1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
|
import numbers
import os
import pickle
import shutil
import tempfile
from copy import deepcopy
from functools import partial
from unittest.mock import Mock
import joblib
import numpy as np
import pytest
from numpy.testing import assert_allclose
from sklearn import config_context
from sklearn.base import BaseEstimator
from sklearn.cluster import KMeans
from sklearn.datasets import (
load_diabetes,
make_blobs,
make_classification,
make_multilabel_classification,
make_regression,
)
from sklearn.linear_model import LogisticRegression, Perceptron, Ridge
from sklearn.metrics import (
accuracy_score,
average_precision_score,
balanced_accuracy_score,
brier_score_loss,
check_scoring,
f1_score,
fbeta_score,
get_scorer,
get_scorer_names,
jaccard_score,
log_loss,
make_scorer,
matthews_corrcoef,
precision_score,
r2_score,
recall_score,
roc_auc_score,
top_k_accuracy_score,
)
from sklearn.metrics import cluster as cluster_module
from sklearn.metrics._scorer import (
_check_multimetric_scoring,
_MultimetricScorer,
_PassthroughScorer,
_Scorer,
)
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.tests.metadata_routing_common import (
assert_request_equal,
assert_request_is_empty,
)
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._testing import (
assert_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.metadata_routing import MetadataRouter
REGRESSION_SCORERS = [
"explained_variance",
"r2",
"neg_mean_absolute_error",
"neg_mean_squared_error",
"neg_mean_absolute_percentage_error",
"neg_mean_squared_log_error",
"neg_median_absolute_error",
"neg_root_mean_squared_error",
"neg_root_mean_squared_log_error",
"mean_absolute_error",
"mean_absolute_percentage_error",
"mean_squared_error",
"median_absolute_error",
"max_error",
"neg_mean_poisson_deviance",
"neg_mean_gamma_deviance",
]
CLF_SCORERS = [
"accuracy",
"balanced_accuracy",
"top_k_accuracy",
"f1",
"f1_weighted",
"f1_macro",
"f1_micro",
"roc_auc",
"average_precision",
"precision",
"precision_weighted",
"precision_macro",
"precision_micro",
"recall",
"recall_weighted",
"recall_macro",
"recall_micro",
"neg_log_loss",
"neg_brier_score",
"jaccard",
"jaccard_weighted",
"jaccard_macro",
"jaccard_micro",
"roc_auc_ovr",
"roc_auc_ovo",
"roc_auc_ovr_weighted",
"roc_auc_ovo_weighted",
"matthews_corrcoef",
"positive_likelihood_ratio",
"neg_negative_likelihood_ratio",
]
# All supervised cluster scorers (They behave like classification metric)
CLUSTER_SCORERS = [
"adjusted_rand_score",
"rand_score",
"homogeneity_score",
"completeness_score",
"v_measure_score",
"mutual_info_score",
"adjusted_mutual_info_score",
"normalized_mutual_info_score",
"fowlkes_mallows_score",
]
MULTILABEL_ONLY_SCORERS = [
"precision_samples",
"recall_samples",
"f1_samples",
"jaccard_samples",
]
REQUIRE_POSITIVE_Y_SCORERS = ["neg_mean_poisson_deviance", "neg_mean_gamma_deviance"]
def _require_positive_y(y):
"""Make targets strictly positive"""
offset = abs(y.min()) + 1
y = y + offset
return y
def _make_estimators(X_train, y_train, y_ml_train):
# Make estimators that make sense to test various scoring methods
sensible_regr = DecisionTreeRegressor(random_state=0)
# some of the regressions scorers require strictly positive input.
sensible_regr.fit(X_train, _require_positive_y(y_train))
sensible_clf = DecisionTreeClassifier(random_state=0)
sensible_clf.fit(X_train, y_train)
sensible_ml_clf = DecisionTreeClassifier(random_state=0)
sensible_ml_clf.fit(X_train, y_ml_train)
return dict(
[(name, sensible_regr) for name in REGRESSION_SCORERS]
+ [(name, sensible_clf) for name in CLF_SCORERS]
+ [(name, sensible_clf) for name in CLUSTER_SCORERS]
+ [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
)
X_mm, y_mm, y_ml_mm = None, None, None
ESTIMATORS = None
TEMP_FOLDER = None
def setup_module():
# Create some memory mapped data
global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS
TEMP_FOLDER = tempfile.mkdtemp(prefix="sklearn_test_score_objects_")
X, y = make_classification(n_samples=30, n_features=5, random_state=0)
_, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
filename = os.path.join(TEMP_FOLDER, "test_data.pkl")
joblib.dump((X, y, y_ml), filename)
X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode="r")
ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm)
def teardown_module():
global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS
# GC closes the mmap file descriptors
X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None
shutil.rmtree(TEMP_FOLDER)
class EstimatorWithFit(BaseEstimator):
"""Dummy estimator to test scoring validators"""
def fit(self, X, y):
return self
class EstimatorWithFitAndScore:
"""Dummy estimator to test scoring validators"""
def fit(self, X, y):
return self
def score(self, X, y):
return 1.0
class EstimatorWithFitAndPredict:
"""Dummy estimator to test scoring validators"""
def fit(self, X, y):
self.y = y
return self
def predict(self, X):
return self.y
class DummyScorer:
"""Dummy scorer that always returns 1."""
def __call__(self, est, X, y):
return 1
def test_all_scorers_repr():
# Test that all scorers have a working repr
for name in get_scorer_names():
repr(get_scorer(name))
def check_scoring_validator_for_single_metric_usecases(scoring_validator):
# Test all branches of single metric usecases
estimator = EstimatorWithFitAndScore()
estimator.fit([[1]], [1])
scorer = scoring_validator(estimator)
assert isinstance(scorer, _PassthroughScorer)
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFitAndPredict()
estimator.fit([[1]], [1])
pattern = (
r"If no scoring is specified, the estimator passed should have"
r" a 'score' method\. The estimator .* does not\."
)
with pytest.raises(TypeError, match=pattern):
scoring_validator(estimator)
scorer = scoring_validator(estimator, scoring="accuracy")
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFit()
scorer = scoring_validator(estimator, scoring="accuracy")
assert isinstance(scorer, _Scorer)
assert scorer._response_method == "predict"
# Test the allow_none parameter for check_scoring alone
if scoring_validator is check_scoring:
estimator = EstimatorWithFit()
scorer = scoring_validator(estimator, allow_none=True)
assert scorer is None
@pytest.mark.parametrize(
"scoring",
(
("accuracy",),
["precision"],
{"acc": "accuracy", "precision": "precision"},
("accuracy", "precision"),
["precision", "accuracy"],
{
"accuracy": make_scorer(accuracy_score),
"precision": make_scorer(precision_score),
},
),
ids=[
"single_tuple",
"single_list",
"dict_str",
"multi_tuple",
"multi_list",
"dict_callable",
],
)
def test_check_scoring_and_check_multimetric_scoring(scoring):
check_scoring_validator_for_single_metric_usecases(check_scoring)
# To make sure the check_scoring is correctly applied to the constituent
# scorers
estimator = LinearSVC(dual="auto", random_state=0)
estimator.fit([[1], [2], [3]], [1, 1, 0])
scorers = _check_multimetric_scoring(estimator, scoring)
assert isinstance(scorers, dict)
assert sorted(scorers.keys()) == sorted(list(scoring))
assert all([isinstance(scorer, _Scorer) for scorer in list(scorers.values())])
assert all(scorer._response_method == "predict" for scorer in scorers.values())
if "acc" in scoring:
assert_almost_equal(
scorers["acc"](estimator, [[1], [2], [3]], [1, 0, 0]), 2.0 / 3.0
)
if "accuracy" in scoring:
assert_almost_equal(
scorers["accuracy"](estimator, [[1], [2], [3]], [1, 0, 0]), 2.0 / 3.0
)
if "precision" in scoring:
assert_almost_equal(
scorers["precision"](estimator, [[1], [2], [3]], [1, 0, 0]), 0.5
)
@pytest.mark.parametrize(
"scoring, msg",
[
(
(make_scorer(precision_score), make_scorer(accuracy_score)),
"One or more of the elements were callables",
),
([5], "Non-string types were found"),
((make_scorer(precision_score),), "One or more of the elements were callables"),
((), "Empty list was given"),
(("f1", "f1"), "Duplicate elements were found"),
({4: "accuracy"}, "Non-string types were found in the keys"),
({}, "An empty dict was passed"),
],
ids=[
"tuple of callables",
"list of int",
"tuple of one callable",
"empty tuple",
"non-unique str",
"non-string key dict",
"empty dict",
],
)
def test_check_scoring_and_check_multimetric_scoring_errors(scoring, msg):
# Make sure it raises errors when scoring parameter is not valid.
# More weird corner cases are tested at test_validation.py
estimator = EstimatorWithFitAndPredict()
estimator.fit([[1]], [1])
with pytest.raises(ValueError, match=msg):
_check_multimetric_scoring(estimator, scoring=scoring)
def test_check_scoring_gridsearchcv():
# test that check_scoring works on GridSearchCV and pipeline.
# slightly redundant non-regression test.
grid = GridSearchCV(LinearSVC(dual="auto"), param_grid={"C": [0.1, 1]}, cv=3)
scorer = check_scoring(grid, scoring="f1")
assert isinstance(scorer, _Scorer)
assert scorer._response_method == "predict"
pipe = make_pipeline(LinearSVC(dual="auto"))
scorer = check_scoring(pipe, scoring="f1")
assert isinstance(scorer, _Scorer)
assert scorer._response_method == "predict"
# check that cross_val_score definitely calls the scorer
# and doesn't make any assumptions about the estimator apart from having a
# fit.
scores = cross_val_score(
EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer(), cv=3
)
assert_array_equal(scores, 1)
@pytest.mark.parametrize(
"scorer_name, metric",
[
("f1", f1_score),
("f1_weighted", partial(f1_score, average="weighted")),
("f1_macro", partial(f1_score, average="macro")),
("f1_micro", partial(f1_score, average="micro")),
("precision", precision_score),
("precision_weighted", partial(precision_score, average="weighted")),
("precision_macro", partial(precision_score, average="macro")),
("precision_micro", partial(precision_score, average="micro")),
("recall", recall_score),
("recall_weighted", partial(recall_score, average="weighted")),
("recall_macro", partial(recall_score, average="macro")),
("recall_micro", partial(recall_score, average="micro")),
("jaccard", jaccard_score),
("jaccard_weighted", partial(jaccard_score, average="weighted")),
("jaccard_macro", partial(jaccard_score, average="macro")),
("jaccard_micro", partial(jaccard_score, average="micro")),
("top_k_accuracy", top_k_accuracy_score),
("matthews_corrcoef", matthews_corrcoef),
],
)
def test_classification_binary_scores(scorer_name, metric):
# check consistency between score and scorer for scores supporting
# binary classification.
X, y = make_blobs(random_state=0, centers=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = LinearSVC(dual="auto", random_state=0)
clf.fit(X_train, y_train)
score = get_scorer(scorer_name)(clf, X_test, y_test)
expected_score = metric(y_test, clf.predict(X_test))
assert_almost_equal(score, expected_score)
@pytest.mark.parametrize(
"scorer_name, metric",
[
("accuracy", accuracy_score),
("balanced_accuracy", balanced_accuracy_score),
("f1_weighted", partial(f1_score, average="weighted")),
("f1_macro", partial(f1_score, average="macro")),
("f1_micro", partial(f1_score, average="micro")),
("precision_weighted", partial(precision_score, average="weighted")),
("precision_macro", partial(precision_score, average="macro")),
("precision_micro", partial(precision_score, average="micro")),
("recall_weighted", partial(recall_score, average="weighted")),
("recall_macro", partial(recall_score, average="macro")),
("recall_micro", partial(recall_score, average="micro")),
("jaccard_weighted", partial(jaccard_score, average="weighted")),
("jaccard_macro", partial(jaccard_score, average="macro")),
("jaccard_micro", partial(jaccard_score, average="micro")),
],
)
def test_classification_multiclass_scores(scorer_name, metric):
# check consistency between score and scorer for scores supporting
# multiclass classification.
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=30, random_state=0
)
# use `stratify` = y to ensure train and test sets capture all classes
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=0, stratify=y
)
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X_train, y_train)
score = get_scorer(scorer_name)(clf, X_test, y_test)
expected_score = metric(y_test, clf.predict(X_test))
assert score == pytest.approx(expected_score)
def test_custom_scorer_pickling():
# test that custom scorer can be pickled
X, y = make_blobs(random_state=0, centers=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = LinearSVC(dual="auto", random_state=0)
clf.fit(X_train, y_train)
scorer = make_scorer(fbeta_score, beta=2)
score1 = scorer(clf, X_test, y_test)
unpickled_scorer = pickle.loads(pickle.dumps(scorer))
score2 = unpickled_scorer(clf, X_test, y_test)
assert score1 == pytest.approx(score2)
# smoke test the repr:
repr(fbeta_score)
def test_regression_scorers():
# Test regression scorers.
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = Ridge()
clf.fit(X_train, y_train)
score1 = get_scorer("r2")(clf, X_test, y_test)
score2 = r2_score(y_test, clf.predict(X_test))
assert_almost_equal(score1, score2)
def test_thresholded_scorers():
# Test scorers that take thresholds.
X, y = make_blobs(random_state=0, centers=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = LogisticRegression(random_state=0)
clf.fit(X_train, y_train)
score1 = get_scorer("roc_auc")(clf, X_test, y_test)
score2 = roc_auc_score(y_test, clf.decision_function(X_test))
score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
assert_almost_equal(score1, score2)
assert_almost_equal(score1, score3)
logscore = get_scorer("neg_log_loss")(clf, X_test, y_test)
logloss = log_loss(y_test, clf.predict_proba(X_test))
assert_almost_equal(-logscore, logloss)
# same for an estimator without decision_function
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
score1 = get_scorer("roc_auc")(clf, X_test, y_test)
score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
assert_almost_equal(score1, score2)
# test with a regressor (no decision_function)
reg = DecisionTreeRegressor()
reg.fit(X_train, y_train)
err_msg = "DecisionTreeRegressor has none of the following attributes"
with pytest.raises(AttributeError, match=err_msg):
get_scorer("roc_auc")(reg, X_test, y_test)
# Test that an exception is raised on more than two classes
X, y = make_blobs(random_state=0, centers=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf.fit(X_train, y_train)
with pytest.raises(ValueError, match="multi_class must be in \\('ovo', 'ovr'\\)"):
get_scorer("roc_auc")(clf, X_test, y_test)
# test error is raised with a single class present in model
# (predict_proba shape is not suitable for binary auc)
X, y = make_blobs(random_state=0, centers=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = DecisionTreeClassifier()
clf.fit(X_train, np.zeros_like(y_train))
with pytest.raises(ValueError, match="need classifier with two classes"):
get_scorer("roc_auc")(clf, X_test, y_test)
# for proba scorers
with pytest.raises(ValueError, match="need classifier with two classes"):
get_scorer("neg_log_loss")(clf, X_test, y_test)
def test_thresholded_scorers_multilabel_indicator_data():
# Test that the scorer work with multilabel-indicator format
# for multilabel and multi-output multi-class classifier
X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Multi-output multi-class predict_proba
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_proba = clf.predict_proba(X_test)
score1 = get_scorer("roc_auc")(clf, X_test, y_test)
score2 = roc_auc_score(y_test, np.vstack([p[:, -1] for p in y_proba]).T)
assert_almost_equal(score1, score2)
# Multilabel predict_proba
clf = OneVsRestClassifier(DecisionTreeClassifier())
clf.fit(X_train, y_train)
score1 = get_scorer("roc_auc")(clf, X_test, y_test)
score2 = roc_auc_score(y_test, clf.predict_proba(X_test))
assert_almost_equal(score1, score2)
# Multilabel decision function
clf = OneVsRestClassifier(LinearSVC(dual="auto", random_state=0))
clf.fit(X_train, y_train)
score1 = get_scorer("roc_auc")(clf, X_test, y_test)
score2 = roc_auc_score(y_test, clf.decision_function(X_test))
assert_almost_equal(score1, score2)
def test_supervised_cluster_scorers():
# Test clustering scorers against gold standard labeling.
X, y = make_blobs(random_state=0, centers=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
km = KMeans(n_clusters=3, n_init="auto")
km.fit(X_train)
for name in CLUSTER_SCORERS:
score1 = get_scorer(name)(km, X_test, y_test)
score2 = getattr(cluster_module, name)(y_test, km.predict(X_test))
assert_almost_equal(score1, score2)
@ignore_warnings
def test_raises_on_score_list():
# Test that when a list of scores is returned, we raise proper errors.
X, y = make_blobs(random_state=0)
f1_scorer_no_average = make_scorer(f1_score, average=None)
clf = DecisionTreeClassifier()
with pytest.raises(ValueError):
cross_val_score(clf, X, y, scoring=f1_scorer_no_average)
grid_search = GridSearchCV(
clf, scoring=f1_scorer_no_average, param_grid={"max_depth": [1, 2]}
)
with pytest.raises(ValueError):
grid_search.fit(X, y)
@ignore_warnings
def test_classification_scorer_sample_weight():
# Test that classification scorers support sample_weight or raise sensible
# errors
# Unlike the metrics invariance test, in the scorer case it's harder
# to ensure that, on the classifier output, weighted and unweighted
# scores really should be unequal.
X, y = make_classification(random_state=0)
_, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
split = train_test_split(X, y, y_ml, random_state=0)
X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split
sample_weight = np.ones_like(y_test)
sample_weight[:10] = 0
# get sensible estimators for each metric
estimator = _make_estimators(X_train, y_train, y_ml_train)
for name in get_scorer_names():
scorer = get_scorer(name)
if name in REGRESSION_SCORERS:
# skip the regression scores
continue
if name == "top_k_accuracy":
# in the binary case k > 1 will always lead to a perfect score
scorer._kwargs = {"k": 1}
if name in MULTILABEL_ONLY_SCORERS:
target = y_ml_test
else:
target = y_test
try:
weighted = scorer(
estimator[name], X_test, target, sample_weight=sample_weight
)
ignored = scorer(estimator[name], X_test[10:], target[10:])
unweighted = scorer(estimator[name], X_test, target)
# this should not raise. sample_weight should be ignored if None.
_ = scorer(estimator[name], X_test[:10], target[:10], sample_weight=None)
assert weighted != unweighted, (
f"scorer {name} behaves identically when called with "
f"sample weights: {weighted} vs {unweighted}"
)
assert_almost_equal(
weighted,
ignored,
err_msg=(
f"scorer {name} behaves differently "
"when ignoring samples and setting "
f"sample_weight to 0: {weighted} vs {ignored}"
),
)
except TypeError as e:
assert "sample_weight" in str(e), (
f"scorer {name} raises unhelpful exception when called "
f"with sample weights: {str(e)}"
)
@ignore_warnings
def test_regression_scorer_sample_weight():
# Test that regression scorers support sample_weight or raise sensible
# errors
# Odd number of test samples req for neg_median_absolute_error
X, y = make_regression(n_samples=101, n_features=20, random_state=0)
y = _require_positive_y(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
sample_weight = np.ones_like(y_test)
# Odd number req for neg_median_absolute_error
sample_weight[:11] = 0
reg = DecisionTreeRegressor(random_state=0)
reg.fit(X_train, y_train)
for name in get_scorer_names():
scorer = get_scorer(name)
if name not in REGRESSION_SCORERS:
# skip classification scorers
continue
try:
weighted = scorer(reg, X_test, y_test, sample_weight=sample_weight)
ignored = scorer(reg, X_test[11:], y_test[11:])
unweighted = scorer(reg, X_test, y_test)
assert weighted != unweighted, (
f"scorer {name} behaves identically when called with "
f"sample weights: {weighted} vs {unweighted}"
)
assert_almost_equal(
weighted,
ignored,
err_msg=(
f"scorer {name} behaves differently "
"when ignoring samples and setting "
f"sample_weight to 0: {weighted} vs {ignored}"
),
)
except TypeError as e:
assert "sample_weight" in str(e), (
f"scorer {name} raises unhelpful exception when called "
f"with sample weights: {str(e)}"
)
@pytest.mark.parametrize("name", get_scorer_names())
def test_scorer_memmap_input(name):
# Non-regression test for #6147: some score functions would
# return singleton memmap when computed on memmap data instead of scalar
# float values.
if name in REQUIRE_POSITIVE_Y_SCORERS:
y_mm_1 = _require_positive_y(y_mm)
y_ml_mm_1 = _require_positive_y(y_ml_mm)
else:
y_mm_1, y_ml_mm_1 = y_mm, y_ml_mm
# UndefinedMetricWarning for P / R scores
with ignore_warnings():
scorer, estimator = get_scorer(name), ESTIMATORS[name]
if name in MULTILABEL_ONLY_SCORERS:
score = scorer(estimator, X_mm, y_ml_mm_1)
else:
score = scorer(estimator, X_mm, y_mm_1)
assert isinstance(score, numbers.Number), name
def test_scoring_is_not_metric():
with pytest.raises(ValueError, match="make_scorer"):
check_scoring(LogisticRegression(), scoring=f1_score)
with pytest.raises(ValueError, match="make_scorer"):
check_scoring(LogisticRegression(), scoring=roc_auc_score)
with pytest.raises(ValueError, match="make_scorer"):
check_scoring(Ridge(), scoring=r2_score)
with pytest.raises(ValueError, match="make_scorer"):
check_scoring(KMeans(), scoring=cluster_module.adjusted_rand_score)
with pytest.raises(ValueError, match="make_scorer"):
check_scoring(KMeans(), scoring=cluster_module.rand_score)
@pytest.mark.parametrize(
(
"scorers,expected_predict_count,"
"expected_predict_proba_count,expected_decision_func_count"
),
[
(
{
"a1": "accuracy",
"a2": "accuracy",
"ll1": "neg_log_loss",
"ll2": "neg_log_loss",
"ra1": "roc_auc",
"ra2": "roc_auc",
},
1,
1,
1,
),
(["roc_auc", "accuracy"], 1, 0, 1),
(["neg_log_loss", "accuracy"], 1, 1, 0),
],
)
def test_multimetric_scorer_calls_method_once(
scorers,
expected_predict_count,
expected_predict_proba_count,
expected_decision_func_count,
):
X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])
mock_est = Mock()
mock_est._estimator_type = "classifier"
fit_func = Mock(return_value=mock_est, name="fit")
fit_func.__name__ = "fit"
predict_func = Mock(return_value=y, name="predict")
predict_func.__name__ = "predict"
pos_proba = np.random.rand(X.shape[0])
proba = np.c_[1 - pos_proba, pos_proba]
predict_proba_func = Mock(return_value=proba, name="predict_proba")
predict_proba_func.__name__ = "predict_proba"
decision_function_func = Mock(return_value=pos_proba, name="decision_function")
decision_function_func.__name__ = "decision_function"
mock_est.fit = fit_func
mock_est.predict = predict_func
mock_est.predict_proba = predict_proba_func
mock_est.decision_function = decision_function_func
# add the classes that would be found during fit
mock_est.classes_ = np.array([0, 1])
scorer_dict = _check_multimetric_scoring(LogisticRegression(), scorers)
multi_scorer = _MultimetricScorer(scorers=scorer_dict)
results = multi_scorer(mock_est, X, y)
assert set(scorers) == set(results) # compare dict keys
assert predict_func.call_count == expected_predict_count
assert predict_proba_func.call_count == expected_predict_proba_count
assert decision_function_func.call_count == expected_decision_func_count
@pytest.mark.parametrize(
"scorers",
[
(["roc_auc", "neg_log_loss"]),
(
{
"roc_auc": make_scorer(
roc_auc_score,
response_method=["predict_proba", "decision_function"],
),
"neg_log_loss": make_scorer(log_loss, response_method="predict_proba"),
}
),
],
)
def test_multimetric_scorer_calls_method_once_classifier_no_decision(scorers):
predict_proba_call_cnt = 0
class MockKNeighborsClassifier(KNeighborsClassifier):
def predict_proba(self, X):
nonlocal predict_proba_call_cnt
predict_proba_call_cnt += 1
return super().predict_proba(X)
X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])
# no decision function
clf = MockKNeighborsClassifier(n_neighbors=1)
clf.fit(X, y)
scorer_dict = _check_multimetric_scoring(clf, scorers)
scorer = _MultimetricScorer(scorers=scorer_dict)
scorer(clf, X, y)
assert predict_proba_call_cnt == 1
def test_multimetric_scorer_calls_method_once_regressor_threshold():
predict_called_cnt = 0
class MockDecisionTreeRegressor(DecisionTreeRegressor):
def predict(self, X):
nonlocal predict_called_cnt
predict_called_cnt += 1
return super().predict(X)
X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])
# no decision function
clf = MockDecisionTreeRegressor()
clf.fit(X, y)
scorers = {"neg_mse": "neg_mean_squared_error", "r2": "r2"}
scorer_dict = _check_multimetric_scoring(clf, scorers)
scorer = _MultimetricScorer(scorers=scorer_dict)
scorer(clf, X, y)
assert predict_called_cnt == 1
def test_multimetric_scorer_sanity_check():
# scoring dictionary returned is the same as calling each scorer separately
scorers = {
"a1": "accuracy",
"a2": "accuracy",
"ll1": "neg_log_loss",
"ll2": "neg_log_loss",
"ra1": "roc_auc",
"ra2": "roc_auc",
}
X, y = make_classification(random_state=0)
clf = DecisionTreeClassifier()
clf.fit(X, y)
scorer_dict = _check_multimetric_scoring(clf, scorers)
multi_scorer = _MultimetricScorer(scorers=scorer_dict)
result = multi_scorer(clf, X, y)
separate_scores = {
name: get_scorer(name)(clf, X, y)
for name in ["accuracy", "neg_log_loss", "roc_auc"]
}
for key, value in result.items():
score_name = scorers[key]
assert_allclose(value, separate_scores[score_name])
@pytest.mark.parametrize("raise_exc", [True, False])
def test_multimetric_scorer_exception_handling(raise_exc):
"""Check that the calling of the `_MultimetricScorer` returns
exception messages in the result dict for the failing scorers
in case of `raise_exc` is `False` and if `raise_exc` is `True`,
then the proper exception is raised.
"""
scorers = {
"failing_1": "neg_mean_squared_log_error",
"non_failing": "neg_median_absolute_error",
"failing_2": "neg_mean_squared_log_error",
}
X, y = make_classification(
n_samples=50, n_features=2, n_redundant=0, random_state=0
)
y *= -1 # neg_mean_squared_log_error fails if y contains negative values
clf = DecisionTreeClassifier().fit(X, y)
scorer_dict = _check_multimetric_scoring(clf, scorers)
multi_scorer = _MultimetricScorer(scorers=scorer_dict, raise_exc=raise_exc)
error_msg = (
"Mean Squared Logarithmic Error cannot be used when targets contain"
" negative values."
)
if raise_exc:
with pytest.raises(ValueError, match=error_msg):
multi_scorer(clf, X, y)
else:
result = multi_scorer(clf, X, y)
exception_message_1 = result["failing_1"]
score = result["non_failing"]
exception_message_2 = result["failing_2"]
assert isinstance(exception_message_1, str) and error_msg in exception_message_1
assert isinstance(score, float)
assert isinstance(exception_message_2, str) and error_msg in exception_message_2
@pytest.mark.parametrize(
"scorer_name, metric",
[
("roc_auc_ovr", partial(roc_auc_score, multi_class="ovr")),
("roc_auc_ovo", partial(roc_auc_score, multi_class="ovo")),
(
"roc_auc_ovr_weighted",
partial(roc_auc_score, multi_class="ovr", average="weighted"),
),
(
"roc_auc_ovo_weighted",
partial(roc_auc_score, multi_class="ovo", average="weighted"),
),
],
)
def test_multiclass_roc_proba_scorer(scorer_name, metric):
scorer = get_scorer(scorer_name)
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=20, random_state=0
)
lr = LogisticRegression(multi_class="multinomial").fit(X, y)
y_proba = lr.predict_proba(X)
expected_score = metric(y, y_proba)
assert scorer(lr, X, y) == pytest.approx(expected_score)
def test_multiclass_roc_proba_scorer_label():
scorer = make_scorer(
roc_auc_score,
multi_class="ovo",
labels=[0, 1, 2],
response_method="predict_proba",
)
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=20, random_state=0
)
lr = LogisticRegression(multi_class="multinomial").fit(X, y)
y_proba = lr.predict_proba(X)
y_binary = y == 0
expected_score = roc_auc_score(
y_binary, y_proba, multi_class="ovo", labels=[0, 1, 2]
)
assert scorer(lr, X, y_binary) == pytest.approx(expected_score)
@pytest.mark.parametrize(
"scorer_name",
["roc_auc_ovr", "roc_auc_ovo", "roc_auc_ovr_weighted", "roc_auc_ovo_weighted"],
)
def test_multiclass_roc_no_proba_scorer_errors(scorer_name):
# Perceptron has no predict_proba
scorer = get_scorer(scorer_name)
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=20, random_state=0
)
lr = Perceptron().fit(X, y)
msg = "Perceptron has none of the following attributes: predict_proba."
with pytest.raises(AttributeError, match=msg):
scorer(lr, X, y)
@pytest.fixture
def string_labeled_classification_problem():
"""Train a classifier on binary problem with string target.
The classifier is trained on a binary classification problem where the
minority class of interest has a string label that is intentionally not the
greatest class label using the lexicographic order. In this case, "cancer"
is the positive label, and `classifier.classes_` is
`["cancer", "not cancer"]`.
In addition, the dataset is imbalanced to better identify problems when
using non-symmetric performance metrics such as f1-score, average precision
and so on.
Returns
-------
classifier : estimator object
Trained classifier on the binary problem.
X_test : ndarray of shape (n_samples, n_features)
Data to be used as testing set in tests.
y_test : ndarray of shape (n_samples,), dtype=object
Binary target where labels are strings.
y_pred : ndarray of shape (n_samples,), dtype=object
Prediction of `classifier` when predicting for `X_test`.
y_pred_proba : ndarray of shape (n_samples, 2), dtype=np.float64
Probabilities of `classifier` when predicting for `X_test`.
y_pred_decision : ndarray of shape (n_samples,), dtype=np.float64
Decision function values of `classifier` when predicting on `X_test`.
"""
from sklearn.datasets import load_breast_cancer
from sklearn.utils import shuffle
X, y = load_breast_cancer(return_X_y=True)
# create an highly imbalanced classification task
idx_positive = np.flatnonzero(y == 1)
idx_negative = np.flatnonzero(y == 0)
idx_selected = np.hstack([idx_negative, idx_positive[:25]])
X, y = X[idx_selected], y[idx_selected]
X, y = shuffle(X, y, random_state=42)
# only use 2 features to make the problem even harder
X = X[:, :2]
y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
stratify=y,
random_state=0,
)
classifier = LogisticRegression().fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_pred_proba = classifier.predict_proba(X_test)
y_pred_decision = classifier.decision_function(X_test)
return classifier, X_test, y_test, y_pred, y_pred_proba, y_pred_decision
def test_average_precision_pos_label(string_labeled_classification_problem):
# check that _Scorer will lead to the right score when passing
# `pos_label`. Currently, only `average_precision_score` is defined to
# be such a scorer.
(
clf,
X_test,
y_test,
_,
y_pred_proba,
y_pred_decision,
) = string_labeled_classification_problem
pos_label = "cancer"
# we need to select the positive column or reverse the decision values
y_pred_proba = y_pred_proba[:, 0]
y_pred_decision = y_pred_decision * -1
assert clf.classes_[0] == pos_label
# check that when calling the scoring function, probability estimates and
# decision values lead to the same results
ap_proba = average_precision_score(y_test, y_pred_proba, pos_label=pos_label)
ap_decision_function = average_precision_score(
y_test, y_pred_decision, pos_label=pos_label
)
assert ap_proba == pytest.approx(ap_decision_function)
# create a scorer which would require to pass a `pos_label`
# check that it fails if `pos_label` is not provided
average_precision_scorer = make_scorer(
average_precision_score,
response_method=("decision_function", "predict_proba"),
)
err_msg = "pos_label=1 is not a valid label. It should be one of "
with pytest.raises(ValueError, match=err_msg):
average_precision_scorer(clf, X_test, y_test)
# otherwise, the scorer should give the same results than calling the
# scoring function
average_precision_scorer = make_scorer(
average_precision_score,
response_method=("decision_function", "predict_proba"),
pos_label=pos_label,
)
ap_scorer = average_precision_scorer(clf, X_test, y_test)
assert ap_scorer == pytest.approx(ap_proba)
# The above scorer call is using `clf.decision_function`. We will force
# it to use `clf.predict_proba`.
clf_without_predict_proba = deepcopy(clf)
def _predict_proba(self, X):
raise NotImplementedError
clf_without_predict_proba.predict_proba = partial(
_predict_proba, clf_without_predict_proba
)
# sanity check
with pytest.raises(NotImplementedError):
clf_without_predict_proba.predict_proba(X_test)
ap_scorer = average_precision_scorer(clf_without_predict_proba, X_test, y_test)
assert ap_scorer == pytest.approx(ap_proba)
def test_brier_score_loss_pos_label(string_labeled_classification_problem):
# check that _Scorer leads to the right score when `pos_label` is
# provided. Currently only the `brier_score_loss` is defined to be such
# a scorer.
clf, X_test, y_test, _, y_pred_proba, _ = string_labeled_classification_problem
pos_label = "cancer"
assert clf.classes_[0] == pos_label
# brier score loss is symmetric
brier_pos_cancer = brier_score_loss(y_test, y_pred_proba[:, 0], pos_label="cancer")
brier_pos_not_cancer = brier_score_loss(
y_test, y_pred_proba[:, 1], pos_label="not cancer"
)
assert brier_pos_cancer == pytest.approx(brier_pos_not_cancer)
brier_scorer = make_scorer(
brier_score_loss,
response_method="predict_proba",
pos_label=pos_label,
)
assert brier_scorer(clf, X_test, y_test) == pytest.approx(brier_pos_cancer)
@pytest.mark.parametrize(
"score_func", [f1_score, precision_score, recall_score, jaccard_score]
)
def test_non_symmetric_metric_pos_label(
score_func, string_labeled_classification_problem
):
# check that _Scorer leads to the right score when `pos_label` is
# provided. We check for all possible metric supported.
# Note: At some point we may end up having "scorer tags".
clf, X_test, y_test, y_pred, _, _ = string_labeled_classification_problem
pos_label = "cancer"
assert clf.classes_[0] == pos_label
score_pos_cancer = score_func(y_test, y_pred, pos_label="cancer")
score_pos_not_cancer = score_func(y_test, y_pred, pos_label="not cancer")
assert score_pos_cancer != pytest.approx(score_pos_not_cancer)
scorer = make_scorer(score_func, pos_label=pos_label)
assert scorer(clf, X_test, y_test) == pytest.approx(score_pos_cancer)
@pytest.mark.parametrize(
"scorer",
[
make_scorer(
average_precision_score,
response_method=("decision_function", "predict_proba"),
pos_label="xxx",
),
make_scorer(brier_score_loss, response_method="predict_proba", pos_label="xxx"),
make_scorer(f1_score, pos_label="xxx"),
],
ids=["non-thresholded scorer", "probability scorer", "thresholded scorer"],
)
def test_scorer_select_proba_error(scorer):
# check that we raise the proper error when passing an unknown
# pos_label
X, y = make_classification(
n_classes=2, n_informative=3, n_samples=20, random_state=0
)
lr = LogisticRegression().fit(X, y)
assert scorer._kwargs["pos_label"] not in np.unique(y).tolist()
err_msg = "is not a valid label"
with pytest.raises(ValueError, match=err_msg):
scorer(lr, X, y)
def test_get_scorer_return_copy():
# test that get_scorer returns a copy
assert get_scorer("roc_auc") is not get_scorer("roc_auc")
def test_scorer_no_op_multiclass_select_proba():
# check that calling a _Scorer on a multiclass problem do not raise
# even if `y_true` would be binary during the scoring.
# `_select_proba_binary` should not be called in this case.
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=20, random_state=0
)
lr = LogisticRegression().fit(X, y)
mask_last_class = y == lr.classes_[-1]
X_test, y_test = X[~mask_last_class], y[~mask_last_class]
assert_array_equal(np.unique(y_test), lr.classes_[:-1])
scorer = make_scorer(
roc_auc_score,
response_method="predict_proba",
multi_class="ovo",
labels=lr.classes_,
)
scorer(lr, X_test, y_test)
@pytest.mark.parametrize("name", get_scorer_names())
def test_scorer_set_score_request_raises(name):
"""Test that set_score_request is only available when feature flag is on."""
# Make sure they expose the routing methods.
scorer = get_scorer(name)
with pytest.raises(RuntimeError, match="This method is only available"):
scorer.set_score_request()
@pytest.mark.usefixtures("enable_slep006")
@pytest.mark.parametrize("name", get_scorer_names(), ids=get_scorer_names())
def test_scorer_metadata_request(name):
"""Testing metadata requests for scorers.
This test checks many small things in a large test, to reduce the
boilerplate required for each section.
"""
# Make sure they expose the routing methods.
scorer = get_scorer(name)
assert hasattr(scorer, "set_score_request")
assert hasattr(scorer, "get_metadata_routing")
# Check that by default no metadata is requested.
assert_request_is_empty(scorer.get_metadata_routing())
weighted_scorer = scorer.set_score_request(sample_weight=True)
# set_score_request should mutate the instance, rather than returning a
# new instance
assert weighted_scorer is scorer
# make sure the scorer doesn't request anything on methods other than
# `score`, and that the requested value on `score` is correct.
assert_request_is_empty(weighted_scorer.get_metadata_routing(), exclude="score")
assert (
weighted_scorer.get_metadata_routing().score.requests["sample_weight"] is True
)
# make sure putting the scorer in a router doesn't request anything by
# default
router = MetadataRouter(owner="test").add(
method_mapping="score", scorer=get_scorer(name)
)
# make sure `sample_weight` is refused if passed.
with pytest.raises(TypeError, match="got unexpected argument"):
router.validate_metadata(params={"sample_weight": 1}, method="score")
# make sure `sample_weight` is not routed even if passed.
routed_params = router.route_params(params={"sample_weight": 1}, caller="score")
assert not routed_params.scorer.score
# make sure putting weighted_scorer in a router requests sample_weight
router = MetadataRouter(owner="test").add(
scorer=weighted_scorer, method_mapping="score"
)
router.validate_metadata(params={"sample_weight": 1}, method="score")
routed_params = router.route_params(params={"sample_weight": 1}, caller="score")
assert list(routed_params.scorer.score.keys()) == ["sample_weight"]
@pytest.mark.usefixtures("enable_slep006")
def test_metadata_kwarg_conflict():
"""This test makes sure the right warning is raised if the user passes
some metadata both as a constructor to make_scorer, and during __call__.
"""
X, y = make_classification(
n_classes=3, n_informative=3, n_samples=20, random_state=0
)
lr = LogisticRegression().fit(X, y)
scorer = make_scorer(
roc_auc_score,
response_method="predict_proba",
multi_class="ovo",
labels=lr.classes_,
)
with pytest.warns(UserWarning, match="already set as kwargs"):
scorer.set_score_request(labels=True)
with pytest.warns(UserWarning, match="There is an overlap"):
scorer(lr, X, y, labels=lr.classes_)
@pytest.mark.usefixtures("enable_slep006")
def test_PassthroughScorer_metadata_request():
"""Test that _PassthroughScorer properly routes metadata.
_PassthroughScorer should behave like a consumer, mirroring whatever is the
underlying score method.
"""
scorer = _PassthroughScorer(
estimator=LinearSVC()
.set_score_request(sample_weight="alias")
.set_fit_request(sample_weight=True)
)
# Test that _PassthroughScorer doesn't change estimator's routing.
assert_request_equal(
scorer.get_metadata_routing(),
{"fit": {"sample_weight": True}, "score": {"sample_weight": "alias"}},
)
@pytest.mark.usefixtures("enable_slep006")
def test_multimetric_scoring_metadata_routing():
# Test that _MultimetricScorer properly routes metadata.
def score1(y_true, y_pred):
return 1
def score2(y_true, y_pred, sample_weight="test"):
# make sure sample_weight is not passed
assert sample_weight == "test"
return 1
def score3(y_true, y_pred, sample_weight=None):
# make sure sample_weight is passed
assert sample_weight is not None
return 1
scorers = {
"score1": make_scorer(score1),
"score2": make_scorer(score2).set_score_request(sample_weight=False),
"score3": make_scorer(score3).set_score_request(sample_weight=True),
}
X, y = make_classification(
n_samples=50, n_features=2, n_redundant=0, random_state=0
)
clf = DecisionTreeClassifier().fit(X, y)
scorer_dict = _check_multimetric_scoring(clf, scorers)
multi_scorer = _MultimetricScorer(scorers=scorer_dict)
# this should fail, because metadata routing is not enabled and w/o it we
# don't support different metadata for different scorers.
# TODO: remove when enable_metadata_routing is deprecated
with config_context(enable_metadata_routing=False):
with pytest.raises(TypeError, match="got an unexpected keyword argument"):
multi_scorer(clf, X, y, sample_weight=1)
# This passes since routing is done.
multi_scorer(clf, X, y, sample_weight=1)
def test_kwargs_without_metadata_routing_error():
# Test that kwargs are not supported in scorers if metadata routing is not
# enabled.
# TODO: remove when enable_metadata_routing is deprecated
def score(y_true, y_pred, param=None):
return 1 # pragma: no cover
X, y = make_classification(
n_samples=50, n_features=2, n_redundant=0, random_state=0
)
clf = DecisionTreeClassifier().fit(X, y)
scorer = make_scorer(score)
with config_context(enable_metadata_routing=False):
with pytest.raises(
ValueError, match="is only supported if enable_metadata_routing=True"
):
scorer(clf, X, y, param="blah")
def test_get_scorer_multilabel_indicator():
"""Check that our scorer deal with multi-label indicator matrices.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/26817
"""
X, Y = make_multilabel_classification(n_samples=72, n_classes=3, random_state=0)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=0)
estimator = KNeighborsClassifier().fit(X_train, Y_train)
score = get_scorer("average_precision")(estimator, X_test, Y_test)
assert score > 0.8
@pytest.mark.parametrize(
"scorer, expected_repr",
[
(
get_scorer("accuracy"),
"make_scorer(accuracy_score, response_method='predict')",
),
(
get_scorer("neg_log_loss"),
(
"make_scorer(log_loss, greater_is_better=False,"
" response_method='predict_proba')"
),
),
(
get_scorer("roc_auc"),
(
"make_scorer(roc_auc_score, response_method="
"('decision_function', 'predict_proba'))"
),
),
(
make_scorer(fbeta_score, beta=2),
"make_scorer(fbeta_score, response_method='predict', beta=2)",
),
],
)
def test_make_scorer_repr(scorer, expected_repr):
"""Check the representation of the scorer."""
assert repr(scorer) == expected_repr
# TODO(1.6): rework this test after the deprecation of `needs_proba` and
# `needs_threshold`
@pytest.mark.filterwarnings("ignore:.*needs_proba.*:FutureWarning")
@pytest.mark.parametrize(
"params, err_type, err_msg",
[
# response_method should not be set if needs_* are set
(
{"response_method": "predict_proba", "needs_proba": True},
ValueError,
"You cannot set both `response_method`",
),
(
{"response_method": "predict_proba", "needs_threshold": True},
ValueError,
"You cannot set both `response_method`",
),
# cannot set both needs_proba and needs_threshold
(
{"needs_proba": True, "needs_threshold": True},
ValueError,
"You cannot set both `needs_proba` and `needs_threshold`",
),
],
)
def test_make_scorer_error(params, err_type, err_msg):
"""Check that `make_scorer` raises errors if the parameter used."""
with pytest.raises(err_type, match=err_msg):
make_scorer(lambda y_true, y_pred: 1, **params)
# TODO(1.6): remove the following test
@pytest.mark.parametrize(
"deprecated_params, new_params, warn_msg",
[
(
{"needs_proba": True},
{"response_method": "predict_proba"},
"The `needs_threshold` and `needs_proba` parameter are deprecated",
),
(
{"needs_proba": True, "needs_threshold": False},
{"response_method": "predict_proba"},
"The `needs_threshold` and `needs_proba` parameter are deprecated",
),
(
{"needs_threshold": True},
{"response_method": ("decision_function", "predict_proba")},
"The `needs_threshold` and `needs_proba` parameter are deprecated",
),
(
{"needs_threshold": True, "needs_proba": False},
{"response_method": ("decision_function", "predict_proba")},
"The `needs_threshold` and `needs_proba` parameter are deprecated",
),
(
{"needs_threshold": False, "needs_proba": False},
{"response_method": "predict"},
"The `needs_threshold` and `needs_proba` parameter are deprecated",
),
],
)
def test_make_scorer_deprecation(deprecated_params, new_params, warn_msg):
"""Check that we raise a deprecation warning when using `needs_proba` or
`needs_threshold`."""
X, y = make_classification(n_samples=150, n_features=10, random_state=0)
classifier = LogisticRegression().fit(X, y)
# check deprecation of needs_proba
with pytest.warns(FutureWarning, match=warn_msg):
deprecated_roc_auc_scorer = make_scorer(roc_auc_score, **deprecated_params)
roc_auc_scorer = make_scorer(roc_auc_score, **new_params)
assert deprecated_roc_auc_scorer(classifier, X, y) == pytest.approx(
roc_auc_scorer(classifier, X, y)
)
@pytest.mark.parametrize("enable_metadata_routing", [True, False])
def test_metadata_routing_multimetric_metadata_routing(enable_metadata_routing):
"""Test multimetric scorer works with and without metadata routing enabled when
there is no actual metadata to pass.
Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28256
"""
X, y = make_classification(n_samples=50, n_features=10, random_state=0)
estimator = EstimatorWithFitAndPredict().fit(X, y)
multimetric_scorer = _MultimetricScorer(scorers={"acc": get_scorer("accuracy")})
with config_context(enable_metadata_routing=enable_metadata_routing):
multimetric_scorer(estimator, X, y)
|