1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
import warnings
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.sparse import issparse
from sklearn import datasets
from sklearn.metrics import pairwise_distances
from sklearn.metrics.cluster import (
calinski_harabasz_score,
davies_bouldin_score,
silhouette_samples,
silhouette_score,
)
from sklearn.metrics.cluster._unsupervised import _silhouette_reduce
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import (
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
LIL_CONTAINERS,
)
@pytest.mark.parametrize(
"sparse_container",
[None] + CSR_CONTAINERS + CSC_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
@pytest.mark.parametrize("sample_size", [None, "half"])
def test_silhouette(sparse_container, sample_size):
# Tests the Silhouette Coefficient.
dataset = datasets.load_iris()
X, y = dataset.data, dataset.target
if sparse_container is not None:
X = sparse_container(X)
sample_size = int(X.shape[0] / 2) if sample_size == "half" else sample_size
D = pairwise_distances(X, metric="euclidean")
# Given that the actual labels are used, we can assume that S would be positive.
score_precomputed = silhouette_score(
D, y, metric="precomputed", sample_size=sample_size, random_state=0
)
score_euclidean = silhouette_score(
X, y, metric="euclidean", sample_size=sample_size, random_state=0
)
assert score_precomputed > 0
assert score_euclidean > 0
assert score_precomputed == pytest.approx(score_euclidean)
def test_cluster_size_1():
# Assert Silhouette Coefficient == 0 when there is 1 sample in a cluster
# (cluster 0). We also test the case where there are identical samples
# as the only members of a cluster (cluster 2). To our knowledge, this case
# is not discussed in reference material, and we choose for it a sample
# score of 1.
X = [[0.0], [1.0], [1.0], [2.0], [3.0], [3.0]]
labels = np.array([0, 1, 1, 1, 2, 2])
# Cluster 0: 1 sample -> score of 0 by Rousseeuw's convention
# Cluster 1: intra-cluster = [.5, .5, 1]
# inter-cluster = [1, 1, 1]
# silhouette = [.5, .5, 0]
# Cluster 2: intra-cluster = [0, 0]
# inter-cluster = [arbitrary, arbitrary]
# silhouette = [1., 1.]
silhouette = silhouette_score(X, labels)
assert not np.isnan(silhouette)
ss = silhouette_samples(X, labels)
assert_array_equal(ss, [0, 0.5, 0.5, 0, 1, 1])
def test_silhouette_paper_example():
# Explicitly check per-sample results against Rousseeuw (1987)
# Data from Table 1
lower = [
5.58,
7.00,
6.50,
7.08,
7.00,
3.83,
4.83,
5.08,
8.17,
5.83,
2.17,
5.75,
6.67,
6.92,
4.92,
6.42,
5.00,
5.58,
6.00,
4.67,
6.42,
3.42,
5.50,
6.42,
6.42,
5.00,
3.92,
6.17,
2.50,
4.92,
6.25,
7.33,
4.50,
2.25,
6.33,
2.75,
6.08,
6.67,
4.25,
2.67,
6.00,
6.17,
6.17,
6.92,
6.17,
5.25,
6.83,
4.50,
3.75,
5.75,
5.42,
6.08,
5.83,
6.67,
3.67,
4.75,
3.00,
6.08,
6.67,
5.00,
5.58,
4.83,
6.17,
5.67,
6.50,
6.92,
]
D = np.zeros((12, 12))
D[np.tril_indices(12, -1)] = lower
D += D.T
names = [
"BEL",
"BRA",
"CHI",
"CUB",
"EGY",
"FRA",
"IND",
"ISR",
"USA",
"USS",
"YUG",
"ZAI",
]
# Data from Figure 2
labels1 = [1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
expected1 = {
"USA": 0.43,
"BEL": 0.39,
"FRA": 0.35,
"ISR": 0.30,
"BRA": 0.22,
"EGY": 0.20,
"ZAI": 0.19,
"CUB": 0.40,
"USS": 0.34,
"CHI": 0.33,
"YUG": 0.26,
"IND": -0.04,
}
score1 = 0.28
# Data from Figure 3
labels2 = [1, 2, 3, 3, 1, 1, 2, 1, 1, 3, 3, 2]
expected2 = {
"USA": 0.47,
"FRA": 0.44,
"BEL": 0.42,
"ISR": 0.37,
"EGY": 0.02,
"ZAI": 0.28,
"BRA": 0.25,
"IND": 0.17,
"CUB": 0.48,
"USS": 0.44,
"YUG": 0.31,
"CHI": 0.31,
}
score2 = 0.33
for labels, expected, score in [
(labels1, expected1, score1),
(labels2, expected2, score2),
]:
expected = [expected[name] for name in names]
# we check to 2dp because that's what's in the paper
pytest.approx(
expected,
silhouette_samples(D, np.array(labels), metric="precomputed"),
abs=1e-2,
)
pytest.approx(
score, silhouette_score(D, np.array(labels), metric="precomputed"), abs=1e-2
)
def test_correct_labelsize():
# Assert 1 < n_labels < n_samples
dataset = datasets.load_iris()
X = dataset.data
# n_labels = n_samples
y = np.arange(X.shape[0])
err_msg = (
r"Number of labels is %d\. Valid values are 2 "
r"to n_samples - 1 \(inclusive\)" % len(np.unique(y))
)
with pytest.raises(ValueError, match=err_msg):
silhouette_score(X, y)
# n_labels = 1
y = np.zeros(X.shape[0])
err_msg = (
r"Number of labels is %d\. Valid values are 2 "
r"to n_samples - 1 \(inclusive\)" % len(np.unique(y))
)
with pytest.raises(ValueError, match=err_msg):
silhouette_score(X, y)
def test_non_encoded_labels():
dataset = datasets.load_iris()
X = dataset.data
labels = dataset.target
assert silhouette_score(X, labels * 2 + 10) == silhouette_score(X, labels)
assert_array_equal(
silhouette_samples(X, labels * 2 + 10), silhouette_samples(X, labels)
)
def test_non_numpy_labels():
dataset = datasets.load_iris()
X = dataset.data
y = dataset.target
assert silhouette_score(list(X), list(y)) == silhouette_score(X, y)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_silhouette_nonzero_diag(dtype):
# Make sure silhouette_samples requires diagonal to be zero.
# Non-regression test for #12178
# Construct a zero-diagonal matrix
dists = pairwise_distances(
np.array([[0.2, 0.1, 0.12, 1.34, 1.11, 1.6]], dtype=dtype).T
)
labels = [0, 0, 0, 1, 1, 1]
# small values on the diagonal are OK
dists[2][2] = np.finfo(dists.dtype).eps * 10
silhouette_samples(dists, labels, metric="precomputed")
# values bigger than eps * 100 are not
dists[2][2] = np.finfo(dists.dtype).eps * 1000
with pytest.raises(ValueError, match="contains non-zero"):
silhouette_samples(dists, labels, metric="precomputed")
@pytest.mark.parametrize(
"sparse_container",
CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
def test_silhouette_samples_precomputed_sparse(sparse_container):
"""Check that silhouette_samples works for sparse matrices correctly."""
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
y = [0, 0, 0, 0, 1, 1, 1, 1]
pdist_dense = pairwise_distances(X)
pdist_sparse = sparse_container(pdist_dense)
assert issparse(pdist_sparse)
output_with_sparse_input = silhouette_samples(pdist_sparse, y, metric="precomputed")
output_with_dense_input = silhouette_samples(pdist_dense, y, metric="precomputed")
assert_allclose(output_with_sparse_input, output_with_dense_input)
@pytest.mark.parametrize(
"sparse_container",
CSC_CONTAINERS + CSR_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
def test_silhouette_samples_euclidean_sparse(sparse_container):
"""Check that silhouette_samples works for sparse matrices correctly."""
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
y = [0, 0, 0, 0, 1, 1, 1, 1]
pdist_dense = pairwise_distances(X)
pdist_sparse = sparse_container(pdist_dense)
assert issparse(pdist_sparse)
output_with_sparse_input = silhouette_samples(pdist_sparse, y)
output_with_dense_input = silhouette_samples(pdist_dense, y)
assert_allclose(output_with_sparse_input, output_with_dense_input)
@pytest.mark.parametrize(
"sparse_container", CSC_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS
)
def test_silhouette_reduce(sparse_container):
"""Check for non-CSR input to private method `_silhouette_reduce`."""
X = np.array([[0.2, 0.1, 0.1, 0.2, 0.1, 1.6, 0.2, 0.1]], dtype=np.float32).T
pdist_dense = pairwise_distances(X)
pdist_sparse = sparse_container(pdist_dense)
y = [0, 0, 0, 0, 1, 1, 1, 1]
label_freqs = np.bincount(y)
with pytest.raises(
TypeError,
match="Expected CSR matrix. Please pass sparse matrix in CSR format.",
):
_silhouette_reduce(pdist_sparse, start=0, labels=y, label_freqs=label_freqs)
def assert_raises_on_only_one_label(func):
"""Assert message when there is only one label"""
rng = np.random.RandomState(seed=0)
with pytest.raises(ValueError, match="Number of labels is"):
func(rng.rand(10, 2), np.zeros(10))
def assert_raises_on_all_points_same_cluster(func):
"""Assert message when all point are in different clusters"""
rng = np.random.RandomState(seed=0)
with pytest.raises(ValueError, match="Number of labels is"):
func(rng.rand(10, 2), np.arange(10))
def test_calinski_harabasz_score():
assert_raises_on_only_one_label(calinski_harabasz_score)
assert_raises_on_all_points_same_cluster(calinski_harabasz_score)
# Assert the value is 1. when all samples are equals
assert 1.0 == calinski_harabasz_score(np.ones((10, 2)), [0] * 5 + [1] * 5)
# Assert the value is 0. when all the mean cluster are equal
assert 0.0 == calinski_harabasz_score([[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10)
# General case (with non numpy arrays)
X = (
[[0, 0], [1, 1]] * 5
+ [[3, 3], [4, 4]] * 5
+ [[0, 4], [1, 3]] * 5
+ [[3, 1], [4, 0]] * 5
)
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
pytest.approx(calinski_harabasz_score(X, labels), 45 * (40 - 4) / (5 * (4 - 1)))
def test_davies_bouldin_score():
assert_raises_on_only_one_label(davies_bouldin_score)
assert_raises_on_all_points_same_cluster(davies_bouldin_score)
# Assert the value is 0. when all samples are equals
assert davies_bouldin_score(np.ones((10, 2)), [0] * 5 + [1] * 5) == pytest.approx(
0.0
)
# Assert the value is 0. when all the mean cluster are equal
assert davies_bouldin_score(
[[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10
) == pytest.approx(0.0)
# General case (with non numpy arrays)
X = (
[[0, 0], [1, 1]] * 5
+ [[3, 3], [4, 4]] * 5
+ [[0, 4], [1, 3]] * 5
+ [[3, 1], [4, 0]] * 5
)
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
pytest.approx(davies_bouldin_score(X, labels), 2 * np.sqrt(0.5) / 3)
# Ensure divide by zero warning is not raised in general case
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
davies_bouldin_score(X, labels)
# General case - cluster have one sample
X = [[0, 0], [2, 2], [3, 3], [5, 5]]
labels = [0, 0, 1, 2]
pytest.approx(davies_bouldin_score(X, labels), (5.0 / 4) / 3)
def test_silhouette_score_integer_precomputed():
"""Check that silhouette_score works for precomputed metrics that are integers.
Non-regression test for #22107.
"""
result = silhouette_score(
[[0, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed"
)
assert result == pytest.approx(1 / 6)
# non-zero on diagonal for ints raises an error
with pytest.raises(ValueError, match="contains non-zero"):
silhouette_score(
[[1, 1, 2], [1, 0, 1], [2, 1, 0]], [0, 0, 1], metric="precomputed"
)
|