File: _dispatcher.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (764 lines) | stat: -rw-r--r-- 29,726 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
from abc import abstractmethod
from typing import List

import numpy as np
from scipy.sparse import issparse

from ... import get_config
from .._dist_metrics import (
    BOOL_METRICS,
    METRIC_MAPPING64,
    DistanceMetric,
)
from ._argkmin import (
    ArgKmin32,
    ArgKmin64,
)
from ._argkmin_classmode import (
    ArgKminClassMode32,
    ArgKminClassMode64,
)
from ._base import _sqeuclidean_row_norms32, _sqeuclidean_row_norms64
from ._radius_neighbors import (
    RadiusNeighbors32,
    RadiusNeighbors64,
)
from ._radius_neighbors_classmode import (
    RadiusNeighborsClassMode32,
    RadiusNeighborsClassMode64,
)


def sqeuclidean_row_norms(X, num_threads):
    """Compute the squared euclidean norm of the rows of X in parallel.

    Parameters
    ----------
    X : ndarray or CSR matrix of shape (n_samples, n_features)
        Input data. Must be c-contiguous.

    num_threads : int
        The number of OpenMP threads to use.

    Returns
    -------
    sqeuclidean_row_norms : ndarray of shape (n_samples,)
        Arrays containing the squared euclidean norm of each row of X.
    """
    if X.dtype == np.float64:
        return np.asarray(_sqeuclidean_row_norms64(X, num_threads))
    if X.dtype == np.float32:
        return np.asarray(_sqeuclidean_row_norms32(X, num_threads))

    raise ValueError(
        "Only float64 or float32 datasets are supported at this time, "
        f"got: X.dtype={X.dtype}."
    )


class BaseDistancesReductionDispatcher:
    """Abstract base dispatcher for pairwise distance computation & reduction.

    Each dispatcher extending the base :class:`BaseDistancesReductionDispatcher`
    dispatcher must implement the :meth:`compute` classmethod.
    """

    @classmethod
    def valid_metrics(cls) -> List[str]:
        excluded = {
            # PyFunc cannot be supported because it necessitates interacting with
            # the CPython interpreter to call user defined functions.
            "pyfunc",
            "mahalanobis",  # is numerically unstable
            # In order to support discrete distance metrics, we need to have a
            # stable simultaneous sort which preserves the order of the indices
            # because there generally is a lot of occurrences for a given values
            # of distances in this case.
            # TODO: implement a stable simultaneous_sort.
            "hamming",
            *BOOL_METRICS,
        }
        return sorted(({"sqeuclidean"} | set(METRIC_MAPPING64.keys())) - excluded)

    @classmethod
    def is_usable_for(cls, X, Y, metric) -> bool:
        """Return True if the dispatcher can be used for the
        given parameters.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples_X, n_features)
            Input data.

        Y : {ndarray, sparse matrix} of shape (n_samples_Y, n_features)
            Input data.

        metric : str, default='euclidean'
            The distance metric to use.
            For a list of available metrics, see the documentation of
            :class:`~sklearn.metrics.DistanceMetric`.

        Returns
        -------
        True if the dispatcher can be used, else False.
        """

        # FIXME: the current Cython implementation is too slow for a large number of
        # features. We temporarily disable it to fallback on SciPy's implementation.
        # See: https://github.com/scikit-learn/scikit-learn/issues/28191
        if (
            issparse(X)
            and issparse(Y)
            and isinstance(metric, str)
            and "euclidean" in metric
        ):
            return False

        def is_numpy_c_ordered(X):
            return hasattr(X, "flags") and getattr(X.flags, "c_contiguous", False)

        def is_valid_sparse_matrix(X):
            return (
                issparse(X)
                and X.format == "csr"
                and
                # TODO: support CSR matrices without non-zeros elements
                X.nnz > 0
                and
                # TODO: support CSR matrices with int64 indices and indptr
                # See: https://github.com/scikit-learn/scikit-learn/issues/23653
                X.indices.dtype == X.indptr.dtype == np.int32
            )

        is_usable = (
            get_config().get("enable_cython_pairwise_dist", True)
            and (is_numpy_c_ordered(X) or is_valid_sparse_matrix(X))
            and (is_numpy_c_ordered(Y) or is_valid_sparse_matrix(Y))
            and X.dtype == Y.dtype
            and X.dtype in (np.float32, np.float64)
            and (metric in cls.valid_metrics() or isinstance(metric, DistanceMetric))
        )

        return is_usable

    @classmethod
    @abstractmethod
    def compute(
        cls,
        X,
        Y,
        **kwargs,
    ):
        """Compute the reduction.

        Parameters
        ----------
        X : ndarray or CSR matrix of shape (n_samples_X, n_features)
            Input data.

        Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
            Input data.

        **kwargs : additional parameters for the reduction

        Notes
        -----
        This method is an abstract class method: it has to be implemented
        for all subclasses.
        """


class ArgKmin(BaseDistancesReductionDispatcher):
    """Compute the argkmin of row vectors of X on the ones of Y.

    For each row vector of X, computes the indices of k first the rows
    vectors of Y with the smallest distances.

    ArgKmin is typically used to perform
    bruteforce k-nearest neighbors queries.

    This class is not meant to be instantiated, one should only use
    its :meth:`compute` classmethod which handles allocation and
    deallocation consistently.
    """

    @classmethod
    def compute(
        cls,
        X,
        Y,
        k,
        metric="euclidean",
        chunk_size=None,
        metric_kwargs=None,
        strategy=None,
        return_distance=False,
    ):
        """Compute the argkmin reduction.

        Parameters
        ----------
        X : ndarray or CSR matrix of shape (n_samples_X, n_features)
            Input data.

        Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
            Input data.

        k : int
            The k for the argkmin reduction.

        metric : str, default='euclidean'
            The distance metric to use for argkmin.
            For a list of available metrics, see the documentation of
            :class:`~sklearn.metrics.DistanceMetric`.

        chunk_size : int, default=None,
            The number of vectors per chunk. If None (default) looks-up in
            scikit-learn configuration for `pairwise_dist_chunk_size`,
            and use 256 if it is not set.

        metric_kwargs : dict, default=None
            Keyword arguments to pass to specified metric function.

        strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
            The chunking strategy defining which dataset parallelization are made on.

            For both strategies the computations happens with two nested loops,
            respectively on chunks of X and chunks of Y.
            Strategies differs on which loop (outer or inner) is made to run
            in parallel with the Cython `prange` construct:

              - 'parallel_on_X' dispatches chunks of X uniformly on threads.
                Each thread then iterates on all the chunks of Y. This strategy is
                embarrassingly parallel and comes with no datastructures
                synchronisation.

              - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
                Each thread processes all the chunks of X in turn. This strategy is
                a sequence of embarrassingly parallel subtasks (the inner loop on Y
                chunks) with intermediate datastructures synchronisation at each
                iteration of the sequential outer loop on X chunks.

              - 'auto' relies on a simple heuristic to choose between
                'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
                'parallel_on_X' is usually the most efficient strategy.
                When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
                brings more opportunity for parallelism and is therefore more efficient

              - None (default) looks-up in scikit-learn configuration for
                `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.

        return_distance : boolean, default=False
            Return distances between each X vector and its
            argkmin if set to True.

        Returns
        -------
        If return_distance=False:
          - argkmin_indices : ndarray of shape (n_samples_X, k)
            Indices of the argkmin for each vector in X.

        If return_distance=True:
          - argkmin_distances : ndarray of shape (n_samples_X, k)
            Distances to the argkmin for each vector in X.
          - argkmin_indices : ndarray of shape (n_samples_X, k)
            Indices of the argkmin for each vector in X.

        Notes
        -----
        This classmethod inspects the arguments values to dispatch to the
        dtype-specialized implementation of :class:`ArgKmin`.

        This allows decoupling the API entirely from the implementation details
        whilst maintaining RAII: all temporarily allocated datastructures necessary
        for the concrete implementation are therefore freed when this classmethod
        returns.
        """
        if X.dtype == Y.dtype == np.float64:
            return ArgKmin64.compute(
                X=X,
                Y=Y,
                k=k,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
                return_distance=return_distance,
            )

        if X.dtype == Y.dtype == np.float32:
            return ArgKmin32.compute(
                X=X,
                Y=Y,
                k=k,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
                return_distance=return_distance,
            )

        raise ValueError(
            "Only float64 or float32 datasets pairs are supported at this time, "
            f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
        )


class RadiusNeighbors(BaseDistancesReductionDispatcher):
    """Compute radius-based neighbors for two sets of vectors.

    For each row-vector X[i] of the queries X, find all the indices j of
    row-vectors in Y such that:

                        dist(X[i], Y[j]) <= radius

    The distance function `dist` depends on the values of the `metric`
    and `metric_kwargs` parameters.

    This class is not meant to be instantiated, one should only use
    its :meth:`compute` classmethod which handles allocation and
    deallocation consistently.
    """

    @classmethod
    def compute(
        cls,
        X,
        Y,
        radius,
        metric="euclidean",
        chunk_size=None,
        metric_kwargs=None,
        strategy=None,
        return_distance=False,
        sort_results=False,
    ):
        """Return the results of the reduction for the given arguments.

        Parameters
        ----------
        X : ndarray or CSR matrix of shape (n_samples_X, n_features)
            Input data.

        Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
            Input data.

        radius : float
            The radius defining the neighborhood.

        metric : str, default='euclidean'
            The distance metric to use.
            For a list of available metrics, see the documentation of
            :class:`~sklearn.metrics.DistanceMetric`.

        chunk_size : int, default=None,
            The number of vectors per chunk. If None (default) looks-up in
            scikit-learn configuration for `pairwise_dist_chunk_size`,
            and use 256 if it is not set.

        metric_kwargs : dict, default=None
            Keyword arguments to pass to specified metric function.

        strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
            The chunking strategy defining which dataset parallelization are made on.

            For both strategies the computations happens with two nested loops,
            respectively on chunks of X and chunks of Y.
            Strategies differs on which loop (outer or inner) is made to run
            in parallel with the Cython `prange` construct:

              - 'parallel_on_X' dispatches chunks of X uniformly on threads.
                Each thread then iterates on all the chunks of Y. This strategy is
                embarrassingly parallel and comes with no datastructures
                synchronisation.

              - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
                Each thread processes all the chunks of X in turn. This strategy is
                a sequence of embarrassingly parallel subtasks (the inner loop on Y
                chunks) with intermediate datastructures synchronisation at each
                iteration of the sequential outer loop on X chunks.

              - 'auto' relies on a simple heuristic to choose between
                'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
                'parallel_on_X' is usually the most efficient strategy.
                When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
                brings more opportunity for parallelism and is therefore more efficient
                despite the synchronization step at each iteration of the outer loop
                on chunks of `X`.

              - None (default) looks-up in scikit-learn configuration for
                `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.

        return_distance : boolean, default=False
            Return distances between each X vector and its neighbors if set to True.

        sort_results : boolean, default=False
            Sort results with respect to distances between each X vector and its
            neighbors if set to True.

        Returns
        -------
        If return_distance=False:
          - neighbors_indices : ndarray of n_samples_X ndarray
            Indices of the neighbors for each vector in X.

        If return_distance=True:
          - neighbors_indices : ndarray of n_samples_X ndarray
            Indices of the neighbors for each vector in X.
          - neighbors_distances : ndarray of n_samples_X ndarray
            Distances to the neighbors for each vector in X.

        Notes
        -----
        This classmethod inspects the arguments values to dispatch to the
        dtype-specialized implementation of :class:`RadiusNeighbors`.

        This allows decoupling the API entirely from the implementation details
        whilst maintaining RAII: all temporarily allocated datastructures necessary
        for the concrete implementation are therefore freed when this classmethod
        returns.
        """
        if X.dtype == Y.dtype == np.float64:
            return RadiusNeighbors64.compute(
                X=X,
                Y=Y,
                radius=radius,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
                sort_results=sort_results,
                return_distance=return_distance,
            )

        if X.dtype == Y.dtype == np.float32:
            return RadiusNeighbors32.compute(
                X=X,
                Y=Y,
                radius=radius,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
                sort_results=sort_results,
                return_distance=return_distance,
            )

        raise ValueError(
            "Only float64 or float32 datasets pairs are supported at this time, "
            f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
        )


class ArgKminClassMode(BaseDistancesReductionDispatcher):
    """Compute the argkmin of row vectors of X on the ones of Y with labels.

    For each row vector of X, computes the indices of k first the rows
    vectors of Y with the smallest distances. Computes weighted mode of labels.

    ArgKminClassMode is typically used to perform bruteforce k-nearest neighbors
    queries when the weighted mode of the labels for the k-nearest neighbors
    are required, such as in `predict` methods.

    This class is not meant to be instantiated, one should only use
    its :meth:`compute` classmethod which handles allocation and
    deallocation consistently.
    """

    @classmethod
    def valid_metrics(cls) -> List[str]:
        excluded = {
            # Euclidean is technically usable for ArgKminClassMode
            # but its current implementation would not be competitive.
            # TODO: implement Euclidean specialization using GEMM.
            "euclidean",
            "sqeuclidean",
        }
        return list(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)

    @classmethod
    def compute(
        cls,
        X,
        Y,
        k,
        weights,
        Y_labels,
        unique_Y_labels,
        metric="euclidean",
        chunk_size=None,
        metric_kwargs=None,
        strategy=None,
    ):
        """Compute the argkmin reduction.

        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            The input array to be labelled.

        Y : ndarray of shape (n_samples_Y, n_features)
            The input array whose class membership are provided through the
            `Y_labels` parameter.

        k : int
            The number of nearest neighbors to consider.

        weights : ndarray
            The weights applied over the `Y_labels` of `Y` when computing the
            weighted mode of the labels.

        Y_labels : ndarray
            An array containing the index of the class membership of the
            associated samples in `Y`. This is used in labeling `X`.

        unique_Y_labels : ndarray
            An array containing all unique indices contained in the
            corresponding `Y_labels` array.

        metric : str, default='euclidean'
            The distance metric to use. For a list of available metrics, see
            the documentation of :class:`~sklearn.metrics.DistanceMetric`.
            Currently does not support `'precomputed'`.

        chunk_size : int, default=None,
            The number of vectors per chunk. If None (default) looks-up in
            scikit-learn configuration for `pairwise_dist_chunk_size`,
            and use 256 if it is not set.

        metric_kwargs : dict, default=None
            Keyword arguments to pass to specified metric function.

        strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
            The chunking strategy defining which dataset parallelization are made on.

            For both strategies the computations happens with two nested loops,
            respectively on chunks of X and chunks of Y.
            Strategies differs on which loop (outer or inner) is made to run
            in parallel with the Cython `prange` construct:

              - 'parallel_on_X' dispatches chunks of X uniformly on threads.
                Each thread then iterates on all the chunks of Y. This strategy is
                embarrassingly parallel and comes with no datastructures
                synchronisation.

              - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
                Each thread processes all the chunks of X in turn. This strategy is
                a sequence of embarrassingly parallel subtasks (the inner loop on Y
                chunks) with intermediate datastructures synchronisation at each
                iteration of the sequential outer loop on X chunks.

              - 'auto' relies on a simple heuristic to choose between
                'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
                'parallel_on_X' is usually the most efficient strategy.
                When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
                brings more opportunity for parallelism and is therefore more efficient
                despite the synchronization step at each iteration of the outer loop
                on chunks of `X`.

              - None (default) looks-up in scikit-learn configuration for
                `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.

        Returns
        -------
        probabilities : ndarray of shape (n_samples_X, n_classes)
            An array containing the class probabilities for each sample.

        Notes
        -----
        This classmethod is responsible for introspecting the arguments
        values to dispatch to the most appropriate implementation of
        :class:`PairwiseDistancesArgKmin`.

        This allows decoupling the API entirely from the implementation details
        whilst maintaining RAII: all temporarily allocated datastructures necessary
        for the concrete implementation are therefore freed when this classmethod
        returns.
        """
        if weights not in {"uniform", "distance"}:
            raise ValueError(
                "Only the 'uniform' or 'distance' weights options are supported"
                f" at this time. Got: {weights=}."
            )
        if X.dtype == Y.dtype == np.float64:
            return ArgKminClassMode64.compute(
                X=X,
                Y=Y,
                k=k,
                weights=weights,
                Y_labels=np.array(Y_labels, dtype=np.intp),
                unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
            )

        if X.dtype == Y.dtype == np.float32:
            return ArgKminClassMode32.compute(
                X=X,
                Y=Y,
                k=k,
                weights=weights,
                Y_labels=np.array(Y_labels, dtype=np.intp),
                unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
            )

        raise ValueError(
            "Only float64 or float32 datasets pairs are supported at this time, "
            f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
        )


class RadiusNeighborsClassMode(BaseDistancesReductionDispatcher):
    """Compute radius-based class modes of row vectors of X using the
    those of Y.

    For each row-vector X[i] of the queries X, find all the indices j of
    row-vectors in Y such that:

                        dist(X[i], Y[j]) <= radius

    RadiusNeighborsClassMode is typically used to perform bruteforce
    radius neighbors queries when the weighted mode of the labels for
    the nearest neighbors within the specified radius are required,
    such as in `predict` methods.

    This class is not meant to be instantiated, one should only use
    its :meth:`compute` classmethod which handles allocation and
    deallocation consistently.
    """

    @classmethod
    def valid_metrics(cls) -> List[str]:
        excluded = {
            # Euclidean is technically usable for RadiusNeighborsClassMode
            # but it would not be competitive.
            # TODO: implement Euclidean specialization using GEMM.
            "euclidean",
            "sqeuclidean",
        }
        return sorted(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)

    @classmethod
    def compute(
        cls,
        X,
        Y,
        radius,
        weights,
        Y_labels,
        unique_Y_labels,
        outlier_label,
        metric="euclidean",
        chunk_size=None,
        metric_kwargs=None,
        strategy=None,
    ):
        """Return the results of the reduction for the given arguments.
        Parameters
        ----------
        X : ndarray of shape (n_samples_X, n_features)
            The input array to be labelled.
        Y : ndarray of shape (n_samples_Y, n_features)
            The input array whose class membership is provided through
            the `Y_labels` parameter.
        radius : float
            The radius defining the neighborhood.
        weights : ndarray
            The weights applied to the `Y_labels` when computing the
            weighted mode of the labels.
        Y_labels : ndarray
            An array containing the index of the class membership of the
            associated samples in `Y`. This is used in labeling `X`.
        unique_Y_labels : ndarray
            An array containing all unique class labels.
        outlier_label : int, default=None
            Label for outlier samples (samples with no neighbors in given
            radius). In the default case when the value is None if any
            outlier is detected, a ValueError will be raised. The outlier
            label should be selected from among the unique 'Y' labels. If
            it is specified with a different value a warning will be raised
            and all class probabilities of outliers will be assigned to be 0.
        metric : str, default='euclidean'
            The distance metric to use. For a list of available metrics, see
            the documentation of :class:`~sklearn.metrics.DistanceMetric`.
            Currently does not support `'precomputed'`.
        chunk_size : int, default=None,
            The number of vectors per chunk. If None (default) looks-up in
            scikit-learn configuration for `pairwise_dist_chunk_size`,
            and use 256 if it is not set.
        metric_kwargs : dict, default=None
            Keyword arguments to pass to specified metric function.
        strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
            The chunking strategy defining which dataset parallelization are made on.
            For both strategies the computations happens with two nested loops,
            respectively on chunks of X and chunks of Y.
            Strategies differs on which loop (outer or inner) is made to run
            in parallel with the Cython `prange` construct:
              - 'parallel_on_X' dispatches chunks of X uniformly on threads.
                Each thread then iterates on all the chunks of Y. This strategy is
                embarrassingly parallel and comes with no datastructures
                synchronisation.
              - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
                Each thread processes all the chunks of X in turn. This strategy is
                a sequence of embarrassingly parallel subtasks (the inner loop on Y
                chunks) with intermediate datastructures synchronisation at each
                iteration of the sequential outer loop on X chunks.
              - 'auto' relies on a simple heuristic to choose between
                'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
                'parallel_on_X' is usually the most efficient strategy.
                When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
                brings more opportunity for parallelism and is therefore more efficient
                despite the synchronization step at each iteration of the outer loop
                on chunks of `X`.
              - None (default) looks-up in scikit-learn configuration for
                `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
        Returns
        -------
        probabilities : ndarray of shape (n_samples_X, n_classes)
            An array containing the class probabilities for each sample.
        """
        if weights not in {"uniform", "distance"}:
            raise ValueError(
                "Only the 'uniform' or 'distance' weights options are supported"
                f" at this time. Got: {weights=}."
            )
        if X.dtype == Y.dtype == np.float64:
            return RadiusNeighborsClassMode64.compute(
                X=X,
                Y=Y,
                radius=radius,
                weights=weights,
                Y_labels=np.array(Y_labels, dtype=np.intp),
                unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
                outlier_label=outlier_label,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
            )

        if X.dtype == Y.dtype == np.float32:
            return RadiusNeighborsClassMode32.compute(
                X=X,
                Y=Y,
                radius=radius,
                weights=weights,
                Y_labels=np.array(Y_labels, dtype=np.intp),
                unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
                outlier_label=outlier_label,
                metric=metric,
                chunk_size=chunk_size,
                metric_kwargs=metric_kwargs,
                strategy=strategy,
            )

        raise ValueError(
            "Only float64 or float32 datasets pairs are supported at this time, "
            f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
        )