File: test_dist_metrics.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (422 lines) | stat: -rw-r--r-- 14,802 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import copy
import itertools
import pickle

import numpy as np
import pytest
from scipy.spatial.distance import cdist

from sklearn.metrics import DistanceMetric
from sklearn.metrics._dist_metrics import (
    BOOL_METRICS,
    DistanceMetric32,
    DistanceMetric64,
)
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_allclose, create_memmap_backed_data
from sklearn.utils.fixes import CSR_CONTAINERS, parse_version, sp_version


def dist_func(x1, x2, p):
    return np.sum((x1 - x2) ** p) ** (1.0 / p)


rng = check_random_state(0)
d = 4
n1 = 20
n2 = 25
X64 = rng.random_sample((n1, d))
Y64 = rng.random_sample((n2, d))
X32 = X64.astype("float32")
Y32 = Y64.astype("float32")

[X_mmap, Y_mmap] = create_memmap_backed_data([X64, Y64])

# make boolean arrays: ones and zeros
X_bool = (X64 < 0.3).astype(np.float64)  # quite sparse
Y_bool = (Y64 < 0.7).astype(np.float64)  # not too sparse

[X_bool_mmap, Y_bool_mmap] = create_memmap_backed_data([X_bool, Y_bool])


V = rng.random_sample((d, d))
VI = np.dot(V, V.T)

METRICS_DEFAULT_PARAMS = [
    ("euclidean", {}),
    ("cityblock", {}),
    ("minkowski", dict(p=(0.5, 1, 1.5, 2, 3))),
    ("chebyshev", {}),
    ("seuclidean", dict(V=(rng.random_sample(d),))),
    ("mahalanobis", dict(VI=(VI,))),
    ("hamming", {}),
    ("canberra", {}),
    ("braycurtis", {}),
    ("minkowski", dict(p=(0.5, 1, 1.5, 3), w=(rng.random_sample(d),))),
]


@pytest.mark.parametrize(
    "metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X, Y", [(X64, Y64), (X32, Y32), (X_mmap, Y_mmap)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cdist(metric_param_grid, X, Y, csr_container):
    metric, param_grid = metric_param_grid
    keys = param_grid.keys()
    X_csr, Y_csr = csr_container(X), csr_container(Y)
    for vals in itertools.product(*param_grid.values()):
        kwargs = dict(zip(keys, vals))
        rtol_dict = {}
        if metric == "mahalanobis" and X.dtype == np.float32:
            # Computation of mahalanobis differs between
            # the scipy and scikit-learn implementation.
            # Hence, we increase the relative tolerance.
            # TODO: Inspect slight numerical discrepancy
            # with scipy
            rtol_dict = {"rtol": 1e-6}

        # TODO: Remove when scipy minimum version >= 1.7.0
        # scipy supports 0<p<1 for minkowski metric >= 1.7.0
        if metric == "minkowski":
            p = kwargs["p"]
            if sp_version < parse_version("1.7.0") and p < 1:
                pytest.skip("scipy does not support 0<p<1 for minkowski metric < 1.7.0")

        D_scipy_cdist = cdist(X, Y, metric, **kwargs)

        dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)

        # DistanceMetric.pairwise must be consistent for all
        # combinations of formats in {sparse, dense}.
        D_sklearn = dm.pairwise(X, Y)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)

        D_sklearn = dm.pairwise(X_csr, Y_csr)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)

        D_sklearn = dm.pairwise(X_csr, Y)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)

        D_sklearn = dm.pairwise(X, Y_csr)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn, D_scipy_cdist, **rtol_dict)


@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize(
    "X_bool, Y_bool", [(X_bool, Y_bool), (X_bool_mmap, Y_bool_mmap)]
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cdist_bool_metric(metric, X_bool, Y_bool, csr_container):
    D_scipy_cdist = cdist(X_bool, Y_bool, metric)

    dm = DistanceMetric.get_metric(metric)
    D_sklearn = dm.pairwise(X_bool, Y_bool)
    assert_allclose(D_sklearn, D_scipy_cdist)

    # DistanceMetric.pairwise must be consistent
    # on all combinations of format in {sparse, dense}².
    X_bool_csr, Y_bool_csr = csr_container(X_bool), csr_container(Y_bool)

    D_sklearn = dm.pairwise(X_bool, Y_bool)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_scipy_cdist)

    D_sklearn = dm.pairwise(X_bool_csr, Y_bool_csr)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_scipy_cdist)

    D_sklearn = dm.pairwise(X_bool, Y_bool_csr)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_scipy_cdist)

    D_sklearn = dm.pairwise(X_bool_csr, Y_bool)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_scipy_cdist)


@pytest.mark.parametrize(
    "metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X", [X64, X32, X_mmap])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pdist(metric_param_grid, X, csr_container):
    metric, param_grid = metric_param_grid
    keys = param_grid.keys()
    X_csr = csr_container(X)
    for vals in itertools.product(*param_grid.values()):
        kwargs = dict(zip(keys, vals))
        rtol_dict = {}
        if metric == "mahalanobis" and X.dtype == np.float32:
            # Computation of mahalanobis differs between
            # the scipy and scikit-learn implementation.
            # Hence, we increase the relative tolerance.
            # TODO: Inspect slight numerical discrepancy
            # with scipy
            rtol_dict = {"rtol": 1e-6}

        # TODO: Remove when scipy minimum version >= 1.7.0
        # scipy supports 0<p<1 for minkowski metric >= 1.7.0
        if metric == "minkowski":
            p = kwargs["p"]
            if sp_version < parse_version("1.7.0") and p < 1:
                pytest.skip("scipy does not support 0<p<1 for minkowski metric < 1.7.0")
        D_scipy_pdist = cdist(X, X, metric, **kwargs)

        dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)
        D_sklearn = dm.pairwise(X)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn, D_scipy_pdist, **rtol_dict)

        D_sklearn_csr = dm.pairwise(X_csr)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn_csr, D_scipy_pdist, **rtol_dict)

        D_sklearn_csr = dm.pairwise(X_csr, X_csr)
        assert D_sklearn.flags.c_contiguous
        assert_allclose(D_sklearn_csr, D_scipy_pdist, **rtol_dict)


@pytest.mark.parametrize(
    "metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
def test_distance_metrics_dtype_consistency(metric_param_grid):
    # DistanceMetric must return similar distances for both float32 and float64
    # input data.
    metric, param_grid = metric_param_grid
    keys = param_grid.keys()

    # Choose rtol to make sure that this test is robust to changes in the random
    # seed in the module-level test data generation code.
    rtol = 1e-5

    for vals in itertools.product(*param_grid.values()):
        kwargs = dict(zip(keys, vals))
        dm64 = DistanceMetric.get_metric(metric, np.float64, **kwargs)
        dm32 = DistanceMetric.get_metric(metric, np.float32, **kwargs)

        D64 = dm64.pairwise(X64)
        D32 = dm32.pairwise(X32)

        assert D64.dtype == np.float64
        assert D32.dtype == np.float32

        # assert_allclose introspects the dtype of the input arrays to decide
        # which rtol value to use by default but in this case we know that D32
        # is not computed with the same precision so we set rtol manually.
        assert_allclose(D64, D32, rtol=rtol)

        D64 = dm64.pairwise(X64, Y64)
        D32 = dm32.pairwise(X32, Y32)
        assert_allclose(D64, D32, rtol=rtol)


@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize("X_bool", [X_bool, X_bool_mmap])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pdist_bool_metrics(metric, X_bool, csr_container):
    D_scipy_pdist = cdist(X_bool, X_bool, metric)
    dm = DistanceMetric.get_metric(metric)
    D_sklearn = dm.pairwise(X_bool)
    assert_allclose(D_sklearn, D_scipy_pdist)

    X_bool_csr = csr_container(X_bool)
    D_sklearn = dm.pairwise(X_bool_csr)
    assert_allclose(D_sklearn, D_scipy_pdist)


@pytest.mark.parametrize("writable_kwargs", [True, False])
@pytest.mark.parametrize(
    "metric_param_grid", METRICS_DEFAULT_PARAMS, ids=lambda params: params[0]
)
@pytest.mark.parametrize("X", [X64, X32])
def test_pickle(writable_kwargs, metric_param_grid, X):
    metric, param_grid = metric_param_grid
    keys = param_grid.keys()
    for vals in itertools.product(*param_grid.values()):
        if any(isinstance(val, np.ndarray) for val in vals):
            vals = copy.deepcopy(vals)
            for val in vals:
                if isinstance(val, np.ndarray):
                    val.setflags(write=writable_kwargs)
        kwargs = dict(zip(keys, vals))
        dm = DistanceMetric.get_metric(metric, X.dtype, **kwargs)
        D1 = dm.pairwise(X)
        dm2 = pickle.loads(pickle.dumps(dm))
        D2 = dm2.pairwise(X)
        assert_allclose(D1, D2)


@pytest.mark.parametrize("metric", BOOL_METRICS)
@pytest.mark.parametrize("X_bool", [X_bool, X_bool_mmap])
def test_pickle_bool_metrics(metric, X_bool):
    dm = DistanceMetric.get_metric(metric)
    D1 = dm.pairwise(X_bool)
    dm2 = pickle.loads(pickle.dumps(dm))
    D2 = dm2.pairwise(X_bool)
    assert_allclose(D1, D2)


@pytest.mark.parametrize("X, Y", [(X64, Y64), (X32, Y32), (X_mmap, Y_mmap)])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_haversine_metric(X, Y, csr_container):
    # The Haversine DistanceMetric only works on 2 features.
    X = np.asarray(X[:, :2])
    Y = np.asarray(Y[:, :2])

    X_csr, Y_csr = csr_container(X), csr_container(Y)

    # Haversine is not supported by scipy.special.distance.{cdist,pdist}
    # So we reimplement it to have a reference.
    def haversine_slow(x1, x2):
        return 2 * np.arcsin(
            np.sqrt(
                np.sin(0.5 * (x1[0] - x2[0])) ** 2
                + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2
            )
        )

    D_reference = np.zeros((X_csr.shape[0], Y_csr.shape[0]))
    for i, xi in enumerate(X):
        for j, yj in enumerate(Y):
            D_reference[i, j] = haversine_slow(xi, yj)

    haversine = DistanceMetric.get_metric("haversine", X.dtype)

    D_sklearn = haversine.pairwise(X, Y)
    assert_allclose(
        haversine.dist_to_rdist(D_sklearn), np.sin(0.5 * D_reference) ** 2, rtol=1e-6
    )

    assert_allclose(D_sklearn, D_reference)

    D_sklearn = haversine.pairwise(X_csr, Y_csr)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_reference)

    D_sklearn = haversine.pairwise(X_csr, Y)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_reference)

    D_sklearn = haversine.pairwise(X, Y_csr)
    assert D_sklearn.flags.c_contiguous
    assert_allclose(D_sklearn, D_reference)


def test_pyfunc_metric():
    X = np.random.random((10, 3))

    euclidean = DistanceMetric.get_metric("euclidean")
    pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2)

    # Check if both callable metric and predefined metric initialized
    # DistanceMetric object is picklable
    euclidean_pkl = pickle.loads(pickle.dumps(euclidean))
    pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc))

    D1 = euclidean.pairwise(X)
    D2 = pyfunc.pairwise(X)

    D1_pkl = euclidean_pkl.pairwise(X)
    D2_pkl = pyfunc_pkl.pairwise(X)

    assert_allclose(D1, D2)
    assert_allclose(D1_pkl, D2_pkl)


def test_input_data_size():
    # Regression test for #6288
    # Previously, a metric requiring a particular input dimension would fail
    def custom_metric(x, y):
        assert x.shape[0] == 3
        return np.sum((x - y) ** 2)

    rng = check_random_state(0)
    X = rng.rand(10, 3)

    pyfunc = DistanceMetric.get_metric("pyfunc", func=custom_metric)
    eucl = DistanceMetric.get_metric("euclidean")
    assert_allclose(pyfunc.pairwise(X), eucl.pairwise(X) ** 2)


def test_readonly_kwargs():
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/21685

    rng = check_random_state(0)

    weights = rng.rand(100)
    VI = rng.rand(10, 10)
    weights.setflags(write=False)
    VI.setflags(write=False)

    # Those distances metrics have to support readonly buffers.
    DistanceMetric.get_metric("seuclidean", V=weights)
    DistanceMetric.get_metric("mahalanobis", VI=VI)


@pytest.mark.parametrize(
    "w, err_type, err_msg",
    [
        (np.array([1, 1.5, -13]), ValueError, "w cannot contain negative weights"),
        (np.array([1, 1.5, np.nan]), ValueError, "w contains NaN"),
        *[
            (
                csr_container([[1, 1.5, 1]]),
                TypeError,
                "Sparse data was passed for w, but dense data is required",
            )
            for csr_container in CSR_CONTAINERS
        ],
        (np.array(["a", "b", "c"]), ValueError, "could not convert string to float"),
        (np.array([]), ValueError, "a minimum of 1 is required"),
    ],
)
def test_minkowski_metric_validate_weights_values(w, err_type, err_msg):
    with pytest.raises(err_type, match=err_msg):
        DistanceMetric.get_metric("minkowski", p=3, w=w)


def test_minkowski_metric_validate_weights_size():
    w2 = rng.random_sample(d + 1)
    dm = DistanceMetric.get_metric("minkowski", p=3, w=w2)
    msg = (
        "MinkowskiDistance: the size of w must match "
        f"the number of features \\({X64.shape[1]}\\). "
        f"Currently len\\(w\\)={w2.shape[0]}."
    )
    with pytest.raises(ValueError, match=msg):
        dm.pairwise(X64, Y64)


@pytest.mark.parametrize("metric, metric_kwargs", METRICS_DEFAULT_PARAMS)
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_get_metric_dtype(metric, metric_kwargs, dtype):
    specialized_cls = {
        np.float32: DistanceMetric32,
        np.float64: DistanceMetric64,
    }[dtype]

    # We don't need the entire grid, just one for a sanity check
    metric_kwargs = {k: v[0] for k, v in metric_kwargs.items()}
    generic_type = type(DistanceMetric.get_metric(metric, dtype, **metric_kwargs))
    specialized_type = type(specialized_cls.get_metric(metric, **metric_kwargs))

    assert generic_type is specialized_type


def test_get_metric_bad_dtype():
    dtype = np.int32
    msg = r"Unexpected dtype .* provided. Please select a dtype from"
    with pytest.raises(ValueError, match=msg):
        DistanceMetric.get_metric("manhattan", dtype)


def test_minkowski_metric_validate_bad_p_parameter():
    msg = "p must be greater than 0"
    with pytest.raises(ValueError, match=msg):
        DistanceMetric.get_metric("minkowski", p=0)