1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
from ...utils._plotting import _BinaryClassifierCurveDisplayMixin
from .._ranking import auc, roc_curve
class RocCurveDisplay(_BinaryClassifierCurveDisplayMixin):
"""ROC Curve visualization.
It is recommend to use
:func:`~sklearn.metrics.RocCurveDisplay.from_estimator` or
:func:`~sklearn.metrics.RocCurveDisplay.from_predictions` to create
a :class:`~sklearn.metrics.RocCurveDisplay`. All parameters are
stored as attributes.
Read more in the :ref:`User Guide <visualizations>`.
Parameters
----------
fpr : ndarray
False positive rate.
tpr : ndarray
True positive rate.
roc_auc : float, default=None
Area under ROC curve. If None, the roc_auc score is not shown.
estimator_name : str, default=None
Name of estimator. If None, the estimator name is not shown.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing the roc auc
metrics. By default, `estimators.classes_[1]` is considered
as the positive class.
.. versionadded:: 0.24
Attributes
----------
line_ : matplotlib Artist
ROC Curve.
chance_level_ : matplotlib Artist or None
The chance level line. It is `None` if the chance level is not plotted.
.. versionadded:: 1.3
ax_ : matplotlib Axes
Axes with ROC Curve.
figure_ : matplotlib Figure
Figure containing the curve.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
(ROC) curve given an estimator and some data.
RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
(ROC) curve given the true and predicted values.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([0, 0, 1, 1])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
>>> roc_auc = metrics.auc(fpr, tpr)
>>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,
... estimator_name='example estimator')
>>> display.plot()
<...>
>>> plt.show()
"""
def __init__(self, *, fpr, tpr, roc_auc=None, estimator_name=None, pos_label=None):
self.estimator_name = estimator_name
self.fpr = fpr
self.tpr = tpr
self.roc_auc = roc_auc
self.pos_label = pos_label
def plot(
self,
ax=None,
*,
name=None,
plot_chance_level=False,
chance_level_kw=None,
**kwargs,
):
"""Plot visualization.
Extra keyword arguments will be passed to matplotlib's ``plot``.
Parameters
----------
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str, default=None
Name of ROC Curve for labeling. If `None`, use `estimator_name` if
not `None`, otherwise no labeling is shown.
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
**kwargs : dict
Keyword arguments to be passed to matplotlib's `plot`.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
Object that stores computed values.
"""
self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)
line_kwargs = {}
if self.roc_auc is not None and name is not None:
line_kwargs["label"] = f"{name} (AUC = {self.roc_auc:0.2f})"
elif self.roc_auc is not None:
line_kwargs["label"] = f"AUC = {self.roc_auc:0.2f}"
elif name is not None:
line_kwargs["label"] = name
line_kwargs.update(**kwargs)
chance_level_line_kw = {
"label": "Chance level (AUC = 0.5)",
"color": "k",
"linestyle": "--",
}
if chance_level_kw is not None:
chance_level_line_kw.update(**chance_level_kw)
(self.line_,) = self.ax_.plot(self.fpr, self.tpr, **line_kwargs)
info_pos_label = (
f" (Positive label: {self.pos_label})" if self.pos_label is not None else ""
)
xlabel = "False Positive Rate" + info_pos_label
ylabel = "True Positive Rate" + info_pos_label
self.ax_.set(
xlabel=xlabel,
xlim=(-0.01, 1.01),
ylabel=ylabel,
ylim=(-0.01, 1.01),
aspect="equal",
)
if plot_chance_level:
(self.chance_level_,) = self.ax_.plot(
(0, 1), (0, 1), **chance_level_line_kw
)
else:
self.chance_level_ = None
if "label" in line_kwargs or "label" in chance_level_line_kw:
self.ax_.legend(loc="lower right")
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
sample_weight=None,
drop_intermediate=True,
response_method="auto",
pos_label=None,
name=None,
ax=None,
plot_chance_level=False,
chance_level_kw=None,
**kwargs,
):
"""Create a ROC Curve display from an estimator.
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : bool, default=True
Whether to drop some suboptimal thresholds which would not appear
on a plotted ROC curve. This is useful in order to create lighter
ROC curves.
response_method : {'predict_proba', 'decision_function', 'auto'} \
default='auto'
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing the roc auc
metrics. By default, `estimators.classes_[1]` is considered
as the positive class.
name : str, default=None
Name of ROC Curve for labeling. If `None`, use the name of the
estimator.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is created.
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
**kwargs : dict
Keyword arguments to be passed to matplotlib's `plot`.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
The ROC Curve display.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_predictions : ROC Curve visualization given the
probabilities of scores of a classifier.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import RocCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> RocCurveDisplay.from_estimator(
... clf, X_test, y_test)
<...>
>>> plt.show()
"""
y_pred, pos_label, name = cls._validate_and_get_response_values(
estimator,
X,
y,
response_method=response_method,
pos_label=pos_label,
name=name,
)
return cls.from_predictions(
y_true=y,
y_pred=y_pred,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
name=name,
ax=ax,
pos_label=pos_label,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
**kwargs,
)
@classmethod
def from_predictions(
cls,
y_true,
y_pred,
*,
sample_weight=None,
drop_intermediate=True,
pos_label=None,
name=None,
ax=None,
plot_chance_level=False,
chance_level_kw=None,
**kwargs,
):
"""Plot ROC curve given the true and predicted values.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_pred : array-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : bool, default=True
Whether to drop some suboptimal thresholds which would not appear
on a plotted ROC curve. This is useful in order to create lighter
ROC curves.
pos_label : int, float, bool or str, default=None
The label of the positive class. When `pos_label=None`, if `y_true`
is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
error will be raised.
name : str, default=None
Name of ROC curve for labeling. If `None`, name will be set to
`"Classifier"`.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
plot_chance_level : bool, default=False
Whether to plot the chance level.
.. versionadded:: 1.3
chance_level_kw : dict, default=None
Keyword arguments to be passed to matplotlib's `plot` for rendering
the chance level line.
.. versionadded:: 1.3
**kwargs : dict
Additional keywords arguments passed to matplotlib `plot` function.
Returns
-------
display : :class:`~sklearn.metrics.RocCurveDisplay`
Object that stores computed values.
See Also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator : ROC Curve visualization given an
estimator and some data.
roc_auc_score : Compute the area under the ROC curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import RocCurveDisplay
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0).fit(X_train, y_train)
>>> y_pred = clf.decision_function(X_test)
>>> RocCurveDisplay.from_predictions(
... y_test, y_pred)
<...>
>>> plt.show()
"""
pos_label_validated, name = cls._validate_from_predictions_params(
y_true, y_pred, sample_weight=sample_weight, pos_label=pos_label, name=name
)
fpr, tpr, _ = roc_curve(
y_true,
y_pred,
pos_label=pos_label,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
)
roc_auc = auc(fpr, tpr)
viz = cls(
fpr=fpr,
tpr=tpr,
roc_auc=roc_auc,
estimator_name=name,
pos_label=pos_label_validated,
)
return viz.plot(
ax=ax,
name=name,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
**kwargs,
)
|