1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
|
import sys
from io import StringIO
import numpy as np
import pytest
import scipy.sparse as sp
from numpy.testing import assert_allclose
from scipy.optimize import check_grad
from scipy.spatial.distance import pdist, squareform
from sklearn import config_context
from sklearn.datasets import make_blobs
from sklearn.exceptions import EfficiencyWarning
# mypy error: Module 'sklearn.manifold' has no attribute '_barnes_hut_tsne'
from sklearn.manifold import ( # type: ignore
TSNE,
_barnes_hut_tsne,
)
from sklearn.manifold._t_sne import (
_gradient_descent,
_joint_probabilities,
_joint_probabilities_nn,
_kl_divergence,
_kl_divergence_bh,
trustworthiness,
)
from sklearn.manifold._utils import _binary_search_perplexity
from sklearn.metrics.pairwise import (
cosine_distances,
manhattan_distances,
pairwise_distances,
)
from sklearn.neighbors import NearestNeighbors, kneighbors_graph
from sklearn.utils import check_random_state
from sklearn.utils._testing import (
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
ignore_warnings,
skip_if_32bit,
)
from sklearn.utils.fixes import CSR_CONTAINERS, LIL_CONTAINERS
x = np.linspace(0, 1, 10)
xx, yy = np.meshgrid(x, x)
X_2d_grid = np.hstack(
[
xx.ravel().reshape(-1, 1),
yy.ravel().reshape(-1, 1),
]
)
def test_gradient_descent_stops():
# Test stopping conditions of gradient descent.
class ObjectiveSmallGradient:
def __init__(self):
self.it = -1
def __call__(self, _, compute_error=True):
self.it += 1
return (10 - self.it) / 10.0, np.array([1e-5])
def flat_function(_, compute_error=True):
return 0.0, np.ones(1)
# Gradient norm
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
_, error, it = _gradient_descent(
ObjectiveSmallGradient(),
np.zeros(1),
0,
n_iter=100,
n_iter_without_progress=100,
momentum=0.0,
learning_rate=0.0,
min_gain=0.0,
min_grad_norm=1e-5,
verbose=2,
)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert error == 1.0
assert it == 0
assert "gradient norm" in out
# Maximum number of iterations without improvement
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
_, error, it = _gradient_descent(
flat_function,
np.zeros(1),
0,
n_iter=100,
n_iter_without_progress=10,
momentum=0.0,
learning_rate=0.0,
min_gain=0.0,
min_grad_norm=0.0,
verbose=2,
)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert error == 0.0
assert it == 11
assert "did not make any progress" in out
# Maximum number of iterations
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
_, error, it = _gradient_descent(
ObjectiveSmallGradient(),
np.zeros(1),
0,
n_iter=11,
n_iter_without_progress=100,
momentum=0.0,
learning_rate=0.0,
min_gain=0.0,
min_grad_norm=0.0,
verbose=2,
)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert error == 0.0
assert it == 10
assert "Iteration 10" in out
def test_binary_search():
# Test if the binary search finds Gaussians with desired perplexity.
random_state = check_random_state(0)
data = random_state.randn(50, 5)
distances = pairwise_distances(data).astype(np.float32)
desired_perplexity = 25.0
P = _binary_search_perplexity(distances, desired_perplexity, verbose=0)
P = np.maximum(P, np.finfo(np.double).eps)
mean_perplexity = np.mean(
[np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]
)
assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3)
def test_binary_search_underflow():
# Test if the binary search finds Gaussians with desired perplexity.
# A more challenging case than the one above, producing numeric
# underflow in float precision (see issue #19471 and PR #19472).
random_state = check_random_state(42)
data = random_state.randn(1, 90).astype(np.float32) + 100
desired_perplexity = 30.0
P = _binary_search_perplexity(data, desired_perplexity, verbose=0)
perplexity = 2 ** -np.nansum(P[0, 1:] * np.log2(P[0, 1:]))
assert_almost_equal(perplexity, desired_perplexity, decimal=3)
def test_binary_search_neighbors():
# Binary perplexity search approximation.
# Should be approximately equal to the slow method when we use
# all points as neighbors.
n_samples = 200
desired_perplexity = 25.0
random_state = check_random_state(0)
data = random_state.randn(n_samples, 2).astype(np.float32, copy=False)
distances = pairwise_distances(data)
P1 = _binary_search_perplexity(distances, desired_perplexity, verbose=0)
# Test that when we use all the neighbors the results are identical
n_neighbors = n_samples - 1
nn = NearestNeighbors().fit(data)
distance_graph = nn.kneighbors_graph(n_neighbors=n_neighbors, mode="distance")
distances_nn = distance_graph.data.astype(np.float32, copy=False)
distances_nn = distances_nn.reshape(n_samples, n_neighbors)
P2 = _binary_search_perplexity(distances_nn, desired_perplexity, verbose=0)
indptr = distance_graph.indptr
P1_nn = np.array(
[
P1[k, distance_graph.indices[indptr[k] : indptr[k + 1]]]
for k in range(n_samples)
]
)
assert_array_almost_equal(P1_nn, P2, decimal=4)
# Test that the highest P_ij are the same when fewer neighbors are used
for k in np.linspace(150, n_samples - 1, 5):
k = int(k)
topn = k * 10 # check the top 10 * k entries out of k * k entries
distance_graph = nn.kneighbors_graph(n_neighbors=k, mode="distance")
distances_nn = distance_graph.data.astype(np.float32, copy=False)
distances_nn = distances_nn.reshape(n_samples, k)
P2k = _binary_search_perplexity(distances_nn, desired_perplexity, verbose=0)
assert_array_almost_equal(P1_nn, P2, decimal=2)
idx = np.argsort(P1.ravel())[::-1]
P1top = P1.ravel()[idx][:topn]
idx = np.argsort(P2k.ravel())[::-1]
P2top = P2k.ravel()[idx][:topn]
assert_array_almost_equal(P1top, P2top, decimal=2)
def test_binary_perplexity_stability():
# Binary perplexity search should be stable.
# The binary_search_perplexity had a bug wherein the P array
# was uninitialized, leading to sporadically failing tests.
n_neighbors = 10
n_samples = 100
random_state = check_random_state(0)
data = random_state.randn(n_samples, 5)
nn = NearestNeighbors().fit(data)
distance_graph = nn.kneighbors_graph(n_neighbors=n_neighbors, mode="distance")
distances = distance_graph.data.astype(np.float32, copy=False)
distances = distances.reshape(n_samples, n_neighbors)
last_P = None
desired_perplexity = 3
for _ in range(100):
P = _binary_search_perplexity(distances.copy(), desired_perplexity, verbose=0)
P1 = _joint_probabilities_nn(distance_graph, desired_perplexity, verbose=0)
# Convert the sparse matrix to a dense one for testing
P1 = P1.toarray()
if last_P is None:
last_P = P
last_P1 = P1
else:
assert_array_almost_equal(P, last_P, decimal=4)
assert_array_almost_equal(P1, last_P1, decimal=4)
def test_gradient():
# Test gradient of Kullback-Leibler divergence.
random_state = check_random_state(0)
n_samples = 50
n_features = 2
n_components = 2
alpha = 1.0
distances = random_state.randn(n_samples, n_features).astype(np.float32)
distances = np.abs(distances.dot(distances.T))
np.fill_diagonal(distances, 0.0)
X_embedded = random_state.randn(n_samples, n_components).astype(np.float32)
P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0)
def fun(params):
return _kl_divergence(params, P, alpha, n_samples, n_components)[0]
def grad(params):
return _kl_divergence(params, P, alpha, n_samples, n_components)[1]
assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5)
def test_trustworthiness():
# Test trustworthiness score.
random_state = check_random_state(0)
# Affine transformation
X = random_state.randn(100, 2)
assert trustworthiness(X, 5.0 + X / 10.0) == 1.0
# Randomly shuffled
X = np.arange(100).reshape(-1, 1)
X_embedded = X.copy()
random_state.shuffle(X_embedded)
assert trustworthiness(X, X_embedded) < 0.6
# Completely different
X = np.arange(5).reshape(-1, 1)
X_embedded = np.array([[0], [2], [4], [1], [3]])
assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2)
def test_trustworthiness_n_neighbors_error():
"""Raise an error when n_neighbors >= n_samples / 2.
Non-regression test for #18567.
"""
regex = "n_neighbors .+ should be less than .+"
rng = np.random.RandomState(42)
X = rng.rand(7, 4)
X_embedded = rng.rand(7, 2)
with pytest.raises(ValueError, match=regex):
trustworthiness(X, X_embedded, n_neighbors=5)
trust = trustworthiness(X, X_embedded, n_neighbors=3)
assert 0 <= trust <= 1
@pytest.mark.parametrize("method", ["exact", "barnes_hut"])
@pytest.mark.parametrize("init", ("random", "pca"))
def test_preserve_trustworthiness_approximately(method, init):
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
n_components = 2
X = random_state.randn(50, n_components).astype(np.float32)
tsne = TSNE(
n_components=n_components,
init=init,
random_state=0,
method=method,
n_iter=700,
learning_rate="auto",
)
X_embedded = tsne.fit_transform(X)
t = trustworthiness(X, X_embedded, n_neighbors=1)
assert t > 0.85
def test_optimization_minimizes_kl_divergence():
"""t-SNE should give a lower KL divergence with more iterations."""
random_state = check_random_state(0)
X, _ = make_blobs(n_features=3, random_state=random_state)
kl_divergences = []
for n_iter in [250, 300, 350]:
tsne = TSNE(
n_components=2,
init="random",
perplexity=10,
learning_rate=100.0,
n_iter=n_iter,
random_state=0,
)
tsne.fit_transform(X)
kl_divergences.append(tsne.kl_divergence_)
assert kl_divergences[1] <= kl_divergences[0]
assert kl_divergences[2] <= kl_divergences[1]
@pytest.mark.parametrize("method", ["exact", "barnes_hut"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_fit_transform_csr_matrix(method, csr_container):
# TODO: compare results on dense and sparse data as proposed in:
# https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186
# X can be a sparse matrix.
rng = check_random_state(0)
X = rng.randn(50, 2)
X[(rng.randint(0, 50, 25), rng.randint(0, 2, 25))] = 0.0
X_csr = csr_container(X)
tsne = TSNE(
n_components=2,
init="random",
perplexity=10,
learning_rate=100.0,
random_state=0,
method=method,
n_iter=750,
)
X_embedded = tsne.fit_transform(X_csr)
assert_allclose(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, rtol=1.1e-1)
def test_preserve_trustworthiness_approximately_with_precomputed_distances():
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
for i in range(3):
X = random_state.randn(80, 2)
D = squareform(pdist(X), "sqeuclidean")
tsne = TSNE(
n_components=2,
perplexity=2,
learning_rate=100.0,
early_exaggeration=2.0,
metric="precomputed",
random_state=i,
verbose=0,
n_iter=500,
init="random",
)
X_embedded = tsne.fit_transform(D)
t = trustworthiness(D, X_embedded, n_neighbors=1, metric="precomputed")
assert t > 0.95
def test_trustworthiness_not_euclidean_metric():
# Test trustworthiness with a metric different from 'euclidean' and
# 'precomputed'
random_state = check_random_state(0)
X = random_state.randn(100, 2)
assert trustworthiness(X, X, metric="cosine") == trustworthiness(
pairwise_distances(X, metric="cosine"), X, metric="precomputed"
)
@pytest.mark.parametrize(
"method, retype",
[
("exact", np.asarray),
("barnes_hut", np.asarray),
*[("barnes_hut", csr_container) for csr_container in CSR_CONTAINERS],
],
)
@pytest.mark.parametrize(
"D, message_regex",
[
([[0.0], [1.0]], ".* square distance matrix"),
([[0.0, -1.0], [1.0, 0.0]], ".* positive.*"),
],
)
def test_bad_precomputed_distances(method, D, retype, message_regex):
tsne = TSNE(
metric="precomputed",
method=method,
init="random",
random_state=42,
perplexity=1,
)
with pytest.raises(ValueError, match=message_regex):
tsne.fit_transform(retype(D))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_exact_no_precomputed_sparse(csr_container):
tsne = TSNE(
metric="precomputed",
method="exact",
init="random",
random_state=42,
perplexity=1,
)
with pytest.raises(TypeError, match="sparse"):
tsne.fit_transform(csr_container([[0, 5], [5, 0]]))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_high_perplexity_precomputed_sparse_distances(csr_container):
# Perplexity should be less than 50
dist = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]])
bad_dist = csr_container(dist)
tsne = TSNE(metric="precomputed", init="random", random_state=42, perplexity=1)
msg = "3 neighbors per samples are required, but some samples have only 1"
with pytest.raises(ValueError, match=msg):
tsne.fit_transform(bad_dist)
@ignore_warnings(category=EfficiencyWarning)
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + LIL_CONTAINERS)
def test_sparse_precomputed_distance(sparse_container):
"""Make sure that TSNE works identically for sparse and dense matrix"""
random_state = check_random_state(0)
X = random_state.randn(100, 2)
D_sparse = kneighbors_graph(X, n_neighbors=100, mode="distance", include_self=True)
D = pairwise_distances(X)
assert sp.issparse(D_sparse)
assert_almost_equal(D_sparse.toarray(), D)
tsne = TSNE(
metric="precomputed", random_state=0, init="random", learning_rate="auto"
)
Xt_dense = tsne.fit_transform(D)
Xt_sparse = tsne.fit_transform(sparse_container(D_sparse))
assert_almost_equal(Xt_dense, Xt_sparse)
def test_non_positive_computed_distances():
# Computed distance matrices must be positive.
def metric(x, y):
return -1
# Negative computed distances should be caught even if result is squared
tsne = TSNE(metric=metric, method="exact", perplexity=1)
X = np.array([[0.0, 0.0], [1.0, 1.0]])
with pytest.raises(ValueError, match="All distances .*metric given.*"):
tsne.fit_transform(X)
def test_init_ndarray():
# Initialize TSNE with ndarray and test fit
tsne = TSNE(init=np.zeros((100, 2)), learning_rate="auto")
X_embedded = tsne.fit_transform(np.ones((100, 5)))
assert_array_equal(np.zeros((100, 2)), X_embedded)
def test_init_ndarray_precomputed():
# Initialize TSNE with ndarray and metric 'precomputed'
# Make sure no FutureWarning is thrown from _fit
tsne = TSNE(
init=np.zeros((100, 2)),
metric="precomputed",
learning_rate=50.0,
)
tsne.fit(np.zeros((100, 100)))
def test_pca_initialization_not_compatible_with_precomputed_kernel():
# Precomputed distance matrices cannot use PCA initialization.
tsne = TSNE(metric="precomputed", init="pca", perplexity=1)
with pytest.raises(
ValueError,
match='The parameter init="pca" cannot be used with metric="precomputed".',
):
tsne.fit_transform(np.array([[0.0], [1.0]]))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pca_initialization_not_compatible_with_sparse_input(csr_container):
# Sparse input matrices cannot use PCA initialization.
tsne = TSNE(init="pca", learning_rate=100.0, perplexity=1)
with pytest.raises(TypeError, match="PCA initialization.*"):
tsne.fit_transform(csr_container([[0, 5], [5, 0]]))
def test_n_components_range():
# barnes_hut method should only be used with n_components <= 3
tsne = TSNE(n_components=4, method="barnes_hut", perplexity=1)
with pytest.raises(ValueError, match="'n_components' should be .*"):
tsne.fit_transform(np.array([[0.0], [1.0]]))
def test_early_exaggeration_used():
# check that the ``early_exaggeration`` parameter has an effect
random_state = check_random_state(0)
n_components = 2
methods = ["exact", "barnes_hut"]
X = random_state.randn(25, n_components).astype(np.float32)
for method in methods:
tsne = TSNE(
n_components=n_components,
perplexity=1,
learning_rate=100.0,
init="pca",
random_state=0,
method=method,
early_exaggeration=1.0,
n_iter=250,
)
X_embedded1 = tsne.fit_transform(X)
tsne = TSNE(
n_components=n_components,
perplexity=1,
learning_rate=100.0,
init="pca",
random_state=0,
method=method,
early_exaggeration=10.0,
n_iter=250,
)
X_embedded2 = tsne.fit_transform(X)
assert not np.allclose(X_embedded1, X_embedded2)
def test_n_iter_used():
# check that the ``n_iter`` parameter has an effect
random_state = check_random_state(0)
n_components = 2
methods = ["exact", "barnes_hut"]
X = random_state.randn(25, n_components).astype(np.float32)
for method in methods:
for n_iter in [251, 500]:
tsne = TSNE(
n_components=n_components,
perplexity=1,
learning_rate=0.5,
init="random",
random_state=0,
method=method,
early_exaggeration=1.0,
n_iter=n_iter,
)
tsne.fit_transform(X)
assert tsne.n_iter_ == n_iter - 1
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_answer_gradient_two_points(csr_container):
# Test the tree with only a single set of children.
#
# These tests & answers have been checked against the reference
# implementation by LvdM.
pos_input = np.array([[1.0, 0.0], [0.0, 1.0]])
pos_output = np.array(
[[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]]
)
neighbors = np.array([[1], [0]])
grad_output = np.array(
[[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]]
)
_run_answer_test(pos_input, pos_output, neighbors, grad_output, csr_container)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_answer_gradient_four_points(csr_container):
# Four points tests the tree with multiple levels of children.
#
# These tests & answers have been checked against the reference
# implementation by LvdM.
pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]])
pos_output = np.array(
[
[6.080564e-05, -7.120823e-05],
[-1.718945e-04, -4.000536e-05],
[-2.271720e-04, 8.663310e-05],
[-1.032577e-04, -3.582033e-05],
]
)
neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]])
grad_output = np.array(
[
[5.81128448e-05, -7.78033454e-06],
[-5.81526851e-05, 7.80976444e-06],
[4.24275173e-08, -3.69569698e-08],
[-2.58720939e-09, 7.52706374e-09],
]
)
_run_answer_test(pos_input, pos_output, neighbors, grad_output, csr_container)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_skip_num_points_gradient(csr_container):
# Test the kwargs option skip_num_points.
#
# Skip num points should make it such that the Barnes_hut gradient
# is not calculated for indices below skip_num_point.
# Aside from skip_num_points=2 and the first two gradient rows
# being set to zero, these data points are the same as in
# test_answer_gradient_four_points()
pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]])
pos_output = np.array(
[
[6.080564e-05, -7.120823e-05],
[-1.718945e-04, -4.000536e-05],
[-2.271720e-04, 8.663310e-05],
[-1.032577e-04, -3.582033e-05],
]
)
neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]])
grad_output = np.array(
[
[0.0, 0.0],
[0.0, 0.0],
[4.24275173e-08, -3.69569698e-08],
[-2.58720939e-09, 7.52706374e-09],
]
)
_run_answer_test(
pos_input, pos_output, neighbors, grad_output, csr_container, False, 0.1, 2
)
def _run_answer_test(
pos_input,
pos_output,
neighbors,
grad_output,
csr_container,
verbose=False,
perplexity=0.1,
skip_num_points=0,
):
distances = pairwise_distances(pos_input).astype(np.float32)
args = distances, perplexity, verbose
pos_output = pos_output.astype(np.float32)
neighbors = neighbors.astype(np.int64, copy=False)
pij_input = _joint_probabilities(*args)
pij_input = squareform(pij_input).astype(np.float32)
grad_bh = np.zeros(pos_output.shape, dtype=np.float32)
P = csr_container(pij_input)
neighbors = P.indices.astype(np.int64)
indptr = P.indptr.astype(np.int64)
_barnes_hut_tsne.gradient(
P.data, pos_output, neighbors, indptr, grad_bh, 0.5, 2, 1, skip_num_points=0
)
assert_array_almost_equal(grad_bh, grad_output, decimal=4)
def test_verbose():
# Verbose options write to stdout.
random_state = check_random_state(0)
tsne = TSNE(verbose=2, perplexity=4)
X = random_state.randn(5, 2)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
tsne.fit_transform(X)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert "[t-SNE]" in out
assert "nearest neighbors..." in out
assert "Computed conditional probabilities" in out
assert "Mean sigma" in out
assert "early exaggeration" in out
def test_chebyshev_metric():
# t-SNE should allow metrics that cannot be squared (issue #3526).
random_state = check_random_state(0)
tsne = TSNE(metric="chebyshev", perplexity=4)
X = random_state.randn(5, 2)
tsne.fit_transform(X)
def test_reduction_to_one_component():
# t-SNE should allow reduction to one component (issue #4154).
random_state = check_random_state(0)
tsne = TSNE(n_components=1, perplexity=4)
X = random_state.randn(5, 2)
X_embedded = tsne.fit(X).embedding_
assert np.all(np.isfinite(X_embedded))
@pytest.mark.parametrize("method", ["barnes_hut", "exact"])
@pytest.mark.parametrize("dt", [np.float32, np.float64])
def test_64bit(method, dt):
# Ensure 64bit arrays are handled correctly.
random_state = check_random_state(0)
X = random_state.randn(10, 2).astype(dt, copy=False)
tsne = TSNE(
n_components=2,
perplexity=2,
learning_rate=100.0,
random_state=0,
method=method,
verbose=0,
n_iter=300,
init="random",
)
X_embedded = tsne.fit_transform(X)
effective_type = X_embedded.dtype
# tsne cython code is only single precision, so the output will
# always be single precision, irrespectively of the input dtype
assert effective_type == np.float32
@pytest.mark.parametrize("method", ["barnes_hut", "exact"])
def test_kl_divergence_not_nan(method):
# Ensure kl_divergence_ is computed at last iteration
# even though n_iter % n_iter_check != 0, i.e. 1003 % 50 != 0
random_state = check_random_state(0)
X = random_state.randn(50, 2)
tsne = TSNE(
n_components=2,
perplexity=2,
learning_rate=100.0,
random_state=0,
method=method,
verbose=0,
n_iter=503,
init="random",
)
tsne.fit_transform(X)
assert not np.isnan(tsne.kl_divergence_)
def test_barnes_hut_angle():
# When Barnes-Hut's angle=0 this corresponds to the exact method.
angle = 0.0
perplexity = 10
n_samples = 100
for n_components in [2, 3]:
n_features = 5
degrees_of_freedom = float(n_components - 1.0)
random_state = check_random_state(0)
data = random_state.randn(n_samples, n_features)
distances = pairwise_distances(data)
params = random_state.randn(n_samples, n_components)
P = _joint_probabilities(distances, perplexity, verbose=0)
kl_exact, grad_exact = _kl_divergence(
params, P, degrees_of_freedom, n_samples, n_components
)
n_neighbors = n_samples - 1
distances_csr = (
NearestNeighbors()
.fit(data)
.kneighbors_graph(n_neighbors=n_neighbors, mode="distance")
)
P_bh = _joint_probabilities_nn(distances_csr, perplexity, verbose=0)
kl_bh, grad_bh = _kl_divergence_bh(
params,
P_bh,
degrees_of_freedom,
n_samples,
n_components,
angle=angle,
skip_num_points=0,
verbose=0,
)
P = squareform(P)
P_bh = P_bh.toarray()
assert_array_almost_equal(P_bh, P, decimal=5)
assert_almost_equal(kl_exact, kl_bh, decimal=3)
@skip_if_32bit
def test_n_iter_without_progress():
# Use a dummy negative n_iter_without_progress and check output on stdout
random_state = check_random_state(0)
X = random_state.randn(100, 10)
for method in ["barnes_hut", "exact"]:
tsne = TSNE(
n_iter_without_progress=-1,
verbose=2,
learning_rate=1e8,
random_state=0,
method=method,
n_iter=351,
init="random",
)
tsne._N_ITER_CHECK = 1
tsne._EXPLORATION_N_ITER = 0
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
tsne.fit_transform(X)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
# The output needs to contain the value of n_iter_without_progress
assert "did not make any progress during the last -1 episodes. Finished." in out
def test_min_grad_norm():
# Make sure that the parameter min_grad_norm is used correctly
random_state = check_random_state(0)
X = random_state.randn(100, 2)
min_grad_norm = 0.002
tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2, random_state=0, method="exact")
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
tsne.fit_transform(X)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
lines_out = out.split("\n")
# extract the gradient norm from the verbose output
gradient_norm_values = []
for line in lines_out:
# When the computation is Finished just an old gradient norm value
# is repeated that we do not need to store
if "Finished" in line:
break
start_grad_norm = line.find("gradient norm")
if start_grad_norm >= 0:
line = line[start_grad_norm:]
line = line.replace("gradient norm = ", "").split(" ")[0]
gradient_norm_values.append(float(line))
# Compute how often the gradient norm is smaller than min_grad_norm
gradient_norm_values = np.array(gradient_norm_values)
n_smaller_gradient_norms = len(
gradient_norm_values[gradient_norm_values <= min_grad_norm]
)
# The gradient norm can be smaller than min_grad_norm at most once,
# because in the moment it becomes smaller the optimization stops
assert n_smaller_gradient_norms <= 1
def test_accessible_kl_divergence():
# Ensures that the accessible kl_divergence matches the computed value
random_state = check_random_state(0)
X = random_state.randn(50, 2)
tsne = TSNE(
n_iter_without_progress=2, verbose=2, random_state=0, method="exact", n_iter=500
)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
tsne.fit_transform(X)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
# The output needs to contain the accessible kl_divergence as the error at
# the last iteration
for line in out.split("\n")[::-1]:
if "Iteration" in line:
_, _, error = line.partition("error = ")
if error:
error, _, _ = error.partition(",")
break
assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5)
@pytest.mark.parametrize("method", ["barnes_hut", "exact"])
def test_uniform_grid(method):
"""Make sure that TSNE can approximately recover a uniform 2D grid
Due to ties in distances between point in X_2d_grid, this test is platform
dependent for ``method='barnes_hut'`` due to numerical imprecision.
Also, t-SNE is not assured to converge to the right solution because bad
initialization can lead to convergence to bad local minimum (the
optimization problem is non-convex). To avoid breaking the test too often,
we re-run t-SNE from the final point when the convergence is not good
enough.
"""
seeds = range(3)
n_iter = 500
for seed in seeds:
tsne = TSNE(
n_components=2,
init="random",
random_state=seed,
perplexity=50,
n_iter=n_iter,
method=method,
learning_rate="auto",
)
Y = tsne.fit_transform(X_2d_grid)
try_name = "{}_{}".format(method, seed)
try:
assert_uniform_grid(Y, try_name)
except AssertionError:
# If the test fails a first time, re-run with init=Y to see if
# this was caused by a bad initialization. Note that this will
# also run an early_exaggeration step.
try_name += ":rerun"
tsne.init = Y
Y = tsne.fit_transform(X_2d_grid)
assert_uniform_grid(Y, try_name)
def assert_uniform_grid(Y, try_name=None):
# Ensure that the resulting embedding leads to approximately
# uniformly spaced points: the distance to the closest neighbors
# should be non-zero and approximately constant.
nn = NearestNeighbors(n_neighbors=1).fit(Y)
dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel()
assert dist_to_nn.min() > 0.1
smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn)
largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn)
assert smallest_to_mean > 0.5, try_name
assert largest_to_mean < 2, try_name
def test_bh_match_exact():
# check that the ``barnes_hut`` method match the exact one when
# ``angle = 0`` and ``perplexity > n_samples / 3``
random_state = check_random_state(0)
n_features = 10
X = random_state.randn(30, n_features).astype(np.float32)
X_embeddeds = {}
n_iter = {}
for method in ["exact", "barnes_hut"]:
tsne = TSNE(
n_components=2,
method=method,
learning_rate=1.0,
init="random",
random_state=0,
n_iter=251,
perplexity=29.5,
angle=0,
)
# Kill the early_exaggeration
tsne._EXPLORATION_N_ITER = 0
X_embeddeds[method] = tsne.fit_transform(X)
n_iter[method] = tsne.n_iter_
assert n_iter["exact"] == n_iter["barnes_hut"]
assert_allclose(X_embeddeds["exact"], X_embeddeds["barnes_hut"], rtol=1e-4)
def test_gradient_bh_multithread_match_sequential():
# check that the bh gradient with different num_threads gives the same
# results
n_features = 10
n_samples = 30
n_components = 2
degrees_of_freedom = 1
angle = 3
perplexity = 5
random_state = check_random_state(0)
data = random_state.randn(n_samples, n_features).astype(np.float32)
params = random_state.randn(n_samples, n_components)
n_neighbors = n_samples - 1
distances_csr = (
NearestNeighbors()
.fit(data)
.kneighbors_graph(n_neighbors=n_neighbors, mode="distance")
)
P_bh = _joint_probabilities_nn(distances_csr, perplexity, verbose=0)
kl_sequential, grad_sequential = _kl_divergence_bh(
params,
P_bh,
degrees_of_freedom,
n_samples,
n_components,
angle=angle,
skip_num_points=0,
verbose=0,
num_threads=1,
)
for num_threads in [2, 4]:
kl_multithread, grad_multithread = _kl_divergence_bh(
params,
P_bh,
degrees_of_freedom,
n_samples,
n_components,
angle=angle,
skip_num_points=0,
verbose=0,
num_threads=num_threads,
)
assert_allclose(kl_multithread, kl_sequential, rtol=1e-6)
assert_allclose(grad_multithread, grad_multithread)
@pytest.mark.parametrize(
"metric, dist_func",
[("manhattan", manhattan_distances), ("cosine", cosine_distances)],
)
@pytest.mark.parametrize("method", ["barnes_hut", "exact"])
def test_tsne_with_different_distance_metrics(metric, dist_func, method):
"""Make sure that TSNE works for different distance metrics"""
if method == "barnes_hut" and metric == "manhattan":
# The distances computed by `manhattan_distances` differ slightly from those
# computed internally by NearestNeighbors via the PairwiseDistancesReduction
# Cython code-based. This in turns causes T-SNE to converge to a different
# solution but this should not impact the qualitative results as both
# methods.
# NOTE: it's probably not valid from a mathematical point of view to use the
# Manhattan distance for T-SNE...
# TODO: re-enable this test if/when `manhattan_distances` is refactored to
# reuse the same underlying Cython code NearestNeighbors.
# For reference, see:
# https://github.com/scikit-learn/scikit-learn/pull/23865/files#r925721573
pytest.xfail(
"Distance computations are different for method == 'barnes_hut' and metric"
" == 'manhattan', but this is expected."
)
random_state = check_random_state(0)
n_components_original = 3
n_components_embedding = 2
X = random_state.randn(50, n_components_original).astype(np.float32)
X_transformed_tsne = TSNE(
metric=metric,
method=method,
n_components=n_components_embedding,
random_state=0,
n_iter=300,
init="random",
learning_rate="auto",
).fit_transform(X)
X_transformed_tsne_precomputed = TSNE(
metric="precomputed",
method=method,
n_components=n_components_embedding,
random_state=0,
n_iter=300,
init="random",
learning_rate="auto",
).fit_transform(dist_func(X))
assert_array_equal(X_transformed_tsne, X_transformed_tsne_precomputed)
@pytest.mark.parametrize("method", ["exact", "barnes_hut"])
def test_tsne_n_jobs(method):
"""Make sure that the n_jobs parameter doesn't impact the output"""
random_state = check_random_state(0)
n_features = 10
X = random_state.randn(30, n_features)
X_tr_ref = TSNE(
n_components=2,
method=method,
perplexity=25.0,
angle=0,
n_jobs=1,
random_state=0,
init="random",
learning_rate="auto",
).fit_transform(X)
X_tr = TSNE(
n_components=2,
method=method,
perplexity=25.0,
angle=0,
n_jobs=2,
random_state=0,
init="random",
learning_rate="auto",
).fit_transform(X)
assert_allclose(X_tr_ref, X_tr)
def test_tsne_with_mahalanobis_distance():
"""Make sure that method_parameters works with mahalanobis distance."""
random_state = check_random_state(0)
n_samples, n_features = 300, 10
X = random_state.randn(n_samples, n_features)
default_params = {
"perplexity": 40,
"n_iter": 250,
"learning_rate": "auto",
"init": "random",
"n_components": 3,
"random_state": 0,
}
tsne = TSNE(metric="mahalanobis", **default_params)
msg = "Must provide either V or VI for Mahalanobis distance"
with pytest.raises(ValueError, match=msg):
tsne.fit_transform(X)
precomputed_X = squareform(pdist(X, metric="mahalanobis"), checks=True)
X_trans_expected = TSNE(metric="precomputed", **default_params).fit_transform(
precomputed_X
)
X_trans = TSNE(
metric="mahalanobis", metric_params={"V": np.cov(X.T)}, **default_params
).fit_transform(X)
assert_allclose(X_trans, X_trans_expected)
@pytest.mark.parametrize("perplexity", (20, 30))
def test_tsne_perplexity_validation(perplexity):
"""Make sure that perplexity > n_samples results in a ValueError"""
random_state = check_random_state(0)
X = random_state.randn(20, 2)
est = TSNE(
learning_rate="auto",
init="pca",
perplexity=perplexity,
random_state=random_state,
)
msg = "perplexity must be less than n_samples"
with pytest.raises(ValueError, match=msg):
est.fit_transform(X)
def test_tsne_works_with_pandas_output():
"""Make sure that TSNE works when the output is set to "pandas".
Non-regression test for gh-25365.
"""
pytest.importorskip("pandas")
with config_context(transform_output="pandas"):
arr = np.arange(35 * 4).reshape(35, 4)
TSNE(n_components=2).fit_transform(arr)
|