = 6, 7, 2
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples, n_target)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver="cholesky")
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver="cholesky")
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do all the checks at once, like this is easier to debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)


@pytest.mark.parametrize(
    "solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"]
)
@pytest.mark.parametrize("seed", range(1))
def test_ridge_regression_dtype_stability(solver, seed):
    random_state = np.random.RandomState(seed)
    n_samples, n_features = 6, 5
    X = random_state.randn(n_samples, n_features)
    coef = random_state.randn(n_features)
    y = np.dot(X, coef) + 0.01 * random_state.randn(n_samples)
    alpha = 1.0
    positive = solver == "lbfgs"
    results = dict()
    # XXX: Sparse CG seems to be far less numerically stable than the
    # others, maybe we should not enable float32 for this one.
    atol = 1e-3 if solver == "sparse_cg" else 1e-5
    for current_dtype in (np.float32, np.float64):
        results[current_dtype] = ridge_regression(
            X.astype(current_dtype),
            y.astype(current_dtype),
            alpha=alpha,
            solver=solver,
            random_state=random_state,
            sample_weight=None,
            positive=positive,
            max_iter=500,
            tol=1e-10,
            return_n_iter=False,
            return_intercept=False,
        )

    assert results[np.float32].dtype == np.float32
    assert results[np.float64].dtype == np.float64
    assert_allclose(results[np.float32], results[np.float64], atol=atol)


def test_ridge_sag_with_X_fortran():
    # check that Fortran array are converted when using SAG solver
    X, y = make_regression(random_state=42)
    # for the order of X and y to not be C-ordered arrays
    X = np.asfortranarray(X)
    X = X[::2, :]
    y = y[::2]
    Ridge(solver="sag").fit(X, y)


@pytest.mark.parametrize(
    "Classifier, params",
    [
        (RidgeClassifier, {}),
        (RidgeClassifierCV, {"cv": None}),
        (RidgeClassifierCV, {"cv": 3}),
    ],
)
def test_ridgeclassifier_multilabel(Classifier, params):
    """Check that multilabel classification is supported and give meaningful
    results."""
    X, y = make_multilabel_classification(n_classes=1, random_state=0)
    y = y.reshape(-1, 1)
    Y = np.concatenate([y, y], axis=1)
    clf = Classifier(**params).fit(X, Y)
    Y_pred = clf.predict(X)

    assert Y_pred.shape == Y.shape
    assert_array_equal(Y_pred[:, 0], Y_pred[:, 1])
    Ridge(solver="sag").fit(X, y)


@pytest.mark.parametrize("solver", ["auto", "lbfgs"])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_ridge_positive_regression_test(solver, fit_intercept, alpha):
    """Test that positive Ridge finds true positive coefficients."""
    X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    coef = np.array([1, -10])
    if fit_intercept:
        intercept = 20
        y = X.dot(coef) + intercept
    else:
        y = X.dot(coef)

    model = Ridge(
        alpha=alpha, positive=True, solver=solver, fit_intercept=fit_intercept
    )
    model.fit(X, y)
    assert np.all(model.coef_ >= 0)


@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_ridge_ground_truth_positive_test(fit_intercept, alpha):
    """Test that Ridge w/wo positive converges to the same solution.

    Ridge with positive=True and positive=False must give the same
    when the ground truth coefs are all positive.
    """
    rng = np.random.RandomState(42)
    X = rng.randn(300, 100)
    coef = rng.uniform(0.1, 1.0, size=X.shape[1])
    if fit_intercept:
        intercept = 1
        y = X @ coef + intercept
    else:
        y = X @ coef
    y += rng.normal(size=X.shape[0]) * 0.01

    results = []
    for positive in [True, False]:
        model = Ridge(
            alpha=alpha, positive=positive, fit_intercept=fit_intercept, tol=1e-10
        )
        results.append(model.fit(X, y).coef_)
    assert_allclose(*results, atol=1e-6, rtol=0)


@pytest.mark.parametrize(
    "solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga"]
)
def test_ridge_positive_error_test(solver):
    """Test input validation for positive argument in Ridge."""
    alpha = 0.1
    X = np.array([[1, 2], [3, 4]])
    coef = np.array([1, -1])
    y = X @ coef

    model = Ridge(alpha=alpha, positive=True, solver=solver, fit_intercept=False)
    with pytest.raises(ValueError, match="does not support positive"):
        model.fit(X, y)

    with pytest.raises(ValueError, match="only 'lbfgs' solver can be used"):
        _, _ = ridge_regression(
            X, y, alpha, positive=True, solver=solver, return_intercept=False
        )


@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_positive_ridge_loss(alpha):
    """Check ridge loss consistency when positive argument is enabled."""
    X, y = make_regression(n_samples=300, n_features=300, random_state=42)
    alpha = 0.10
    n_checks = 100

    def ridge_loss(model, random_state=None, noise_scale=1e-8):
        intercept = model.intercept_
        if random_state is not None:
            rng = np.random.RandomState(random_state)
            coef = model.coef_ + rng.uniform(0, noise_scale, size=model.coef_.shape)
        else:
            coef = model.coef_

        return 0.5 * np.sum((y - X @ coef - intercept) ** 2) + 0.5 * alpha * np.sum(
            coef**2
        )

    model = Ridge(alpha=alpha).fit(X, y)
    model_positive = Ridge(alpha=alpha, positive=True).fit(X, y)

    # Check 1:
    #   Loss for solution found by Ridge(positive=False)
    #   is lower than that for solution found by Ridge(positive=True)
    loss = ridge_loss(model)
    loss_positive = ridge_loss(model_positive)
    assert loss <= loss_positive

    # Check 2:
    #   Loss for solution found by Ridge(positive=True)
    #   is lower than that for small random positive perturbation
    #   of the positive solution.
    for random_state in range(n_checks):
        loss_perturbed = ridge_loss(model_positive, random_state=random_state)
        assert loss_positive <= loss_perturbed


@pytest.mark.parametrize("alpha", [1e-3, 1e-2, 0.1, 1.0])
def test_lbfgs_solver_consistency(alpha):
    """Test that LBGFS gets almost the same coef of svd when positive=False."""
    X, y = make_regression(n_samples=300, n_features=300, random_state=42)
    y = np.expand_dims(y, 1)
    alpha = np.asarray([alpha])
    config = {
        "positive": False,
        "tol": 1e-16,
        "max_iter": 500000,
    }

    coef_lbfgs = _solve_lbfgs(X, y, alpha, **config)
    coef_cholesky = _solve_svd(X, y, alpha)
    assert_allclose(coef_lbfgs, coef_cholesky, atol=1e-4, rtol=0)


def test_lbfgs_solver_error():
    """Test that LBFGS solver raises ConvergenceWarning."""
    X = np.array([[1, -1], [1, 1]])
    y = np.array([-1e10, 1e10])

    model = Ridge(
        alpha=0.01,
        solver="lbfgs",
        fit_intercept=False,
        tol=1e-12,
        positive=True,
        max_iter=1,
    )
    with pytest.warns(ConvergenceWarning, match="lbfgs solver did not converge"):
        model.fit(X, y)


@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize("data", ["tall", "wide"])
@pytest.mark.parametrize("solver", SOLVERS + ["lbfgs"])
def test_ridge_sample_weight_consistency(
    fit_intercept, sparse_container, data, solver, global_random_seed
):
    """Test that the impact of sample_weight is consistent.

    Note that this test is stricter than the common test
    check_sample_weights_invariance alone.
    """
    # filter out solver that do not support sparse input
    if sparse_container is not None:
        if solver == "svd" or (solver in ("cholesky", "saga") and fit_intercept):
            pytest.skip("unsupported configuration")

    # XXX: this test is quite sensitive to the seed used to generate the data:
    # ideally we would like the test to pass for any global_random_seed but this is not
    # the case at the moment.
    rng = np.random.RandomState(42)
    n_samples = 12
    if data == "tall":
        n_features = n_samples // 2
    else:
        n_features = n_samples * 2

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples)
    if sparse_container is not None:
        X = sparse_container(X)
    params = dict(
        fit_intercept=fit_intercept,
        alpha=1.0,
        solver=solver,
        positive=(solver == "lbfgs"),
        random_state=global_random_seed,  # for sag/saga
        tol=1e-12,
    )

    # 1) sample_weight=np.ones(..) should be equivalent to sample_weight=None
    # same check as check_sample_weights_invariance(name, reg, kind="ones"), but we also
    # test with sparse input.
    reg = Ridge(**params).fit(X, y, sample_weight=None)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_
    sample_weight = np.ones_like(y)
    reg.fit(X, y, sample_weight=sample_weight)
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 2) setting elements of sample_weight to 0 is equivalent to removing these samples
    # same check as check_sample_weights_invariance(name, reg, kind="zeros"), but we
    # also test with sparse input
    sample_weight = rng.uniform(low=0.01, high=2, size=X.shape[0])
    sample_weight[-5:] = 0
    y[-5:] *= 1000  # to make excluding those samples important
    reg.fit(X, y, sample_weight=sample_weight)
    coef = reg.coef_.copy()
    if fit_intercept:
        intercept = reg.intercept_
    reg.fit(X[:-5, :], y[:-5], sample_weight=sample_weight[:-5])
    assert_allclose(reg.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg.intercept_, intercept)

    # 3) scaling of sample_weight should have no effect
    # Note: For models with penalty, scaling the penalty term might work.
    reg2 = Ridge(**params).set_params(alpha=np.pi * params["alpha"])
    reg2.fit(X, y, sample_weight=np.pi * sample_weight)
    if solver in ("sag", "saga") and not fit_intercept:
        pytest.xfail(f"Solver {solver} does fail test for scaling of sample_weight.")
    assert_allclose(reg2.coef_, coef, rtol=1e-6)
    if fit_intercept:
        assert_allclose(reg2.intercept_, intercept)

    # 4) check that multiplying sample_weight by 2 is equivalent
    # to repeating corresponding samples twice
    if sparse_container is not None:
        X = X.toarray()
    X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
    y2 = np.concatenate([y, y[: n_samples // 2]])
    sample_weight_1 = sample_weight.copy()
    sample_weight_1[: n_samples // 2] *= 2
    sample_weight_2 = np.concatenate(
        [sample_weight, sample_weight[: n_samples // 2]], axis=0
    )
    if sparse_container is not None:
        X = sparse_container(X)
        X2 = sparse_container(X2)
    reg1 = Ridge(**params).fit(X, y, sample_weight=sample_weight_1)
    reg2 = Ridge(**params).fit(X2, y2, sample_weight=sample_weight_2)
    assert_allclose(reg1.coef_, reg2.coef_)
    if fit_intercept:
        assert_allclose(reg1.intercept_, reg2.intercept_)