1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
import copy
import itertools
import pickle
import numpy as np
import pytest
from scipy.spatial.distance import cdist
from sklearn.metrics import DistanceMetric
from sklearn.metrics._dist_metrics import (
BOOL_METRICS,
DistanceMetric32,
DistanceMetric64,
)
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_allclose, create_memmap_backed_data
from sklearn.utils.fixes import CSR_CONTAINERS, parse_version, sp_version
def dist_func(x1, x2, p):
return np.sum((x1 - x2) ** p) ** (1.0 / p)
rng = check_random_state(0)
d = 4
n1 = 20
n2 = 25
X64 = rng.random_sample((n1, d))
Y64 = rng.random_sample((n2, d))
X32 = X64.astype("float32")
Y32 = Y64.astype("float32")
[X_mmap, Y_mmap] = create_memmap_backed_data([X64, Y64])
# make boolean arrays: ones and zeros
X_bool = (X64 < 0.3).astype(np.float64) # quite sparse
Y_bool = (Y64 < 0.7).astype(np.float64) # not too sparse
[X_bool_mmap, Y_bool_mmap] = create_memmap_backed_data([X_bool, Y_bool])
V = rng.random_sample((d, d))
VI = np.dot(V, V.T)
METRICS_DEFAULT_PARAMS = [
("euclidean", {}),
("cityblock", {}),
("minkowski", dict(p=(0.5, 1, 1.5, 2, 3))),
("chebyshev", {}),
("seuclidean", dict(V=(rng.random_sample(d),))),
("mahalanobis", dict(VI=(VI,))),
("hamming", {}),
("canberra", {}),
("braycurtis", {}),
("minkowski", dict(p=(0.5, 1, 1.5, 3), w=(rng.random_sample(d),))),
]
@pytest.mark.parametrize(
"metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X, Y", [(X64, Y64), (X32, Y32), (X_mmap, Y_mmap)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cdist(metric_param_grid, X, Y, csr_container):
metric, param_grid = metric_param_grid
keys = param_grid.keys()
X_csr, Y_csr = csr_container(X), csr_container(Y)
for vals in itertools.product(*param_grid.values()):
kwargs = dict(zip(keys, vals))
rtol_dict = {}
if metric == "mahalanobis" and X.dtype == np.float32:
# Computation of mahalanobis differs between
# the scipy and scikit-learn implementation.
# Hence, we increase the relative tolerance.
# TODO: Inspect slight numerical discrepancy
# with scipy
rtol_dict = {"rtol": 1e-6}
# TODO: Remove when scipy minimum version >= 1.7.0
# scipy supports 0<p<1 for minkowski metric >= 1.7.0
if metric == "minkowski":
p = kwargs["p"]
if sp_version < parse_version("1.7.0") and p < 1:
pytest.skip("scipy does not support 0<p<1 for minkowski metric < 1.7.0")
D_scipy_cdist = cdist(X, Y, metric, **kwargs)
dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)
# DistanceMetric.pairwise must be consistent for all
# combinations of formats in {sparse, dense}.
D_sklearn = dm.pairwise(X, Y)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)
D_sklearn = dm.pairwise(X_csr, Y_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)
D_sklearn = dm.pairwise(X_csr, Y)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)
D_sklearn = dm.pairwise(X, Y_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)
@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize(
"X_bool, Y_bool", [(X_bool, Y_bool), (X_bool_mmap, Y_bool_mmap)]
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cdist_bool_metric(metric, X_bool, Y_bool, csr_container):
D_scipy_cdist = cdist(X_bool, Y_bool, metric)
dm = DistanceMetric.get_metric(metric)
D_sklearn = dm.pairwise(X_bool, Y_bool)
assert_allclose(D_sklearn, D_scipy_cdist)
# DistanceMetric.pairwise must be consistent
# on all combinations of format in {sparse, dense}².
X_bool_csr, Y_bool_csr = csr_container(X_bool), csr_container(Y_bool)
D_sklearn = dm.pairwise(X_bool, Y_bool)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist)
D_sklearn = dm.pairwise(X_bool_csr, Y_bool_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist)
D_sklearn = dm.pairwise(X_bool, Y_bool_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist)
D_sklearn = dm.pairwise(X_bool_csr, Y_bool)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_cdist)
@pytest.mark.parametrize(
"metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X", [X64, X32, X_mmap])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pdist(metric_param_grid, X, csr_container):
metric, param_grid = metric_param_grid
keys = param_grid.keys()
X_csr = csr_container(X)
for vals in itertools.product(*param_grid.values()):
kwargs = dict(zip(keys, vals))
rtol_dict = {}
if metric == "mahalanobis" and X.dtype == np.float32:
# Computation of mahalanobis differs between
# the scipy and scikit-learn implementation.
# Hence, we increase the relative tolerance.
# TODO: Inspect slight numerical discrepancy
# with scipy
rtol_dict = {"rtol": 1e-6}
# TODO: Remove when scipy minimum version >= 1.7.0
# scipy supports 0<p<1 for minkowski metric >= 1.7.0
if metric == "minkowski":
p = kwargs["p"]
if sp_version < parse_version("1.7.0") and p < 1:
pytest.skip("scipy does not support 0<p<1 for minkowski metric < 1.7.0")
D_scipy_pdist = cdist(X, X, metric, **kwargs)
dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)
D_sklearn = dm.pairwise(X)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_scipy_pdist, **rtol_dict)
D_sklearn_csr = dm.pairwise(X_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn_csr, D_scipy_pdist, **rtol_dict)
D_sklearn_csr = dm.pairwise(X_csr, X_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn_csr, D_scipy_pdist, **rtol_dict)
@pytest.mark.parametrize(
"metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
def test_distance_metrics_dtype_consistency(metric_param_grid):
# DistanceMetric must return similar distances for both float32 and float64
# input data.
metric, param_grid = metric_param_grid
keys = param_grid.keys()
# Choose rtol to make sure that this test is robust to changes in the random
# seed in the module-level test data generation code.
rtol = 1e-5
for vals in itertools.product(*param_grid.values()):
kwargs = dict(zip(keys, vals))
dm64 = DistanceMetric.get_metric(metric, np.float64, **kwargs)
dm32 = DistanceMetric.get_metric(metric, np.float32, **kwargs)
D64 = dm64.pairwise(X64)
D32 = dm32.pairwise(X32)
assert D64.dtype == np.float64
assert D32.dtype == np.float32
# assert_allclose introspects the dtype of the input arrays to decide
# which rtol value to use by default but in this case we know that D32
# is not computed with the same precision so we set rtol manually.
assert_allclose(D64, D32, rtol=rtol)
D64 = dm64.pairwise(X64, Y64)
D32 = dm32.pairwise(X32, Y32)
assert_allclose(D64, D32, rtol=rtol)
@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize("X_bool", [X_bool, X_bool_mmap])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pdist_bool_metrics(metric, X_bool, csr_container):
D_scipy_pdist = cdist(X_bool, X_bool, metric)
dm = DistanceMetric.get_metric(metric)
D_sklearn = dm.pairwise(X_bool)
assert_allclose(D_sklearn, D_scipy_pdist)
X_bool_csr = csr_container(X_bool)
D_sklearn = dm.pairwise(X_bool_csr)
assert_allclose(D_sklearn, D_scipy_pdist)
@pytest.mark.parametrize("writable_kwargs", [True, False])
@pytest.mark.parametrize(
"metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X", [X64, X32])
def test_pickle(writable_kwargs, metric_param_grid, X):
metric, param_grid = metric_param_grid
keys = param_grid.keys()
for vals in itertools.product(*param_grid.values()):
if any(isinstance(val, np.ndarray) for val in vals):
vals = copy.deepcopy(vals)
for val in vals:
if isinstance(val, np.ndarray):
val.setflags(write=writable_kwargs)
kwargs = dict(zip(keys, vals))
dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)
D1 = dm.pairwise(X)
dm2 = pickle.loads(pickle.dumps(dm))
D2 = dm2.pairwise(X)
assert_allclose(D1, D2)
@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize("X_bool", [X_bool, X_bool_mmap])
def test_pickle_bool_metrics(metric, X_bool):
dm = DistanceMetric.get_metric(metric)
D1 = dm.pairwise(X_bool)
dm2 = pickle.loads(pickle.dumps(dm))
D2 = dm2.pairwise(X_bool)
assert_allclose(D1, D2)
@pytest.mark.parametrize("X, Y", [(X64, Y64), (X32, Y32), (X_mmap, Y_mmap)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_haversine_metric(X, Y, csr_container):
# The Haversine DistanceMetric only works on 2 features.
X = np.asarray(X[:, :2])
Y = np.asarray(Y[:, :2])
X_csr, Y_csr = csr_container(X), csr_container(Y)
# Haversine is not supported by scipy.special.distance.{cdist,pdist}
# So we reimplement it to have a reference.
def haversine_slow(x1, x2):
return 2 * np.arcsin(
np.sqrt(
np.sin(0.5 * (x1[0] - x2[0])) ** 2
+ np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2
)
)
D_reference = np.zeros((X_csr.shape[0], Y_csr.shape[0]))
for i, xi in enumerate(X):
for j, yj in enumerate(Y):
D_reference[i, j] = haversine_slow(xi, yj)
haversine = DistanceMetric.get_metric("haversine", X.dtype)
D_sklearn = haversine.pairwise(X, Y)
assert_allclose(
haversine.dist_to_rdist(D_sklearn), np.sin(0.5 * D_reference) ** 2, rtol=1e-6
)
assert_allclose(D_sklearn, D_reference)
D_sklearn = haversine.pairwise(X_csr, Y_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_reference)
D_sklearn = haversine.pairwise(X_csr, Y)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_reference)
D_sklearn = haversine.pairwise(X, Y_csr)
assert D_sklearn.flags.c_contiguous
assert_allclose(D_sklearn, D_reference)
def test_pyfunc_metric():
X = np.random.random((10, 3))
euclidean = DistanceMetric.get_metric("euclidean")
pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2)
# Check if both callable metric and predefined metric initialized
# DistanceMetric object is picklable
euclidean_pkl = pickle.loads(pickle.dumps(euclidean))
pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc))
D1 = euclidean.pairwise(X)
D2 = pyfunc.pairwise(X)
D1_pkl = euclidean_pkl.pairwise(X)
D2_pkl = pyfunc_pkl.pairwise(X)
assert_allclose(D1, D2)
assert_allclose(D1_pkl, D2_pkl)
def test_input_data_size():
# Regression test for #6288
# Previously, a metric requiring a particular input dimension would fail
def custom_metric(x, y):
assert x.shape[0] == 3
return np.sum((x - y) ** 2)
rng = check_random_state(0)
X = rng.rand(10, 3)
pyfunc = DistanceMetric.get_metric("pyfunc", func=custom_metric)
eucl = DistanceMetric.get_metric("euclidean")
assert_allclose(pyfunc.pairwise(X), eucl.pairwise(X) ** 2)
def test_readonly_kwargs():
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/21685
rng = check_random_state(0)
weights = rng.rand(100)
VI = rng.rand(10, 10)
weights.setflags(write=False)
VI.setflags(write=False)
# Those distances metrics have to support readonly buffers.
DistanceMetric.get_metric("seuclidean", V=weights)
DistanceMetric.get_metric("mahalanobis", VI=VI)
@pytest.mark.parametrize(
"w, err_type, err_msg",
[
(np.array([1, 1.5, -13]), ValueError, "w cannot contain negative weights"),
(np.array([1, 1.5, np.nan]), ValueError, "w contains NaN"),
*[
(
csr_container([[1, 1.5, 1]]),
TypeError,
"Sparse data was passed for w, but dense data is required",
)
for csr_container in CSR_CONTAINERS
],
(np.array(["a", "b", "c"]), ValueError, "could not convert string to float"),
(np.array([]), ValueError, "a minimum of 1 is required"),
],
)
def test_minkowski_metric_validate_weights_values(w, err_type, err_msg):
with pytest.raises(err_type, match=err_msg):
DistanceMetric.get_metric("minkowski", p=3, w=w)
def test_minkowski_metric_validate_weights_size():
w2 = rng.random_sample(d + 1)
dm = DistanceMetric.get_metric("minkowski", p=3, w=w2)
msg = (
"MinkowskiDistance: the size of w must match "
f"the number of features \\({X64.shape[1]}\\). "
f"Currently len\\(w\\)={w2.shape[0]}."
)
with pytest.raises(ValueError, match=msg):
dm.pairwise(X64, Y64)
@pytest.mark.parametrize("metric, metric_kwargs", METRICS_DEFAULT_PARAMS)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_get_metric_dtype(metric, metric_kwargs, dtype):
specialized_cls = {
np.float32: DistanceMetric32,
np.float64: DistanceMetric64,
}[dtype]
# We don't need the entire grid, just one for a sanity check
metric_kwargs = {k: v[0] for k, v in metric_kwargs.items()}
generic_type = type(DistanceMetric.get_metric(metric, dtype, **metric_kwargs))
specialized_type = type(specialized_cls.get_metric(metric, **metric_kwargs))
assert generic_type is specialized_type
def test_get_metric_bad_dtype():
dtype = np.int32
msg = r"Unexpected dtype .* provided. Please select a dtype from"
with pytest.raises(ValueError, match=msg):
DistanceMetric.get_metric("manhattan", dtype)
def test_minkowski_metric_validate_bad_p_parameter():
msg = "p must be greater than 0"
with pytest.raises(ValueError, match=msg):
DistanceMetric.get_metric("minkowski", p=0)
|