1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
from itertools import product
import numpy as np
import pytest
from scipy import linalg
from sklearn import manifold, neighbors
from sklearn.datasets import make_blobs
from sklearn.manifold._locally_linear import barycenter_kneighbors_graph
from sklearn.utils._testing import (
assert_allclose,
assert_array_equal,
ignore_warnings,
)
eigen_solvers = ["dense", "arpack"]
# ----------------------------------------------------------------------
# Test utility routines
def test_barycenter_kneighbors_graph(global_dtype):
X = np.array([[0, 1], [1.01, 1.0], [2, 0]], dtype=global_dtype)
graph = barycenter_kneighbors_graph(X, 1)
expected_graph = np.array(
[[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=global_dtype
)
assert graph.dtype == global_dtype
assert_allclose(graph.toarray(), expected_graph)
graph = barycenter_kneighbors_graph(X, 2)
# check that columns sum to one
assert_allclose(np.sum(graph.toarray(), axis=1), np.ones(3))
pred = np.dot(graph.toarray(), X)
assert linalg.norm(pred - X) / X.shape[0] < 1
# ----------------------------------------------------------------------
# Test LLE by computing the reconstruction error on some manifolds.
def test_lle_simple_grid(global_dtype):
# note: ARPACK is numerically unstable, so this test will fail for
# some random seeds. We choose 42 because the tests pass.
# for arm64 platforms 2 makes the test fail.
# TODO: rewrite this test to make less sensitive to the random seed,
# irrespective of the platform.
rng = np.random.RandomState(42)
# grid of equidistant points in 2D, n_components = n_dim
X = np.array(list(product(range(5), repeat=2)))
X = X + 1e-10 * rng.uniform(size=X.shape)
X = X.astype(global_dtype, copy=False)
n_components = 2
clf = manifold.LocallyLinearEmbedding(
n_neighbors=5, n_components=n_components, random_state=rng
)
tol = 0.1
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
reconstruction_error = linalg.norm(np.dot(N, X) - X, "fro")
assert reconstruction_error < tol
for solver in eigen_solvers:
clf.set_params(eigen_solver=solver)
clf.fit(X)
assert clf.embedding_.shape[1] == n_components
reconstruction_error = (
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
)
assert reconstruction_error < tol
assert_allclose(clf.reconstruction_error_, reconstruction_error, atol=1e-1)
# re-embed a noisy version of X using the transform method
noise = rng.randn(*X.shape).astype(global_dtype, copy=False) / 100
X_reembedded = clf.transform(X + noise)
assert linalg.norm(X_reembedded - clf.embedding_) < tol
@pytest.mark.parametrize("method", ["standard", "hessian", "modified", "ltsa"])
@pytest.mark.parametrize("solver", eigen_solvers)
def test_lle_manifold(global_dtype, method, solver):
rng = np.random.RandomState(0)
# similar test on a slightly more complex manifold
X = np.array(list(product(np.arange(18), repeat=2)))
X = np.c_[X, X[:, 0] ** 2 / 18]
X = X + 1e-10 * rng.uniform(size=X.shape)
X = X.astype(global_dtype, copy=False)
n_components = 2
clf = manifold.LocallyLinearEmbedding(
n_neighbors=6, n_components=n_components, method=method, random_state=0
)
tol = 1.5 if method == "standard" else 3
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
reconstruction_error = linalg.norm(np.dot(N, X) - X)
assert reconstruction_error < tol
clf.set_params(eigen_solver=solver)
clf.fit(X)
assert clf.embedding_.shape[1] == n_components
reconstruction_error = (
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
)
details = "solver: %s, method: %s" % (solver, method)
assert reconstruction_error < tol, details
assert (
np.abs(clf.reconstruction_error_ - reconstruction_error)
< tol * reconstruction_error
), details
def test_pipeline():
# check that LocallyLinearEmbedding works fine as a Pipeline
# only checks that no error is raised.
# TODO check that it actually does something useful
from sklearn import datasets, pipeline
X, y = datasets.make_blobs(random_state=0)
clf = pipeline.Pipeline(
[
("filter", manifold.LocallyLinearEmbedding(random_state=0)),
("clf", neighbors.KNeighborsClassifier()),
]
)
clf.fit(X, y)
assert 0.9 < clf.score(X, y)
# Test the error raised when the weight matrix is singular
def test_singular_matrix():
M = np.ones((200, 3))
f = ignore_warnings
with pytest.raises(ValueError, match="Error in determining null-space with ARPACK"):
f(
manifold.locally_linear_embedding(
M,
n_neighbors=2,
n_components=1,
method="standard",
eigen_solver="arpack",
)
)
# regression test for #6033
def test_integer_input():
rand = np.random.RandomState(0)
X = rand.randint(0, 100, size=(20, 3))
for method in ["standard", "hessian", "modified", "ltsa"]:
clf = manifold.LocallyLinearEmbedding(method=method, n_neighbors=10)
clf.fit(X) # this previously raised a TypeError
def test_get_feature_names_out():
"""Check get_feature_names_out for LocallyLinearEmbedding."""
X, y = make_blobs(random_state=0, n_features=4)
n_components = 2
iso = manifold.LocallyLinearEmbedding(n_components=n_components)
iso.fit(X)
names = iso.get_feature_names_out()
assert_array_equal(
[f"locallylinearembedding{i}" for i in range(n_components)], names
)
|