File: test_spectral_embedding.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (541 lines) | stat: -rw-r--r-- 19,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from unittest.mock import Mock

import numpy as np
import pytest
from scipy import sparse
from scipy.linalg import eigh
from scipy.sparse.linalg import eigsh, lobpcg

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.manifold import SpectralEmbedding, _spectral_embedding, spectral_embedding
from sklearn.manifold._spectral_embedding import (
    _graph_connected_component,
    _graph_is_connected,
)
from sklearn.metrics import normalized_mutual_info_score, pairwise_distances
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.neighbors import NearestNeighbors
from sklearn.utils._testing import assert_array_almost_equal, assert_array_equal
from sklearn.utils.extmath import _deterministic_vector_sign_flip
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    parse_version,
    sp_version,
)
from sklearn.utils.fixes import laplacian as csgraph_laplacian

try:
    from pyamg import smoothed_aggregation_solver  # noqa

    pyamg_available = True
except ImportError:
    pyamg_available = False
skip_if_no_pyamg = pytest.mark.skipif(
    not pyamg_available, reason="PyAMG is required for the tests in this function."
)

# non centered, sparse centers to check the
centers = np.array(
    [
        [0.0, 5.0, 0.0, 0.0, 0.0],
        [0.0, 0.0, 4.0, 0.0, 0.0],
        [1.0, 0.0, 0.0, 5.0, 1.0],
    ]
)
n_samples = 1000
n_clusters, n_features = centers.shape
S, true_labels = make_blobs(
    n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42
)


def _assert_equal_with_sign_flipping(A, B, tol=0.0):
    """Check array A and B are equal with possible sign flipping on
    each columns"""
    tol_squared = tol**2
    for A_col, B_col in zip(A.T, B.T):
        assert (
            np.max((A_col - B_col) ** 2) <= tol_squared
            or np.max((A_col + B_col) ** 2) <= tol_squared
        )


@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
def test_sparse_graph_connected_component(coo_container):
    rng = np.random.RandomState(42)
    n_samples = 300
    boundaries = [0, 42, 121, 200, n_samples]
    p = rng.permutation(n_samples)
    connections = []

    for start, stop in zip(boundaries[:-1], boundaries[1:]):
        group = p[start:stop]
        # Connect all elements within the group at least once via an
        # arbitrary path that spans the group.
        for i in range(len(group) - 1):
            connections.append((group[i], group[i + 1]))

        # Add some more random connections within the group
        min_idx, max_idx = 0, len(group) - 1
        n_random_connections = 1000
        source = rng.randint(min_idx, max_idx, size=n_random_connections)
        target = rng.randint(min_idx, max_idx, size=n_random_connections)
        connections.extend(zip(group[source], group[target]))

    # Build a symmetric affinity matrix
    row_idx, column_idx = tuple(np.array(connections).T)
    data = rng.uniform(0.1, 42, size=len(connections))
    affinity = coo_container((data, (row_idx, column_idx)))
    affinity = 0.5 * (affinity + affinity.T)

    for start, stop in zip(boundaries[:-1], boundaries[1:]):
        component_1 = _graph_connected_component(affinity, p[start])
        component_size = stop - start
        assert component_1.sum() == component_size

        # We should retrieve the same component mask by starting by both ends
        # of the group
        component_2 = _graph_connected_component(affinity, p[stop - 1])
        assert component_2.sum() == component_size
        assert_array_equal(component_1, component_2)


# TODO: investigate why this test is seed-sensitive on 32-bit Python
# runtimes. Is this revealing a numerical stability problem ? Or is it
# expected from the test numerical design ? In the latter case the test
# should be made less seed-sensitive instead.
@pytest.mark.parametrize(
    "eigen_solver",
    [
        "arpack",
        "lobpcg",
        pytest.param("amg", marks=skip_if_no_pyamg),
    ],
)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_spectral_embedding_two_components(eigen_solver, dtype, seed=0):
    # Test spectral embedding with two components
    random_state = np.random.RandomState(seed)
    n_sample = 100
    affinity = np.zeros(shape=[n_sample * 2, n_sample * 2])
    # first component
    affinity[0:n_sample, 0:n_sample] = (
        np.abs(random_state.randn(n_sample, n_sample)) + 2
    )
    # second component
    affinity[n_sample::, n_sample::] = (
        np.abs(random_state.randn(n_sample, n_sample)) + 2
    )

    # Test of internal _graph_connected_component before connection
    component = _graph_connected_component(affinity, 0)
    assert component[:n_sample].all()
    assert not component[n_sample:].any()
    component = _graph_connected_component(affinity, -1)
    assert not component[:n_sample].any()
    assert component[n_sample:].all()

    # connection
    affinity[0, n_sample + 1] = 1
    affinity[n_sample + 1, 0] = 1
    affinity.flat[:: 2 * n_sample + 1] = 0
    affinity = 0.5 * (affinity + affinity.T)

    true_label = np.zeros(shape=2 * n_sample)
    true_label[0:n_sample] = 1

    se_precomp = SpectralEmbedding(
        n_components=1,
        affinity="precomputed",
        random_state=np.random.RandomState(seed),
        eigen_solver=eigen_solver,
    )

    embedded_coordinate = se_precomp.fit_transform(affinity.astype(dtype))
    # thresholding on the first components using 0.
    label_ = np.array(embedded_coordinate.ravel() < 0, dtype=np.int64)
    assert normalized_mutual_info_score(true_label, label_) == pytest.approx(1.0)


@pytest.mark.parametrize("sparse_container", [None, *CSR_CONTAINERS])
@pytest.mark.parametrize(
    "eigen_solver",
    [
        "arpack",
        "lobpcg",
        pytest.param("amg", marks=skip_if_no_pyamg),
    ],
)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_spectral_embedding_precomputed_affinity(
    sparse_container, eigen_solver, dtype, seed=36
):
    # Test spectral embedding with precomputed kernel
    gamma = 1.0
    X = S if sparse_container is None else sparse_container(S)

    se_precomp = SpectralEmbedding(
        n_components=2,
        affinity="precomputed",
        random_state=np.random.RandomState(seed),
        eigen_solver=eigen_solver,
    )
    se_rbf = SpectralEmbedding(
        n_components=2,
        affinity="rbf",
        gamma=gamma,
        random_state=np.random.RandomState(seed),
        eigen_solver=eigen_solver,
    )
    embed_precomp = se_precomp.fit_transform(rbf_kernel(X.astype(dtype), gamma=gamma))
    embed_rbf = se_rbf.fit_transform(X.astype(dtype))
    assert_array_almost_equal(se_precomp.affinity_matrix_, se_rbf.affinity_matrix_)
    _assert_equal_with_sign_flipping(embed_precomp, embed_rbf, 0.05)


def test_precomputed_nearest_neighbors_filtering():
    # Test precomputed graph filtering when containing too many neighbors
    n_neighbors = 2
    results = []
    for additional_neighbors in [0, 10]:
        nn = NearestNeighbors(n_neighbors=n_neighbors + additional_neighbors).fit(S)
        graph = nn.kneighbors_graph(S, mode="connectivity")
        embedding = (
            SpectralEmbedding(
                random_state=0,
                n_components=2,
                affinity="precomputed_nearest_neighbors",
                n_neighbors=n_neighbors,
            )
            .fit(graph)
            .embedding_
        )
        results.append(embedding)

    assert_array_equal(results[0], results[1])


@pytest.mark.parametrize("sparse_container", [None, *CSR_CONTAINERS])
def test_spectral_embedding_callable_affinity(sparse_container, seed=36):
    # Test spectral embedding with callable affinity
    gamma = 0.9
    kern = rbf_kernel(S, gamma=gamma)
    X = S if sparse_container is None else sparse_container(S)

    se_callable = SpectralEmbedding(
        n_components=2,
        affinity=(lambda x: rbf_kernel(x, gamma=gamma)),
        gamma=gamma,
        random_state=np.random.RandomState(seed),
    )
    se_rbf = SpectralEmbedding(
        n_components=2,
        affinity="rbf",
        gamma=gamma,
        random_state=np.random.RandomState(seed),
    )
    embed_rbf = se_rbf.fit_transform(X)
    embed_callable = se_callable.fit_transform(X)
    assert_array_almost_equal(se_callable.affinity_matrix_, se_rbf.affinity_matrix_)
    assert_array_almost_equal(kern, se_rbf.affinity_matrix_)
    _assert_equal_with_sign_flipping(embed_rbf, embed_callable, 0.05)


# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
    "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of np.float
@pytest.mark.filterwarnings(
    "ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of pinv2
@pytest.mark.filterwarnings(
    "ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
@pytest.mark.filterwarnings(
    "ignore:np.find_common_type is deprecated:DeprecationWarning:pyamg.*"
)
@pytest.mark.skipif(
    not pyamg_available, reason="PyAMG is required for the tests in this function."
)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
def test_spectral_embedding_amg_solver(dtype, coo_container, seed=36):
    se_amg = SpectralEmbedding(
        n_components=2,
        affinity="nearest_neighbors",
        eigen_solver="amg",
        n_neighbors=5,
        random_state=np.random.RandomState(seed),
    )
    se_arpack = SpectralEmbedding(
        n_components=2,
        affinity="nearest_neighbors",
        eigen_solver="arpack",
        n_neighbors=5,
        random_state=np.random.RandomState(seed),
    )
    embed_amg = se_amg.fit_transform(S.astype(dtype))
    embed_arpack = se_arpack.fit_transform(S.astype(dtype))
    _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)

    # same with special case in which amg is not actually used
    # regression test for #10715
    # affinity between nodes
    row = np.array([0, 0, 1, 2, 3, 3, 4], dtype=np.int32)
    col = np.array([1, 2, 2, 3, 4, 5, 5], dtype=np.int32)
    val = np.array([100, 100, 100, 1, 100, 100, 100], dtype=np.int64)

    affinity = coo_container(
        (np.hstack([val, val]), (np.hstack([row, col]), np.hstack([col, row]))),
        shape=(6, 6),
    )
    se_amg.affinity = "precomputed"
    se_arpack.affinity = "precomputed"
    embed_amg = se_amg.fit_transform(affinity.astype(dtype))
    embed_arpack = se_arpack.fit_transform(affinity.astype(dtype))
    _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)

    # Check that passing a sparse matrix with `np.int64` indices dtype raises an error
    # or is successful based on the version of SciPy which is installed.
    # Use a CSR matrix to avoid any conversion during the validation
    affinity = affinity.tocsr()
    affinity.indptr = affinity.indptr.astype(np.int64)
    affinity.indices = affinity.indices.astype(np.int64)

    # PR: https://github.com/scipy/scipy/pull/18913
    # First integration in 1.11.3: https://github.com/scipy/scipy/pull/19279
    scipy_graph_traversal_supports_int64_index = sp_version >= parse_version("1.11.3")
    if scipy_graph_traversal_supports_int64_index:
        se_amg.fit_transform(affinity)
    else:
        err_msg = "Only sparse matrices with 32-bit integer indices are accepted"
        with pytest.raises(ValueError, match=err_msg):
            se_amg.fit_transform(affinity)


# TODO: Remove filterwarnings when pyamg does replaces sp.rand call with
# np.random.rand:
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
    "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of np.float
@pytest.mark.filterwarnings(
    "ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of pinv2
@pytest.mark.filterwarnings(
    "ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
@pytest.mark.skipif(
    not pyamg_available, reason="PyAMG is required for the tests in this function."
)
# TODO: Remove when pyamg removes the use of np.find_common_type
@pytest.mark.filterwarnings(
    "ignore:np.find_common_type is deprecated:DeprecationWarning:pyamg.*"
)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_spectral_embedding_amg_solver_failure(dtype, seed=36):
    # Non-regression test for amg solver failure (issue #13393 on github)
    num_nodes = 100
    X = sparse.rand(num_nodes, num_nodes, density=0.1, random_state=seed)
    X = X.astype(dtype)
    upper = sparse.triu(X) - sparse.diags(X.diagonal())
    sym_matrix = upper + upper.T
    embedding = spectral_embedding(
        sym_matrix, n_components=10, eigen_solver="amg", random_state=0
    )

    # Check that the learned embedding is stable w.r.t. random solver init:
    for i in range(3):
        new_embedding = spectral_embedding(
            sym_matrix, n_components=10, eigen_solver="amg", random_state=i + 1
        )
        _assert_equal_with_sign_flipping(embedding, new_embedding, tol=0.05)


@pytest.mark.filterwarnings("ignore:the behavior of nmi will change in version 0.22")
def test_pipeline_spectral_clustering(seed=36):
    # Test using pipeline to do spectral clustering
    random_state = np.random.RandomState(seed)
    se_rbf = SpectralEmbedding(
        n_components=n_clusters, affinity="rbf", random_state=random_state
    )
    se_knn = SpectralEmbedding(
        n_components=n_clusters,
        affinity="nearest_neighbors",
        n_neighbors=5,
        random_state=random_state,
    )
    for se in [se_rbf, se_knn]:
        km = KMeans(n_clusters=n_clusters, random_state=random_state, n_init=10)
        km.fit(se.fit_transform(S))
        assert_array_almost_equal(
            normalized_mutual_info_score(km.labels_, true_labels), 1.0, 2
        )


def test_connectivity(seed=36):
    # Test that graph connectivity test works as expected
    graph = np.array(
        [
            [1, 0, 0, 0, 0],
            [0, 1, 1, 0, 0],
            [0, 1, 1, 1, 0],
            [0, 0, 1, 1, 1],
            [0, 0, 0, 1, 1],
        ]
    )
    assert not _graph_is_connected(graph)
    for csr_container in CSR_CONTAINERS:
        assert not _graph_is_connected(csr_container(graph))
    for csc_container in CSC_CONTAINERS:
        assert not _graph_is_connected(csc_container(graph))

    graph = np.array(
        [
            [1, 1, 0, 0, 0],
            [1, 1, 1, 0, 0],
            [0, 1, 1, 1, 0],
            [0, 0, 1, 1, 1],
            [0, 0, 0, 1, 1],
        ]
    )
    assert _graph_is_connected(graph)
    for csr_container in CSR_CONTAINERS:
        assert _graph_is_connected(csr_container(graph))
    for csc_container in CSC_CONTAINERS:
        assert _graph_is_connected(csc_container(graph))


def test_spectral_embedding_deterministic():
    # Test that Spectral Embedding is deterministic
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    embedding_1 = spectral_embedding(sims)
    embedding_2 = spectral_embedding(sims)
    assert_array_almost_equal(embedding_1, embedding_2)


def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(
        sims, norm_laplacian=False, n_components=n_components, drop_first=False
    )

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph_laplacian(sims, normed=False, return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2)


def test_spectral_embedding_first_eigen_vector():
    # Test that the first eigenvector of spectral_embedding
    # is constant and that the second is not (for a connected graph)
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 2

    for seed in range(10):
        embedding = spectral_embedding(
            sims,
            norm_laplacian=False,
            n_components=n_components,
            drop_first=False,
            random_state=seed,
        )

        assert np.std(embedding[:, 0]) == pytest.approx(0)
        assert np.std(embedding[:, 1]) > 1e-3


@pytest.mark.parametrize(
    "eigen_solver",
    [
        "arpack",
        "lobpcg",
        pytest.param("amg", marks=skip_if_no_pyamg),
    ],
)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_spectral_embedding_preserves_dtype(eigen_solver, dtype):
    """Check that `SpectralEmbedding is preserving the dtype of the fitted
    attribute and transformed data.

    Ideally, this test should be covered by the common test
    `check_transformer_preserve_dtypes`. However, this test only run
    with transformers implementing `transform` while `SpectralEmbedding`
    implements only `fit_transform`.
    """
    X = S.astype(dtype)
    se = SpectralEmbedding(
        n_components=2, affinity="rbf", eigen_solver=eigen_solver, random_state=0
    )
    X_trans = se.fit_transform(X)

    assert X_trans.dtype == dtype
    assert se.embedding_.dtype == dtype
    assert se.affinity_matrix_.dtype == dtype


@pytest.mark.skipif(
    pyamg_available,
    reason="PyAMG is installed and we should not test for an error.",
)
def test_error_pyamg_not_available():
    se_precomp = SpectralEmbedding(
        n_components=2,
        affinity="rbf",
        eigen_solver="amg",
    )
    err_msg = "The eigen_solver was set to 'amg', but pyamg is not available."
    with pytest.raises(ValueError, match=err_msg):
        se_precomp.fit_transform(S)


# TODO: Remove when pyamg removes the use of np.find_common_type
@pytest.mark.filterwarnings(
    "ignore:np.find_common_type is deprecated:DeprecationWarning:pyamg.*"
)
@pytest.mark.parametrize("solver", ["arpack", "amg", "lobpcg"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_spectral_eigen_tol_auto(monkeypatch, solver, csr_container):
    """Test that `eigen_tol="auto"` is resolved correctly"""
    if solver == "amg" and not pyamg_available:
        pytest.skip("PyAMG is not available.")
    X, _ = make_blobs(
        n_samples=200, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )
    D = pairwise_distances(X)  # Distance matrix
    S = np.max(D) - D  # Similarity matrix

    solver_func = eigsh if solver == "arpack" else lobpcg
    default_value = 0 if solver == "arpack" else None
    if solver == "amg":
        S = csr_container(S)

    mocked_solver = Mock(side_effect=solver_func)

    monkeypatch.setattr(_spectral_embedding, solver_func.__qualname__, mocked_solver)

    spectral_embedding(S, random_state=42, eigen_solver=solver, eigen_tol="auto")
    mocked_solver.assert_called()

    _, kwargs = mocked_solver.call_args
    assert kwargs["tol"] == default_value