1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
from abc import abstractmethod
from typing import List
import numpy as np
from scipy.sparse import issparse
from ... import get_config
from .._dist_metrics import (
BOOL_METRICS,
METRIC_MAPPING64,
DistanceMetric,
)
from ._argkmin import (
ArgKmin32,
ArgKmin64,
)
from ._argkmin_classmode import (
ArgKminClassMode32,
ArgKminClassMode64,
)
from ._base import _sqeuclidean_row_norms32, _sqeuclidean_row_norms64
from ._radius_neighbors import (
RadiusNeighbors32,
RadiusNeighbors64,
)
from ._radius_neighbors_classmode import (
RadiusNeighborsClassMode32,
RadiusNeighborsClassMode64,
)
def sqeuclidean_row_norms(X, num_threads):
"""Compute the squared euclidean norm of the rows of X in parallel.
Parameters
----------
X : ndarray or CSR matrix of shape (n_samples, n_features)
Input data. Must be c-contiguous.
num_threads : int
The number of OpenMP threads to use.
Returns
-------
sqeuclidean_row_norms : ndarray of shape (n_samples,)
Arrays containing the squared euclidean norm of each row of X.
"""
if X.dtype == np.float64:
return np.asarray(_sqeuclidean_row_norms64(X, num_threads))
if X.dtype == np.float32:
return np.asarray(_sqeuclidean_row_norms32(X, num_threads))
raise ValueError(
"Only float64 or float32 datasets are supported at this time, "
f"got: X.dtype={X.dtype}."
)
class BaseDistancesReductionDispatcher:
"""Abstract base dispatcher for pairwise distance computation & reduction.
Each dispatcher extending the base :class:`BaseDistancesReductionDispatcher`
dispatcher must implement the :meth:`compute` classmethod.
"""
@classmethod
def valid_metrics(cls) -> List[str]:
excluded = {
# PyFunc cannot be supported because it necessitates interacting with
# the CPython interpreter to call user defined functions.
"pyfunc",
"mahalanobis", # is numerically unstable
# In order to support discrete distance metrics, we need to have a
# stable simultaneous sort which preserves the order of the indices
# because there generally is a lot of occurrences for a given values
# of distances in this case.
# TODO: implement a stable simultaneous_sort.
"hamming",
*BOOL_METRICS,
}
return sorted(({"sqeuclidean"} | set(METRIC_MAPPING64.keys())) - excluded)
@classmethod
def is_usable_for(cls, X, Y, metric) -> bool:
"""Return True if the dispatcher can be used for the
given parameters.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples_X, n_features)
Input data.
Y : {ndarray, sparse matrix} of shape (n_samples_Y, n_features)
Input data.
metric : str, default='euclidean'
The distance metric to use.
For a list of available metrics, see the documentation of
:class:`~sklearn.metrics.DistanceMetric`.
Returns
-------
True if the dispatcher can be used, else False.
"""
# FIXME: the current Cython implementation is too slow for a large number of
# features. We temporarily disable it to fallback on SciPy's implementation.
# See: https://github.com/scikit-learn/scikit-learn/issues/28191
if (
issparse(X)
and issparse(Y)
and isinstance(metric, str)
and "euclidean" in metric
):
return False
def is_numpy_c_ordered(X):
return hasattr(X, "flags") and getattr(X.flags, "c_contiguous", False)
def is_valid_sparse_matrix(X):
return (
issparse(X)
and X.format == "csr"
and
# TODO: support CSR matrices without non-zeros elements
X.nnz > 0
and
# TODO: support CSR matrices with int64 indices and indptr
# See: https://github.com/scikit-learn/scikit-learn/issues/23653
X.indices.dtype == X.indptr.dtype == np.int32
)
is_usable = (
get_config().get("enable_cython_pairwise_dist", True)
and (is_numpy_c_ordered(X) or is_valid_sparse_matrix(X))
and (is_numpy_c_ordered(Y) or is_valid_sparse_matrix(Y))
and X.dtype == Y.dtype
and X.dtype in (np.float32, np.float64)
and (metric in cls.valid_metrics() or isinstance(metric, DistanceMetric))
)
return is_usable
@classmethod
@abstractmethod
def compute(
cls,
X,
Y,
**kwargs,
):
"""Compute the reduction.
Parameters
----------
X : ndarray or CSR matrix of shape (n_samples_X, n_features)
Input data.
Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
Input data.
**kwargs : additional parameters for the reduction
Notes
-----
This method is an abstract class method: it has to be implemented
for all subclasses.
"""
class ArgKmin(BaseDistancesReductionDispatcher):
"""Compute the argkmin of row vectors of X on the ones of Y.
For each row vector of X, computes the indices of k first the rows
vectors of Y with the smallest distances.
ArgKmin is typically used to perform
bruteforce k-nearest neighbors queries.
This class is not meant to be instantiated, one should only use
its :meth:`compute` classmethod which handles allocation and
deallocation consistently.
"""
@classmethod
def compute(
cls,
X,
Y,
k,
metric="euclidean",
chunk_size=None,
metric_kwargs=None,
strategy=None,
return_distance=False,
):
"""Compute the argkmin reduction.
Parameters
----------
X : ndarray or CSR matrix of shape (n_samples_X, n_features)
Input data.
Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
Input data.
k : int
The k for the argkmin reduction.
metric : str, default='euclidean'
The distance metric to use for argkmin.
For a list of available metrics, see the documentation of
:class:`~sklearn.metrics.DistanceMetric`.
chunk_size : int, default=None,
The number of vectors per chunk. If None (default) looks-up in
scikit-learn configuration for `pairwise_dist_chunk_size`,
and use 256 if it is not set.
metric_kwargs : dict, default=None
Keyword arguments to pass to specified metric function.
strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
The chunking strategy defining which dataset parallelization are made on.
For both strategies the computations happens with two nested loops,
respectively on chunks of X and chunks of Y.
Strategies differs on which loop (outer or inner) is made to run
in parallel with the Cython `prange` construct:
- 'parallel_on_X' dispatches chunks of X uniformly on threads.
Each thread then iterates on all the chunks of Y. This strategy is
embarrassingly parallel and comes with no datastructures
synchronisation.
- 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
Each thread processes all the chunks of X in turn. This strategy is
a sequence of embarrassingly parallel subtasks (the inner loop on Y
chunks) with intermediate datastructures synchronisation at each
iteration of the sequential outer loop on X chunks.
- 'auto' relies on a simple heuristic to choose between
'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
'parallel_on_X' is usually the most efficient strategy.
When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
brings more opportunity for parallelism and is therefore more efficient
- None (default) looks-up in scikit-learn configuration for
`pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
return_distance : boolean, default=False
Return distances between each X vector and its
argkmin if set to True.
Returns
-------
If return_distance=False:
- argkmin_indices : ndarray of shape (n_samples_X, k)
Indices of the argkmin for each vector in X.
If return_distance=True:
- argkmin_distances : ndarray of shape (n_samples_X, k)
Distances to the argkmin for each vector in X.
- argkmin_indices : ndarray of shape (n_samples_X, k)
Indices of the argkmin for each vector in X.
Notes
-----
This classmethod inspects the arguments values to dispatch to the
dtype-specialized implementation of :class:`ArgKmin`.
This allows decoupling the API entirely from the implementation details
whilst maintaining RAII: all temporarily allocated datastructures necessary
for the concrete implementation are therefore freed when this classmethod
returns.
"""
if X.dtype == Y.dtype == np.float64:
return ArgKmin64.compute(
X=X,
Y=Y,
k=k,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
return_distance=return_distance,
)
if X.dtype == Y.dtype == np.float32:
return ArgKmin32.compute(
X=X,
Y=Y,
k=k,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
return_distance=return_distance,
)
raise ValueError(
"Only float64 or float32 datasets pairs are supported at this time, "
f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
)
class RadiusNeighbors(BaseDistancesReductionDispatcher):
"""Compute radius-based neighbors for two sets of vectors.
For each row-vector X[i] of the queries X, find all the indices j of
row-vectors in Y such that:
dist(X[i], Y[j]) <= radius
The distance function `dist` depends on the values of the `metric`
and `metric_kwargs` parameters.
This class is not meant to be instantiated, one should only use
its :meth:`compute` classmethod which handles allocation and
deallocation consistently.
"""
@classmethod
def compute(
cls,
X,
Y,
radius,
metric="euclidean",
chunk_size=None,
metric_kwargs=None,
strategy=None,
return_distance=False,
sort_results=False,
):
"""Return the results of the reduction for the given arguments.
Parameters
----------
X : ndarray or CSR matrix of shape (n_samples_X, n_features)
Input data.
Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
Input data.
radius : float
The radius defining the neighborhood.
metric : str, default='euclidean'
The distance metric to use.
For a list of available metrics, see the documentation of
:class:`~sklearn.metrics.DistanceMetric`.
chunk_size : int, default=None,
The number of vectors per chunk. If None (default) looks-up in
scikit-learn configuration for `pairwise_dist_chunk_size`,
and use 256 if it is not set.
metric_kwargs : dict, default=None
Keyword arguments to pass to specified metric function.
strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
The chunking strategy defining which dataset parallelization are made on.
For both strategies the computations happens with two nested loops,
respectively on chunks of X and chunks of Y.
Strategies differs on which loop (outer or inner) is made to run
in parallel with the Cython `prange` construct:
- 'parallel_on_X' dispatches chunks of X uniformly on threads.
Each thread then iterates on all the chunks of Y. This strategy is
embarrassingly parallel and comes with no datastructures
synchronisation.
- 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
Each thread processes all the chunks of X in turn. This strategy is
a sequence of embarrassingly parallel subtasks (the inner loop on Y
chunks) with intermediate datastructures synchronisation at each
iteration of the sequential outer loop on X chunks.
- 'auto' relies on a simple heuristic to choose between
'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
'parallel_on_X' is usually the most efficient strategy.
When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
brings more opportunity for parallelism and is therefore more efficient
despite the synchronization step at each iteration of the outer loop
on chunks of `X`.
- None (default) looks-up in scikit-learn configuration for
`pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
return_distance : boolean, default=False
Return distances between each X vector and its neighbors if set to True.
sort_results : boolean, default=False
Sort results with respect to distances between each X vector and its
neighbors if set to True.
Returns
-------
If return_distance=False:
- neighbors_indices : ndarray of n_samples_X ndarray
Indices of the neighbors for each vector in X.
If return_distance=True:
- neighbors_indices : ndarray of n_samples_X ndarray
Indices of the neighbors for each vector in X.
- neighbors_distances : ndarray of n_samples_X ndarray
Distances to the neighbors for each vector in X.
Notes
-----
This classmethod inspects the arguments values to dispatch to the
dtype-specialized implementation of :class:`RadiusNeighbors`.
This allows decoupling the API entirely from the implementation details
whilst maintaining RAII: all temporarily allocated datastructures necessary
for the concrete implementation are therefore freed when this classmethod
returns.
"""
if X.dtype == Y.dtype == np.float64:
return RadiusNeighbors64.compute(
X=X,
Y=Y,
radius=radius,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
sort_results=sort_results,
return_distance=return_distance,
)
if X.dtype == Y.dtype == np.float32:
return RadiusNeighbors32.compute(
X=X,
Y=Y,
radius=radius,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
sort_results=sort_results,
return_distance=return_distance,
)
raise ValueError(
"Only float64 or float32 datasets pairs are supported at this time, "
f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
)
class ArgKminClassMode(BaseDistancesReductionDispatcher):
"""Compute the argkmin of row vectors of X on the ones of Y with labels.
For each row vector of X, computes the indices of k first the rows
vectors of Y with the smallest distances. Computes weighted mode of labels.
ArgKminClassMode is typically used to perform bruteforce k-nearest neighbors
queries when the weighted mode of the labels for the k-nearest neighbors
are required, such as in `predict` methods.
This class is not meant to be instantiated, one should only use
its :meth:`compute` classmethod which handles allocation and
deallocation consistently.
"""
@classmethod
def valid_metrics(cls) -> List[str]:
excluded = {
# Euclidean is technically usable for ArgKminClassMode
# but its current implementation would not be competitive.
# TODO: implement Euclidean specialization using GEMM.
"euclidean",
"sqeuclidean",
}
return list(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)
@classmethod
def compute(
cls,
X,
Y,
k,
weights,
Y_labels,
unique_Y_labels,
metric="euclidean",
chunk_size=None,
metric_kwargs=None,
strategy=None,
):
"""Compute the argkmin reduction.
Parameters
----------
X : ndarray of shape (n_samples_X, n_features)
The input array to be labelled.
Y : ndarray of shape (n_samples_Y, n_features)
The input array whose class membership are provided through the
`Y_labels` parameter.
k : int
The number of nearest neighbors to consider.
weights : ndarray
The weights applied over the `Y_labels` of `Y` when computing the
weighted mode of the labels.
Y_labels : ndarray
An array containing the index of the class membership of the
associated samples in `Y`. This is used in labeling `X`.
unique_Y_labels : ndarray
An array containing all unique indices contained in the
corresponding `Y_labels` array.
metric : str, default='euclidean'
The distance metric to use. For a list of available metrics, see
the documentation of :class:`~sklearn.metrics.DistanceMetric`.
Currently does not support `'precomputed'`.
chunk_size : int, default=None,
The number of vectors per chunk. If None (default) looks-up in
scikit-learn configuration for `pairwise_dist_chunk_size`,
and use 256 if it is not set.
metric_kwargs : dict, default=None
Keyword arguments to pass to specified metric function.
strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
The chunking strategy defining which dataset parallelization are made on.
For both strategies the computations happens with two nested loops,
respectively on chunks of X and chunks of Y.
Strategies differs on which loop (outer or inner) is made to run
in parallel with the Cython `prange` construct:
- 'parallel_on_X' dispatches chunks of X uniformly on threads.
Each thread then iterates on all the chunks of Y. This strategy is
embarrassingly parallel and comes with no datastructures
synchronisation.
- 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
Each thread processes all the chunks of X in turn. This strategy is
a sequence of embarrassingly parallel subtasks (the inner loop on Y
chunks) with intermediate datastructures synchronisation at each
iteration of the sequential outer loop on X chunks.
- 'auto' relies on a simple heuristic to choose between
'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
'parallel_on_X' is usually the most efficient strategy.
When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
brings more opportunity for parallelism and is therefore more efficient
despite the synchronization step at each iteration of the outer loop
on chunks of `X`.
- None (default) looks-up in scikit-learn configuration for
`pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
Returns
-------
probabilities : ndarray of shape (n_samples_X, n_classes)
An array containing the class probabilities for each sample.
Notes
-----
This classmethod is responsible for introspecting the arguments
values to dispatch to the most appropriate implementation of
:class:`PairwiseDistancesArgKmin`.
This allows decoupling the API entirely from the implementation details
whilst maintaining RAII: all temporarily allocated datastructures necessary
for the concrete implementation are therefore freed when this classmethod
returns.
"""
if weights not in {"uniform", "distance"}:
raise ValueError(
"Only the 'uniform' or 'distance' weights options are supported"
f" at this time. Got: {weights=}."
)
if X.dtype == Y.dtype == np.float64:
return ArgKminClassMode64.compute(
X=X,
Y=Y,
k=k,
weights=weights,
Y_labels=np.array(Y_labels, dtype=np.intp),
unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
)
if X.dtype == Y.dtype == np.float32:
return ArgKminClassMode32.compute(
X=X,
Y=Y,
k=k,
weights=weights,
Y_labels=np.array(Y_labels, dtype=np.intp),
unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
)
raise ValueError(
"Only float64 or float32 datasets pairs are supported at this time, "
f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
)
class RadiusNeighborsClassMode(BaseDistancesReductionDispatcher):
"""Compute radius-based class modes of row vectors of X using the
those of Y.
For each row-vector X[i] of the queries X, find all the indices j of
row-vectors in Y such that:
dist(X[i], Y[j]) <= radius
RadiusNeighborsClassMode is typically used to perform bruteforce
radius neighbors queries when the weighted mode of the labels for
the nearest neighbors within the specified radius are required,
such as in `predict` methods.
This class is not meant to be instantiated, one should only use
its :meth:`compute` classmethod which handles allocation and
deallocation consistently.
"""
@classmethod
def valid_metrics(cls) -> List[str]:
excluded = {
# Euclidean is technically usable for RadiusNeighborsClassMode
# but it would not be competitive.
# TODO: implement Euclidean specialization using GEMM.
"euclidean",
"sqeuclidean",
}
return sorted(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)
@classmethod
def compute(
cls,
X,
Y,
radius,
weights,
Y_labels,
unique_Y_labels,
outlier_label,
metric="euclidean",
chunk_size=None,
metric_kwargs=None,
strategy=None,
):
"""Return the results of the reduction for the given arguments.
Parameters
----------
X : ndarray of shape (n_samples_X, n_features)
The input array to be labelled.
Y : ndarray of shape (n_samples_Y, n_features)
The input array whose class membership is provided through
the `Y_labels` parameter.
radius : float
The radius defining the neighborhood.
weights : ndarray
The weights applied to the `Y_labels` when computing the
weighted mode of the labels.
Y_labels : ndarray
An array containing the index of the class membership of the
associated samples in `Y`. This is used in labeling `X`.
unique_Y_labels : ndarray
An array containing all unique class labels.
outlier_label : int, default=None
Label for outlier samples (samples with no neighbors in given
radius). In the default case when the value is None if any
outlier is detected, a ValueError will be raised. The outlier
label should be selected from among the unique 'Y' labels. If
it is specified with a different value a warning will be raised
and all class probabilities of outliers will be assigned to be 0.
metric : str, default='euclidean'
The distance metric to use. For a list of available metrics, see
the documentation of :class:`~sklearn.metrics.DistanceMetric`.
Currently does not support `'precomputed'`.
chunk_size : int, default=None,
The number of vectors per chunk. If None (default) looks-up in
scikit-learn configuration for `pairwise_dist_chunk_size`,
and use 256 if it is not set.
metric_kwargs : dict, default=None
Keyword arguments to pass to specified metric function.
strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
The chunking strategy defining which dataset parallelization are made on.
For both strategies the computations happens with two nested loops,
respectively on chunks of X and chunks of Y.
Strategies differs on which loop (outer or inner) is made to run
in parallel with the Cython `prange` construct:
- 'parallel_on_X' dispatches chunks of X uniformly on threads.
Each thread then iterates on all the chunks of Y. This strategy is
embarrassingly parallel and comes with no datastructures
synchronisation.
- 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
Each thread processes all the chunks of X in turn. This strategy is
a sequence of embarrassingly parallel subtasks (the inner loop on Y
chunks) with intermediate datastructures synchronisation at each
iteration of the sequential outer loop on X chunks.
- 'auto' relies on a simple heuristic to choose between
'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
'parallel_on_X' is usually the most efficient strategy.
When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
brings more opportunity for parallelism and is therefore more efficient
despite the synchronization step at each iteration of the outer loop
on chunks of `X`.
- None (default) looks-up in scikit-learn configuration for
`pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
Returns
-------
probabilities : ndarray of shape (n_samples_X, n_classes)
An array containing the class probabilities for each sample.
"""
if weights not in {"uniform", "distance"}:
raise ValueError(
"Only the 'uniform' or 'distance' weights options are supported"
f" at this time. Got: {weights=}."
)
if X.dtype == Y.dtype == np.float64:
return RadiusNeighborsClassMode64.compute(
X=X,
Y=Y,
radius=radius,
weights=weights,
Y_labels=np.array(Y_labels, dtype=np.intp),
unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
outlier_label=outlier_label,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
)
if X.dtype == Y.dtype == np.float32:
return RadiusNeighborsClassMode32.compute(
X=X,
Y=Y,
radius=radius,
weights=weights,
Y_labels=np.array(Y_labels, dtype=np.intp),
unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
outlier_label=outlier_label,
metric=metric,
chunk_size=chunk_size,
metric_kwargs=metric_kwargs,
strategy=strategy,
)
raise ValueError(
"Only float64 or float32 datasets pairs are supported at this time, "
f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
)
|