1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
import numpy as np
import pytest
from numpy.testing import assert_allclose
from sklearn.compose import make_column_transformer
from sklearn.datasets import load_breast_cancer, load_iris
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import RocCurveDisplay, auc, roc_curve
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
from sklearn.utils.fixes import trapezoid
@pytest.fixture(scope="module")
def data():
return load_iris(return_X_y=True)
@pytest.fixture(scope="module")
def data_binary(data):
X, y = data
return X[y < 2], y[y < 2]
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@pytest.mark.parametrize("drop_intermediate", [True, False])
@pytest.mark.parametrize("with_strings", [True, False])
@pytest.mark.parametrize(
"constructor_name, default_name",
[
("from_estimator", "LogisticRegression"),
("from_predictions", "Classifier"),
],
)
def test_roc_curve_display_plotting(
pyplot,
response_method,
data_binary,
with_sample_weight,
drop_intermediate,
with_strings,
constructor_name,
default_name,
):
"""Check the overall plotting behaviour."""
X, y = data_binary
pos_label = None
if with_strings:
y = np.array(["c", "b"])[y]
pos_label = "c"
if with_sample_weight:
rng = np.random.RandomState(42)
sample_weight = rng.randint(1, 4, size=(X.shape[0]))
else:
sample_weight = None
lr = LogisticRegression()
lr.fit(X, y)
y_pred = getattr(lr, response_method)(X)
y_pred = y_pred if y_pred.ndim == 1 else y_pred[:, 1]
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
lr,
X,
y,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
alpha=0.8,
)
else:
display = RocCurveDisplay.from_predictions(
y,
y_pred,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
alpha=0.8,
)
fpr, tpr, _ = roc_curve(
y,
y_pred,
sample_weight=sample_weight,
drop_intermediate=drop_intermediate,
pos_label=pos_label,
)
assert_allclose(display.roc_auc, auc(fpr, tpr))
assert_allclose(display.fpr, fpr)
assert_allclose(display.tpr, tpr)
assert display.estimator_name == default_name
import matplotlib as mpl # noqal
assert isinstance(display.line_, mpl.lines.Line2D)
assert display.line_.get_alpha() == 0.8
assert isinstance(display.ax_, mpl.axes.Axes)
assert isinstance(display.figure_, mpl.figure.Figure)
assert display.ax_.get_adjustable() == "box"
assert display.ax_.get_aspect() in ("equal", 1.0)
assert display.ax_.get_xlim() == display.ax_.get_ylim() == (-0.01, 1.01)
expected_label = f"{default_name} (AUC = {display.roc_auc:.2f})"
assert display.line_.get_label() == expected_label
expected_pos_label = 1 if pos_label is None else pos_label
expected_ylabel = f"True Positive Rate (Positive label: {expected_pos_label})"
expected_xlabel = f"False Positive Rate (Positive label: {expected_pos_label})"
assert display.ax_.get_ylabel() == expected_ylabel
assert display.ax_.get_xlabel() == expected_xlabel
@pytest.mark.parametrize("plot_chance_level", [True, False])
@pytest.mark.parametrize(
"chance_level_kw",
[None, {"linewidth": 1, "color": "red", "label": "DummyEstimator"}],
)
@pytest.mark.parametrize(
"constructor_name",
["from_estimator", "from_predictions"],
)
def test_roc_curve_chance_level_line(
pyplot,
data_binary,
plot_chance_level,
chance_level_kw,
constructor_name,
):
"""Check the chance level line plotting behaviour."""
X, y = data_binary
lr = LogisticRegression()
lr.fit(X, y)
y_pred = getattr(lr, "predict_proba")(X)
y_pred = y_pred if y_pred.ndim == 1 else y_pred[:, 1]
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
lr,
X,
y,
alpha=0.8,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
)
else:
display = RocCurveDisplay.from_predictions(
y,
y_pred,
alpha=0.8,
plot_chance_level=plot_chance_level,
chance_level_kw=chance_level_kw,
)
import matplotlib as mpl # noqa
assert isinstance(display.line_, mpl.lines.Line2D)
assert display.line_.get_alpha() == 0.8
assert isinstance(display.ax_, mpl.axes.Axes)
assert isinstance(display.figure_, mpl.figure.Figure)
if plot_chance_level:
assert isinstance(display.chance_level_, mpl.lines.Line2D)
assert tuple(display.chance_level_.get_xdata()) == (0, 1)
assert tuple(display.chance_level_.get_ydata()) == (0, 1)
else:
assert display.chance_level_ is None
# Checking for chance level line styles
if plot_chance_level and chance_level_kw is None:
assert display.chance_level_.get_color() == "k"
assert display.chance_level_.get_linestyle() == "--"
assert display.chance_level_.get_label() == "Chance level (AUC = 0.5)"
elif plot_chance_level:
assert display.chance_level_.get_label() == chance_level_kw["label"]
assert display.chance_level_.get_color() == chance_level_kw["color"]
assert display.chance_level_.get_linewidth() == chance_level_kw["linewidth"]
@pytest.mark.parametrize(
"clf",
[
LogisticRegression(),
make_pipeline(StandardScaler(), LogisticRegression()),
make_pipeline(
make_column_transformer((StandardScaler(), [0, 1])), LogisticRegression()
),
],
)
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_roc_curve_display_complex_pipeline(pyplot, data_binary, clf, constructor_name):
"""Check the behaviour with complex pipeline."""
X, y = data_binary
if constructor_name == "from_estimator":
with pytest.raises(NotFittedError):
RocCurveDisplay.from_estimator(clf, X, y)
clf.fit(X, y)
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(clf, X, y)
name = clf.__class__.__name__
else:
display = RocCurveDisplay.from_predictions(y, y)
name = "Classifier"
assert name in display.line_.get_label()
assert display.estimator_name == name
@pytest.mark.parametrize(
"roc_auc, estimator_name, expected_label",
[
(0.9, None, "AUC = 0.90"),
(None, "my_est", "my_est"),
(0.8, "my_est2", "my_est2 (AUC = 0.80)"),
],
)
def test_roc_curve_display_default_labels(
pyplot, roc_auc, estimator_name, expected_label
):
"""Check the default labels used in the display."""
fpr = np.array([0, 0.5, 1])
tpr = np.array([0, 0.5, 1])
disp = RocCurveDisplay(
fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=estimator_name
).plot()
assert disp.line_.get_label() == expected_label
@pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_plot_roc_curve_pos_label(pyplot, response_method, constructor_name):
# check that we can provide the positive label and display the proper
# statistics
X, y = load_breast_cancer(return_X_y=True)
# create an highly imbalanced
idx_positive = np.flatnonzero(y == 1)
idx_negative = np.flatnonzero(y == 0)
idx_selected = np.hstack([idx_negative, idx_positive[:25]])
X, y = X[idx_selected], y[idx_selected]
X, y = shuffle(X, y, random_state=42)
# only use 2 features to make the problem even harder
X = X[:, :2]
y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
stratify=y,
random_state=0,
)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
# sanity check to be sure the positive class is classes_[0] and that we
# are betrayed by the class imbalance
assert classifier.classes_.tolist() == ["cancer", "not cancer"]
y_pred = getattr(classifier, response_method)(X_test)
# we select the corresponding probability columns or reverse the decision
# function otherwise
y_pred_cancer = -1 * y_pred if y_pred.ndim == 1 else y_pred[:, 0]
y_pred_not_cancer = y_pred if y_pred.ndim == 1 else y_pred[:, 1]
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
classifier,
X_test,
y_test,
pos_label="cancer",
response_method=response_method,
)
else:
display = RocCurveDisplay.from_predictions(
y_test,
y_pred_cancer,
pos_label="cancer",
)
roc_auc_limit = 0.95679
assert display.roc_auc == pytest.approx(roc_auc_limit)
assert trapezoid(display.tpr, display.fpr) == pytest.approx(roc_auc_limit)
if constructor_name == "from_estimator":
display = RocCurveDisplay.from_estimator(
classifier,
X_test,
y_test,
response_method=response_method,
pos_label="not cancer",
)
else:
display = RocCurveDisplay.from_predictions(
y_test,
y_pred_not_cancer,
pos_label="not cancer",
)
assert display.roc_auc == pytest.approx(roc_auc_limit)
assert trapezoid(display.tpr, display.fpr) == pytest.approx(roc_auc_limit)
|