1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
|
"""Test the search module"""
import pickle
import re
import sys
from collections.abc import Iterable, Sized
from functools import partial
from io import StringIO
from itertools import chain, product
from types import GeneratorType
import numpy as np
import pytest
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin, is_classifier
from sklearn.cluster import KMeans
from sklearn.datasets import (
make_blobs,
make_classification,
make_multilabel_classification,
)
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.exceptions import FitFailedWarning
from sklearn.experimental import enable_halving_search_cv # noqa
from sklearn.impute import SimpleImputer
from sklearn.linear_model import (
LinearRegression,
Ridge,
SGDClassifier,
)
from sklearn.metrics import (
accuracy_score,
confusion_matrix,
f1_score,
make_scorer,
r2_score,
recall_score,
roc_auc_score,
)
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.model_selection import (
GridSearchCV,
GroupKFold,
GroupShuffleSplit,
HalvingGridSearchCV,
KFold,
LeaveOneGroupOut,
LeavePGroupsOut,
ParameterGrid,
ParameterSampler,
RandomizedSearchCV,
StratifiedKFold,
StratifiedShuffleSplit,
train_test_split,
)
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection.tests.common import OneTimeSplitter
from sklearn.neighbors import KernelDensity, KNeighborsClassifier, LocalOutlierFactor
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC, LinearSVC
from sklearn.tests.metadata_routing_common import (
ConsumingScorer,
_Registry,
check_recorded_metadata,
)
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from sklearn.utils._testing import (
MinimalClassifier,
MinimalRegressor,
MinimalTransformer,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.fixes import CSR_CONTAINERS
from sklearn.utils.validation import _num_samples
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.0
else:
score = 0.0
return score
def get_params(self, deep=False):
return {"foo_param": self.foo_param}
def set_params(self, **params):
self.foo_param = params["foo_param"]
return self
class LinearSVCNoScore(LinearSVC):
"""A LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid, partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[
(0, TypeError, r"Parameter .* a dict or a list, got: 0 of type int"),
([{"foo": [0]}, 0], TypeError, r"Parameter .* is not a dict \(0\)"),
(
{"foo": 0},
TypeError,
r"Parameter (grid|distribution) for parameter 'foo' (is not|needs to be) "
r"(a list or a numpy array|iterable or a distribution).*",
),
],
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert points == set(
("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"])
)
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
with pytest.raises(IndexError):
empty[1]
has_empty = ParameterGrid([{"C": [1, 10]}, {}, {"C": [0.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{"C": 1}, {"C": 10}, {}, {"C": 0.5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = "sklearn"
with pytest.raises(ValueError):
grid_search.fit(X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([("regressor", LinearRegression())])
param_grid = {"regressor": [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_["param_regressor"]
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], "coef_")
assert not hasattr(regressor_results[1], "coef_")
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid["regressor"][0], "coef_")
assert not hasattr(param_grid["regressor"][1], "coef_")
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=["spam", "eggs"])
searcher = SearchCV(clf, {"foo_param": [1, 2, 3]}, cv=2, error_score="raise")
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(dual="auto", random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [0.1, 1, 10]
clf_no_score = LinearSVCNoScore(dual="auto", random_state=0)
grid_search = GridSearchCV(clf, {"C": Cs}, scoring="accuracy")
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {"C": Cs}, scoring="accuracy")
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {"C": Cs})
with pytest.raises(TypeError, match="no scoring"):
grid_search_no_score.fit([[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=0.2, random_state=0)
clf = LinearSVC(dual="auto", random_state=0)
grid = {"C": [0.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring="accuracy").fit(X, y)
search_no_score_method_auc = GridSearchCV(
LinearSVCNoScore(dual="auto"), grid, scoring="roc_auc"
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring="roc_auc").fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(dual="auto", random_state=0)
grid = {"C": [1]}
group_cvs = [
LeaveOneGroupOut(),
LeavePGroupsOut(2),
GroupKFold(n_splits=3),
GroupShuffleSplit(),
]
error_msg = "The 'groups' parameter should not be None."
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
with pytest.raises(ValueError, match=error_msg):
gs.fit(X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [0.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(dual="auto", random_state=0), {"C": Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {"alpha": [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, "classes_")
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(dual="auto", random_state=0), {"C": Cs})
assert not hasattr(grid_search, "classes_")
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(
LinearSVC(dual="auto", random_state=0), {"C": Cs}, refit=False
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "classes_")
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {"foo_param": [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {"foo_param": [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ["accuracy", "precision"]]:
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, refit=False, cv=3)
grid_search.fit(X, y)
assert (
not hasattr(grid_search, "best_estimator_")
and hasattr(grid_search, "best_index_")
and hasattr(grid_search, "best_params_")
)
# Make sure the functions predict/transform etc. raise meaningful
# error messages
for fn_name in (
"predict",
"predict_proba",
"predict_log_proba",
"transform",
"inverse_transform",
):
outer_msg = f"has no attribute '{fn_name}'"
inner_msg = (
f"`refit=False`. {fn_name} is available only after "
"refitting on the best parameters"
)
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
getattr(grid_search, fn_name)(X)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
# Test that an invalid refit param raises appropriate error messages
error_msg = (
"For multi-metric scoring, the parameter refit must be set to a scorer key"
)
for refit in [True, "recall", "accuracy"]:
with pytest.raises(ValueError, match=error_msg):
GridSearchCV(
clf, {}, refit=refit, scoring={"acc": "accuracy", "prec": "precision"}
).fit(X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC(dual="auto")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
with pytest.raises(ValueError):
cv.fit(X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma="auto")
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {"foo_param": range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
X, y = make_classification(n_samples=10, n_features=5, random_state=0)
param_dict = {"C": 1}
clf = SVC(gamma="auto")
error_msg = re.escape(
"Parameter grid for parameter 'C' needs to be a list or "
"a numpy array, but got 1 (of type int) instead. Single "
"values need to be wrapped in a list with one element."
)
search = GridSearchCV(clf, param_dict)
with pytest.raises(TypeError, match=error_msg):
search.fit(X, y)
param_dict = {"C": []}
clf = SVC()
error_msg = re.escape(
"Parameter grid for parameter 'C' need to be a non-empty sequence, got: []"
)
search = GridSearchCV(clf, param_dict)
with pytest.raises(ValueError, match=error_msg):
search.fit(X, y)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma="auto")
error_msg = re.escape(
"Parameter grid for parameter 'C' needs to be a list or a numpy array, "
"but got '1,2,3' (of type str) instead. Single values need to be "
"wrapped in a list with one element."
)
search = GridSearchCV(clf, param_dict)
with pytest.raises(TypeError, match=error_msg):
search.fit(X, y)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
search = GridSearchCV(clf, param_dict)
with pytest.raises(ValueError):
search.fit(X, y)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_grid_search_sparse(csr_container):
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC(dual="auto")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = csr_container(X_)
clf = LinearSVC(dual="auto")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= 0.9
assert C == C2
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_grid_search_sparse_scoring(csr_container):
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC(dual="auto")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = csr_container(X_)
clf = LinearSVC(dual="auto")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel="precomputed")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
with pytest.raises(ValueError):
cv.fit(K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10,))
clf = SVC(kernel="precomputed")
cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
with pytest.raises(ValueError):
cv.fit(K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, "has_been_fit_")
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(
BrokenClassifier(), [{"parameter": [0, 1]}], scoring="precision", refit=True
)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(dual="auto", random_state=42),
{"C": [0.01, 0.1, 1]},
scoring="precision",
refit=True,
)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results["mean_test_score"].argmin()
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(dual="auto", random_state=42),
{"C": [0.01, 0.1, 1]},
scoring="precision",
refit=refit_callable,
)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, "best_score_")
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(dual="auto", random_state=42),
{"C": [0.1, 1]},
scoring="precision",
refit=refit_callable_invalid_type,
)
with pytest.raises(TypeError, match="best_index_ returned is not an integer"):
clf.fit(X, y)
@pytest.mark.parametrize("out_bound_value", [-1, 2])
@pytest.mark.parametrize("search_cv", [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
clf = search_cv(
LinearSVC(dual="auto", random_state=42),
{"C": [0.1, 1]},
scoring="precision",
refit=refit_callable_out_bound,
)
with pytest.raises(IndexError, match="best_index_ index out of range"):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert "mean_test_prec" in cv_results
return cv_results["mean_test_prec"].argmin()
X, y = make_classification(n_samples=100, n_features=4, random_state=42)
scoring = {"Accuracy": make_scorer(accuracy_score), "prec": "precision"}
clf = GridSearchCV(
LinearSVC(dual="auto", random_state=42),
{"C": [0.01, 0.1, 1]},
scoring=scoring,
refit=refit_callable,
)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, "best_score_")
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
def check_X(x):
return x.shape[1:] == (5, 3, 2)
def check_y(x):
return x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X,
check_y=check_y,
methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list),
methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list),
methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import DataFrame, Series
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ["adjusted_rand_score", "fowlkes_mallows_score"]
for refit in ["adjusted_rand_score", "fowlkes_mallows_score"]:
grid_search = GridSearchCV(
km, param_grid=dict(n_clusters=[2, 3, 4]), scoring=scoring, refit=refit
)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(
km, param_grid=dict(n_clusters=[2, 3, 4]), scoring="fowlkes_mallows_score"
)
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == 0.1 else 0
X, _ = make_blobs(cluster_std=0.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(
KernelDensity(),
param_grid=dict(bandwidth=[0.01, 0.1, 1]),
scoring=custom_scoring,
)
search.fit(X)
assert search.best_params_["bandwidth"] == 0.1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)}
sampler = ParameterSampler(
param_distributions=param_distributions, n_iter=10, random_state=0
)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(
param_distributions=param_distributions, n_iter=3, random_state=0
)
assert [x for x in sampler] == [x for x in sampler]
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(
param_distributions=param_distributions, n_iter=10, random_state=0
)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)
assert all(
cv_results[key].dtype == np.float64
for key in score_keys
if not key.startswith("rank")
)
scorer_keys = search.scorer_.keys() if search.multimetric_ else ["score"]
for key in scorer_keys:
assert cv_results["rank_test_%s" % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand, extra_keys=()):
# Test the search.cv_results_ contains all the required results
all_keys = param_keys + score_keys + extra_keys
assert_array_equal(sorted(cv_results.keys()), sorted(all_keys + ("params",)))
assert all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_grid_points = 6
params = [
dict(
kernel=[
"rbf",
],
C=[1, 10],
gamma=[0.1, 1],
),
dict(
kernel=[
"poly",
],
degree=[1, 2],
),
]
param_keys = ("param_C", "param_degree", "param_gamma", "param_kernel")
score_keys = (
"mean_test_score",
"mean_train_score",
"rank_test_score",
"split0_test_score",
"split1_test_score",
"split2_test_score",
"split0_train_score",
"split1_train_score",
"split2_train_score",
"std_test_score",
"std_train_score",
"mean_fit_time",
"std_fit_time",
"mean_score_time",
"std_score_time",
)
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=3, param_grid=params, return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results["rank_test_score"] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys if k != "rank_test_score")
assert (
all(cv_results[k] <= 1)
for k in score_keys
if "time" not in k and k != "rank_test_score"
)
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
poly_results = [
(
cv_results["param_C"].mask[i]
and cv_results["param_gamma"].mask[i]
and not cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "poly"
]
assert all(poly_results)
assert len(poly_results) == 2
rbf_results = [
(
not cv_results["param_C"].mask[i]
and not cv_results["param_gamma"].mask[i]
and cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "rbf"
]
assert all(rbf_results)
assert len(rbf_results) == 4
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_search_iter = 30
params = [
{"kernel": ["rbf"], "C": expon(scale=10), "gamma": expon(scale=0.1)},
{"kernel": ["poly"], "degree": [2, 3]},
]
param_keys = ("param_C", "param_degree", "param_gamma", "param_kernel")
score_keys = (
"mean_test_score",
"mean_train_score",
"rank_test_score",
"split0_test_score",
"split1_test_score",
"split2_test_score",
"split0_train_score",
"split1_train_score",
"split2_train_score",
"std_test_score",
"std_train_score",
"mean_fit_time",
"std_fit_time",
"mean_score_time",
"std_score_time",
)
n_candidates = n_search_iter
search = RandomizedSearchCV(
SVC(),
n_iter=n_search_iter,
cv=3,
param_distributions=params,
return_train_score=True,
)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
assert all(
(
cv_results["param_C"].mask[i]
and cv_results["param_gamma"].mask[i]
and not cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "poly"
)
assert all(
(
not cv_results["param_C"].mask[i]
and not cv_results["param_gamma"].mask[i]
and cv_results["param_degree"].mask[i]
)
for i in range(n_candidates)
if cv_results["param_kernel"][i] == "rbf"
)
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[
(GridSearchCV, {"param_grid": {"C": [1, 10]}}),
(RandomizedSearchCV, {"param_distributions": {"C": [1, 10]}, "n_iter": 2}),
],
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(
centers=[[0, 0], [1, 0], [0, 1], [1, 1]],
random_state=0,
cluster_std=0.1,
shuffle=False,
n_samples=80,
)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {"estimator": SVC(), "cv": cv, "return_train_score": True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[
search.cv_results_["split%d_test_score" % s][0]
for s in range(search.n_splits_)
]
)
test_mean = search.cv_results_["mean_test_score"][0]
test_std = search.cv_results_["std_test_score"][0]
train_cv_scores = np.array(
[
search.cv_results_["split%d_train_score" % s][0]
for s in range(search.n_splits_)
]
)
train_mean = search.cv_results_["mean_train_score"][0]
train_std = search.cv_results_["std_train_score"][0]
assert search.cv_results_["param_C"][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1.0 / 3.0])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx(np.mean(test_cv_scores))
assert test_std == pytest.approx(np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert train_mean == pytest.approx(1)
assert train_std == pytest.approx(0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [
dict(
kernel=[
"rbf",
],
C=[1, 10],
gamma=[0.1, 1],
),
dict(
kernel=[
"poly",
],
degree=[1, 2],
),
]
grid_searches = []
for scoring in (
{"accuracy": make_scorer(accuracy_score), "recall": make_scorer(recall_score)},
"accuracy",
"recall",
):
grid_search = GridSearchCV(
SVC(), cv=n_splits, param_grid=params, scoring=scoring, refit=False
)
grid_search.fit(X, y)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C=np.logspace(-4, 1, 3), gamma=np.logspace(-5, 0, 3, base=0.1))
for refit in (True, False):
random_searches = []
for scoring in (("accuracy", "recall"), "accuracy", "recall"):
# If True, for multi-metric pass refit='accuracy'
if refit:
probability = True
refit = "accuracy" if isinstance(scoring, tuple) else refit
else:
probability = False
clf = SVC(probability=probability, random_state=42)
random_search = RandomizedSearchCV(
clf,
n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
scoring=scoring,
refit=refit,
random_state=0,
)
random_search.fit(X, y)
random_searches.append(random_search)
compare_cv_results_multimetric_with_single(*random_searches)
compare_refit_methods_when_refit_with_acc(
random_searches[0], random_searches[1], refit
)
def compare_cv_results_multimetric_with_single(search_multi, search_acc, search_rec):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_), ("accuracy", "recall"))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {
re.sub("_score$", "_accuracy", k): v for k, v in search_acc.cv_results_.items()
}
cv_results_acc_rec.update(
{re.sub("_score$", "_recall", k): v for k, v in search_rec.cv_results_.items()}
)
# Check if score and timing are reasonable, also checks if the keys
# are present
assert all(
(
np.all(cv_results_multi[k] <= 1)
for k in (
"mean_score_time",
"std_score_time",
"mean_fit_time",
"std_fit_time",
)
)
)
# Compare the keys, other than time keys, among multi-metric and
# single metric grid search results. np.testing.assert_equal performs a
# deep nested comparison of the two cv_results dicts
np.testing.assert_equal(
{k: v for k, v in cv_results_multi.items() if not k.endswith("_time")},
{k: v for k, v in cv_results_acc_rec.items() if not k.endswith("_time")},
)
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
"""Compare refit multi-metric search methods with single metric methods"""
assert search_acc.refit == refit
if refit:
assert search_multi.refit == "accuracy"
else:
assert not search_multi.refit
return # search cannot predict/score without refit
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
for method in ("predict", "predict_proba", "predict_log_proba"):
assert_almost_equal(
getattr(search_multi, method)(X), getattr(search_acc, method)(X)
)
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
for key in ("best_index_", "best_score_", "best_params_"):
assert getattr(search_multi, key) == getattr(search_acc, key)
@pytest.mark.parametrize(
"search_cv",
[
RandomizedSearchCV(
estimator=DecisionTreeClassifier(),
param_distributions={"max_depth": [5, 10]},
),
GridSearchCV(
estimator=DecisionTreeClassifier(), param_grid={"max_depth": [5, 10]}
),
],
)
def test_search_cv_score_samples_error(search_cv):
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
search_cv.fit(X, y)
# Make sure to error out when underlying estimator does not implement
# the method `score_samples`
outer_msg = f"'{search_cv.__class__.__name__}' has no attribute 'score_samples'"
inner_msg = "'DecisionTreeClassifier' object has no attribute 'score_samples'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
search_cv.score_samples(X)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg == str(exec_info.value.__cause__)
@pytest.mark.parametrize(
"search_cv",
[
RandomizedSearchCV(
estimator=LocalOutlierFactor(novelty=True),
param_distributions={"n_neighbors": [5, 10]},
scoring="precision",
),
GridSearchCV(
estimator=LocalOutlierFactor(novelty=True),
param_grid={"n_neighbors": [5, 10]},
scoring="precision",
),
],
)
def test_search_cv_score_samples_method(search_cv):
# Set parameters
rng = np.random.RandomState(42)
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers
# Create dataset
X = make_blobs(
n_samples=n_inliers,
n_features=2,
centers=[[0, 0], [0, 0]],
cluster_std=0.5,
random_state=0,
)[0]
# Add some noisy points
X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)
# Define labels to be able to score the estimator with `search_cv`
y_true = np.array([1] * n_samples)
y_true[-n_outliers:] = -1
# Fit on data
search_cv.fit(X, y_true)
# Verify that the stand alone estimator yields the same results
# as the ones obtained with *SearchCV
assert_allclose(
search_cv.score_samples(X), search_cv.best_estimator_.score_samples(X)
)
def test_search_cv_results_rank_tie_breaking():
X, y = make_blobs(n_samples=50, random_state=42)
# The two C values are close enough to give similar models
# which would result in a tie of their mean cv-scores
param_grid = {"C": [1, 1.001, 0.001]}
grid_search = GridSearchCV(SVC(), param_grid=param_grid, return_train_score=True)
random_search = RandomizedSearchCV(
SVC(), n_iter=3, param_distributions=param_grid, return_train_score=True
)
for search in (grid_search, random_search):
search.fit(X, y)
cv_results = search.cv_results_
# Check tie breaking strategy -
# Check that there is a tie in the mean scores between
# candidates 1 and 2 alone
assert_almost_equal(
cv_results["mean_test_score"][0], cv_results["mean_test_score"][1]
)
assert_almost_equal(
cv_results["mean_train_score"][0], cv_results["mean_train_score"][1]
)
assert not np.allclose(
cv_results["mean_test_score"][1], cv_results["mean_test_score"][2]
)
assert not np.allclose(
cv_results["mean_train_score"][1], cv_results["mean_train_score"][2]
)
# 'min' rank should be assigned to the tied candidates
assert_almost_equal(search.cv_results_["rank_test_score"], [1, 1, 3])
def test_search_cv_results_none_param():
X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
est_parameters = {"random_state": [0, None]}
cv = KFold()
for est in estimators:
grid_search = GridSearchCV(
est,
est_parameters,
cv=cv,
).fit(X, y)
assert_array_equal(grid_search.cv_results_["param_random_state"], [0, None])
@ignore_warnings()
def test_search_cv_timing():
svc = LinearSVC(dual="auto", random_state=0)
X = [
[
1,
],
[
2,
],
[
3,
],
[
4,
],
]
y = [0, 1, 1, 0]
gs = GridSearchCV(svc, {"C": [0, 1]}, cv=2, error_score=0)
rs = RandomizedSearchCV(svc, {"C": [0, 1]}, cv=2, error_score=0, n_iter=2)
for search in (gs, rs):
search.fit(X, y)
for key in ["mean_fit_time", "std_fit_time"]:
# NOTE The precision of time.time in windows is not high
# enough for the fit/score times to be non-zero for trivial X and y
assert np.all(search.cv_results_[key] >= 0)
assert np.all(search.cv_results_[key] < 1)
for key in ["mean_score_time", "std_score_time"]:
assert search.cv_results_[key][1] >= 0
assert search.cv_results_[key][0] == 0.0
assert np.all(search.cv_results_[key] < 1)
assert hasattr(search, "refit_time_")
assert isinstance(search.refit_time_, float)
assert search.refit_time_ >= 0
def test_grid_search_correct_score_results():
# test that correct scores are used
n_splits = 3
clf = LinearSVC(dual="auto", random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [0.1, 1, 10]
for score in ["f1", "roc_auc"]:
grid_search = GridSearchCV(clf, {"C": Cs}, scoring=score, cv=n_splits)
cv_results = grid_search.fit(X, y).cv_results_
# Test scorer names
result_keys = list(cv_results.keys())
expected_keys = ("mean_test_score", "rank_test_score") + tuple(
"split%d_test_score" % cv_i for cv_i in range(n_splits)
)
assert all(np.isin(expected_keys, result_keys))
cv = StratifiedKFold(n_splits=n_splits)
n_splits = grid_search.n_splits_
for candidate_i, C in enumerate(Cs):
clf.set_params(C=C)
cv_scores = np.array(
[
grid_search.cv_results_["split%d_test_score" % s][candidate_i]
for s in range(n_splits)
]
)
for i, (train, test) in enumerate(cv.split(X, y)):
clf.fit(X[train], y[train])
if score == "f1":
correct_score = f1_score(y[test], clf.predict(X[test]))
elif score == "roc_auc":
dec = clf.decision_function(X[test])
correct_score = roc_auc_score(y[test], dec)
assert_almost_equal(correct_score, cv_scores[i])
def test_pickle():
# Test that a fit search can be pickled
clf = MockClassifier()
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, refit=True, cv=3)
grid_search.fit(X, y)
grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X))
random_search = RandomizedSearchCV(
clf, {"foo_param": [1, 2, 3]}, refit=True, n_iter=3, cv=3
)
random_search.fit(X, y)
random_search_pickled = pickle.loads(pickle.dumps(random_search))
assert_array_almost_equal(
random_search.predict(X), random_search_pickled.predict(X)
)
def test_grid_search_with_multioutput_data():
# Test search with multi-output estimator
X, y = make_multilabel_classification(return_indicator=True, random_state=0)
est_parameters = {"max_depth": [1, 2, 3, 4]}
cv = KFold()
estimators = [
DecisionTreeRegressor(random_state=0),
DecisionTreeClassifier(random_state=0),
]
# Test with grid search cv
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv)
grid_search.fit(X, y)
res_params = grid_search.cv_results_["params"]
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
grid_search.cv_results_["split%d_test_score" % i][cand_i],
)
# Test with a randomized search
for est in estimators:
random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3)
random_search.fit(X, y)
res_params = random_search.cv_results_["params"]
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
random_search.cv_results_["split%d_test_score" % i][cand_i],
)
def test_predict_proba_disabled():
# Test predict_proba when disabled on estimator.
X = np.arange(20).reshape(5, -1)
y = [0, 0, 1, 1, 1]
clf = SVC(probability=False)
gs = GridSearchCV(clf, {}, cv=2).fit(X, y)
assert not hasattr(gs, "predict_proba")
def test_grid_search_allows_nans():
# Test GridSearchCV with SimpleImputer
X = np.arange(20, dtype=np.float64).reshape(5, -1)
X[2, :] = np.nan
y = [0, 0, 1, 1, 1]
p = Pipeline(
[
("imputer", SimpleImputer(strategy="mean", missing_values=np.nan)),
("classifier", MockClassifier()),
]
)
GridSearchCV(p, {"classifier__foo_param": [1, 2, 3]}, cv=2).fit(X, y)
class FailingClassifier(BaseEstimator):
"""Classifier that raises a ValueError on fit()"""
FAILING_PARAMETER = 2
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y=None):
if self.parameter == FailingClassifier.FAILING_PARAMETER:
raise ValueError("Failing classifier failed as required")
def predict(self, X):
return np.zeros(X.shape[0])
def score(self, X=None, Y=None):
return 0.0
def test_grid_search_failing_classifier():
# GridSearchCV with on_error != 'raise'
# Ensures that a warning is raised and score reset where appropriate.
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
# refit=False because we only want to check that errors caused by fits
# to individual folds will be caught and warnings raised instead. If
# refit was done, then an exception would be raised on refit and not
# caught by grid_search (expected behavior), and this would cause an
# error in this test.
gs = GridSearchCV(
clf,
[{"parameter": [0, 1, 2]}],
scoring="accuracy",
refit=False,
error_score=0.0,
)
warning_message = re.compile(
"5 fits failed.+total of 15.+The score on these"
r" train-test partitions for these parameters will be set to 0\.0.+"
"5 fits failed with the following error.+ValueError.+Failing classifier failed"
" as required",
flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
n_candidates = len(gs.cv_results_["params"])
# Ensure that grid scores were set to zero as required for those fits
# that are expected to fail.
def get_cand_scores(i):
return np.array(
[gs.cv_results_["split%d_test_score" % s][i] for s in range(gs.n_splits_)]
)
assert all(
(
np.all(get_cand_scores(cand_i) == 0.0)
for cand_i in range(n_candidates)
if gs.cv_results_["param_parameter"][cand_i]
== FailingClassifier.FAILING_PARAMETER
)
)
gs = GridSearchCV(
clf,
[{"parameter": [0, 1, 2]}],
scoring="accuracy",
refit=False,
error_score=float("nan"),
)
warning_message = re.compile(
"5 fits failed.+total of 15.+The score on these"
r" train-test partitions for these parameters will be set to nan.+"
"5 fits failed with the following error.+ValueError.+Failing classifier failed"
" as required",
flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
n_candidates = len(gs.cv_results_["params"])
assert all(
np.all(np.isnan(get_cand_scores(cand_i)))
for cand_i in range(n_candidates)
if gs.cv_results_["param_parameter"][cand_i]
== FailingClassifier.FAILING_PARAMETER
)
ranks = gs.cv_results_["rank_test_score"]
# Check that succeeded estimators have lower ranks
assert ranks[0] <= 2 and ranks[1] <= 2
# Check that failed estimator has the highest rank
assert ranks[clf.FAILING_PARAMETER] == 3
assert gs.best_index_ != clf.FAILING_PARAMETER
def test_grid_search_classifier_all_fits_fail():
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
gs = GridSearchCV(
clf,
[{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
error_score=0.0,
)
warning_message = re.compile(
(
"All the 15 fits failed.+15 fits failed with the following"
" error.+ValueError.+Failing classifier failed as required"
),
flags=re.DOTALL,
)
with pytest.raises(ValueError, match=warning_message):
gs.fit(X, y)
def test_grid_search_failing_classifier_raise():
# GridSearchCV with on_error == 'raise' raises the error
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
# refit=False because we want to test the behaviour of the grid search part
gs = GridSearchCV(
clf,
[{"parameter": [0, 1, 2]}],
scoring="accuracy",
refit=False,
error_score="raise",
)
# FailingClassifier issues a ValueError so this is what we look for.
with pytest.raises(ValueError):
gs.fit(X, y)
def test_parameters_sampler_replacement():
# raise warning if n_iter is bigger than total parameter space
params = [
{"first": [0, 1], "second": ["a", "b", "c"]},
{"third": ["two", "values"]},
]
sampler = ParameterSampler(params, n_iter=9)
n_iter = 9
grid_size = 8
expected_warning = (
"The total space of parameters %d is smaller "
"than n_iter=%d. Running %d iterations. For "
"exhaustive searches, use GridSearchCV." % (grid_size, n_iter, grid_size)
)
with pytest.warns(UserWarning, match=expected_warning):
list(sampler)
# degenerates to GridSearchCV if n_iter the same as grid_size
sampler = ParameterSampler(params, n_iter=8)
samples = list(sampler)
assert len(samples) == 8
for values in ParameterGrid(params):
assert values in samples
assert len(ParameterSampler(params, n_iter=1000)) == 8
# test sampling without replacement in a large grid
params = {"a": range(10), "b": range(10), "c": range(10)}
sampler = ParameterSampler(params, n_iter=99, random_state=42)
samples = list(sampler)
assert len(samples) == 99
hashable_samples = ["a%db%dc%d" % (p["a"], p["b"], p["c"]) for p in samples]
assert len(set(hashable_samples)) == 99
# doesn't go into infinite loops
params_distribution = {"first": bernoulli(0.5), "second": ["a", "b", "c"]}
sampler = ParameterSampler(params_distribution, n_iter=7)
samples = list(sampler)
assert len(samples) == 7
def test_stochastic_gradient_loss_param():
# Make sure the predict_proba works when loss is specified
# as one of the parameters in the param_grid.
param_grid = {
"loss": ["log_loss"],
}
X = np.arange(24).reshape(6, -1)
y = [0, 0, 0, 1, 1, 1]
clf = GridSearchCV(
estimator=SGDClassifier(loss="hinge"), param_grid=param_grid, cv=3
)
# When the estimator is not fitted, `predict_proba` is not available as the
# loss is 'hinge'.
assert not hasattr(clf, "predict_proba")
clf.fit(X, y)
clf.predict_proba(X)
clf.predict_log_proba(X)
# Make sure `predict_proba` is not available when setting loss=['hinge']
# in param_grid
param_grid = {
"loss": ["hinge"],
}
clf = GridSearchCV(
estimator=SGDClassifier(loss="hinge"), param_grid=param_grid, cv=3
)
assert not hasattr(clf, "predict_proba")
clf.fit(X, y)
assert not hasattr(clf, "predict_proba")
def test_search_train_scores_set_to_false():
X = np.arange(6).reshape(6, -1)
y = [0, 0, 0, 1, 1, 1]
clf = LinearSVC(dual="auto", random_state=0)
gs = GridSearchCV(clf, param_grid={"C": [0.1, 0.2]}, cv=3)
gs.fit(X, y)
def test_grid_search_cv_splits_consistency():
# Check if a one time iterable is accepted as a cv parameter.
n_samples = 100
n_splits = 5
X, y = make_classification(n_samples=n_samples, random_state=0)
gs = GridSearchCV(
LinearSVC(dual="auto", random_state=0),
param_grid={"C": [0.1, 0.2, 0.3]},
cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
return_train_score=True,
)
gs.fit(X, y)
gs2 = GridSearchCV(
LinearSVC(dual="auto", random_state=0),
param_grid={"C": [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits),
return_train_score=True,
)
gs2.fit(X, y)
# Give generator as a cv parameter
assert isinstance(
KFold(n_splits=n_splits, shuffle=True, random_state=0).split(X, y),
GeneratorType,
)
gs3 = GridSearchCV(
LinearSVC(dual="auto", random_state=0),
param_grid={"C": [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits, shuffle=True, random_state=0).split(X, y),
return_train_score=True,
)
gs3.fit(X, y)
gs4 = GridSearchCV(
LinearSVC(dual="auto", random_state=0),
param_grid={"C": [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits, shuffle=True, random_state=0),
return_train_score=True,
)
gs4.fit(X, y)
def _pop_time_keys(cv_results):
for key in (
"mean_fit_time",
"std_fit_time",
"mean_score_time",
"std_score_time",
):
cv_results.pop(key)
return cv_results
# Check if generators are supported as cv and
# that the splits are consistent
np.testing.assert_equal(
_pop_time_keys(gs3.cv_results_), _pop_time_keys(gs4.cv_results_)
)
# OneTimeSplitter is a non-re-entrant cv where split can be called only
# once if ``cv.split`` is called once per param setting in GridSearchCV.fit
# the 2nd and 3rd parameter will not be evaluated as no train/test indices
# will be generated for the 2nd and subsequent cv.split calls.
# This is a check to make sure cv.split is not called once per param
# setting.
np.testing.assert_equal(
{k: v for k, v in gs.cv_results_.items() if not k.endswith("_time")},
{k: v for k, v in gs2.cv_results_.items() if not k.endswith("_time")},
)
# Check consistency of folds across the parameters
gs = GridSearchCV(
LinearSVC(dual="auto", random_state=0),
param_grid={"C": [0.1, 0.1, 0.2, 0.2]},
cv=KFold(n_splits=n_splits, shuffle=True),
return_train_score=True,
)
gs.fit(X, y)
# As the first two param settings (C=0.1) and the next two param
# settings (C=0.2) are same, the test and train scores must also be
# same as long as the same train/test indices are generated for all
# the cv splits, for both param setting
for score_type in ("train", "test"):
per_param_scores = {}
for param_i in range(4):
per_param_scores[param_i] = [
gs.cv_results_["split%d_%s_score" % (s, score_type)][param_i]
for s in range(5)
]
assert_array_almost_equal(per_param_scores[0], per_param_scores[1])
assert_array_almost_equal(per_param_scores[2], per_param_scores[3])
def test_transform_inverse_transform_round_trip():
clf = MockClassifier()
grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=3, verbose=3)
grid_search.fit(X, y)
X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
assert_array_equal(X, X_round_trip)
def test_custom_run_search():
def check_results(results, gscv):
exp_results = gscv.cv_results_
assert sorted(results.keys()) == sorted(exp_results)
for k in results:
if not k.endswith("_time"):
# XXX: results['params'] is a list :|
results[k] = np.asanyarray(results[k])
if results[k].dtype.kind == "O":
assert_array_equal(
exp_results[k], results[k], err_msg="Checking " + k
)
else:
assert_allclose(exp_results[k], results[k], err_msg="Checking " + k)
def fit_grid(param_grid):
return GridSearchCV(clf, param_grid, return_train_score=True).fit(X, y)
class CustomSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super().__init__(estimator, **kwargs)
def _run_search(self, evaluate):
results = evaluate([{"max_depth": 1}, {"max_depth": 2}])
check_results(results, fit_grid({"max_depth": [1, 2]}))
results = evaluate([{"min_samples_split": 5}, {"min_samples_split": 10}])
check_results(
results,
fit_grid([{"max_depth": [1, 2]}, {"min_samples_split": [5, 10]}]),
)
# Using regressor to make sure each score differs
clf = DecisionTreeRegressor(random_state=0)
X, y = make_classification(n_samples=100, n_informative=4, random_state=0)
mycv = CustomSearchCV(clf, return_train_score=True).fit(X, y)
gscv = fit_grid([{"max_depth": [1, 2]}, {"min_samples_split": [5, 10]}])
results = mycv.cv_results_
check_results(results, gscv)
for attr in dir(gscv):
if (
attr[0].islower()
and attr[-1:] == "_"
and attr
not in {
"cv_results_",
"best_estimator_",
"refit_time_",
"classes_",
"scorer_",
}
):
assert getattr(gscv, attr) == getattr(mycv, attr), (
"Attribute %s not equal" % attr
)
def test__custom_fit_no_run_search():
class NoRunSearchSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super().__init__(estimator, **kwargs)
def fit(self, X, y=None, groups=None, **fit_params):
return self
# this should not raise any exceptions
NoRunSearchSearchCV(SVC()).fit(X, y)
class BadSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super().__init__(estimator, **kwargs)
with pytest.raises(NotImplementedError, match="_run_search not implemented."):
# this should raise a NotImplementedError
BadSearchCV(SVC()).fit(X, y)
def test_empty_cv_iterator_error():
# Use global X, y
# create cv
cv = KFold(n_splits=3).split(X)
# pop all of it, this should cause the expected ValueError
[u for u in cv]
# cv is empty now
train_size = 100
ridge = RandomizedSearchCV(Ridge(), {"alpha": [1e-3, 1e-2, 1e-1]}, cv=cv, n_jobs=4)
# assert that this raises an error
with pytest.raises(
ValueError,
match=(
"No fits were performed. "
"Was the CV iterator empty\\? "
"Were there no candidates\\?"
),
):
ridge.fit(X[:train_size], y[:train_size])
def test_random_search_bad_cv():
# Use global X, y
class BrokenKFold(KFold):
def get_n_splits(self, *args, **kw):
return 1
# create bad cv
cv = BrokenKFold(n_splits=3)
train_size = 100
ridge = RandomizedSearchCV(Ridge(), {"alpha": [1e-3, 1e-2, 1e-1]}, cv=cv, n_jobs=4)
# assert that this raises an error
with pytest.raises(
ValueError,
match=(
"cv.split and cv.get_n_splits returned "
"inconsistent results. Expected \\d+ "
"splits, got \\d+"
),
):
ridge.fit(X[:train_size], y[:train_size])
@pytest.mark.parametrize("return_train_score", [False, True])
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[
(GridSearchCV, {"param_grid": {"max_depth": [2, 3, 5, 8]}}),
(
RandomizedSearchCV,
{"param_distributions": {"max_depth": [2, 3, 5, 8]}, "n_iter": 4},
),
],
)
def test_searchcv_raise_warning_with_non_finite_score(
SearchCV, specialized_params, return_train_score
):
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/10529
# Check that we raise a UserWarning when a non-finite score is
# computed in the SearchCV
X, y = make_classification(n_classes=2, random_state=0)
class FailingScorer:
"""Scorer that will fail for some split but not all."""
def __init__(self):
self.n_counts = 0
def __call__(self, estimator, X, y):
self.n_counts += 1
if self.n_counts % 5 == 0:
return np.nan
return 1
grid = SearchCV(
DecisionTreeClassifier(),
scoring=FailingScorer(),
cv=3,
return_train_score=return_train_score,
**specialized_params,
)
with pytest.warns(UserWarning) as warn_msg:
grid.fit(X, y)
set_with_warning = ["test", "train"] if return_train_score else ["test"]
assert len(warn_msg) == len(set_with_warning)
for msg, dataset in zip(warn_msg, set_with_warning):
assert f"One or more of the {dataset} scores are non-finite" in str(msg.message)
# all non-finite scores should be equally ranked last
last_rank = grid.cv_results_["rank_test_score"].max()
non_finite_mask = np.isnan(grid.cv_results_["mean_test_score"])
assert_array_equal(grid.cv_results_["rank_test_score"][non_finite_mask], last_rank)
# all finite scores should be better ranked than the non-finite scores
assert np.all(grid.cv_results_["rank_test_score"][~non_finite_mask] < last_rank)
def test_callable_multimetric_confusion_matrix():
# Test callable with many metrics inserts the correct names and metrics
# into the search cv object
def custom_scorer(clf, X, y):
y_pred = clf.predict(X)
cm = confusion_matrix(y, y_pred)
return {"tn": cm[0, 0], "fp": cm[0, 1], "fn": cm[1, 0], "tp": cm[1, 1]}
X, y = make_classification(n_samples=40, n_features=4, random_state=42)
est = LinearSVC(dual="auto", random_state=42)
search = GridSearchCV(est, {"C": [0.1, 1]}, scoring=custom_scorer, refit="fp")
search.fit(X, y)
score_names = ["tn", "fp", "fn", "tp"]
for name in score_names:
assert "mean_test_{}".format(name) in search.cv_results_
y_pred = search.predict(X)
cm = confusion_matrix(y, y_pred)
assert search.score(X, y) == pytest.approx(cm[0, 1])
def test_callable_multimetric_same_as_list_of_strings():
# Test callable multimetric is the same as a list of strings
def custom_scorer(est, X, y):
y_pred = est.predict(X)
return {
"recall": recall_score(y, y_pred),
"accuracy": accuracy_score(y, y_pred),
}
X, y = make_classification(n_samples=40, n_features=4, random_state=42)
est = LinearSVC(dual="auto", random_state=42)
search_callable = GridSearchCV(
est, {"C": [0.1, 1]}, scoring=custom_scorer, refit="recall"
)
search_str = GridSearchCV(
est, {"C": [0.1, 1]}, scoring=["recall", "accuracy"], refit="recall"
)
search_callable.fit(X, y)
search_str.fit(X, y)
assert search_callable.best_score_ == pytest.approx(search_str.best_score_)
assert search_callable.best_index_ == search_str.best_index_
assert search_callable.score(X, y) == pytest.approx(search_str.score(X, y))
def test_callable_single_metric_same_as_single_string():
# Tests callable scorer is the same as scoring with a single string
def custom_scorer(est, X, y):
y_pred = est.predict(X)
return recall_score(y, y_pred)
X, y = make_classification(n_samples=40, n_features=4, random_state=42)
est = LinearSVC(dual="auto", random_state=42)
search_callable = GridSearchCV(
est, {"C": [0.1, 1]}, scoring=custom_scorer, refit=True
)
search_str = GridSearchCV(est, {"C": [0.1, 1]}, scoring="recall", refit="recall")
search_list_str = GridSearchCV(
est, {"C": [0.1, 1]}, scoring=["recall"], refit="recall"
)
search_callable.fit(X, y)
search_str.fit(X, y)
search_list_str.fit(X, y)
assert search_callable.best_score_ == pytest.approx(search_str.best_score_)
assert search_callable.best_index_ == search_str.best_index_
assert search_callable.score(X, y) == pytest.approx(search_str.score(X, y))
assert search_list_str.best_score_ == pytest.approx(search_str.best_score_)
assert search_list_str.best_index_ == search_str.best_index_
assert search_list_str.score(X, y) == pytest.approx(search_str.score(X, y))
def test_callable_multimetric_error_on_invalid_key():
# Raises when the callable scorer does not return a dict with `refit` key.
def bad_scorer(est, X, y):
return {"bad_name": 1}
X, y = make_classification(n_samples=40, n_features=4, random_state=42)
clf = GridSearchCV(
LinearSVC(dual="auto", random_state=42),
{"C": [0.1, 1]},
scoring=bad_scorer,
refit="good_name",
)
msg = (
"For multi-metric scoring, the parameter refit must be set to a "
"scorer key or a callable to refit"
)
with pytest.raises(ValueError, match=msg):
clf.fit(X, y)
def test_callable_multimetric_error_failing_clf():
# Warns when there is an estimator the fails to fit with a float
# error_score
def custom_scorer(est, X, y):
return {"acc": 1}
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
gs = GridSearchCV(
clf,
[{"parameter": [0, 1, 2]}],
scoring=custom_scorer,
refit=False,
error_score=0.1,
)
warning_message = re.compile(
"5 fits failed.+total of 15.+The score on these"
r" train-test partitions for these parameters will be set to 0\.1",
flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
assert_allclose(gs.cv_results_["mean_test_acc"], [1, 1, 0.1])
def test_callable_multimetric_clf_all_fits_fail():
# Warns and raises when all estimator fails to fit.
def custom_scorer(est, X, y):
return {"acc": 1}
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
gs = GridSearchCV(
clf,
[{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
scoring=custom_scorer,
refit=False,
error_score=0.1,
)
individual_fit_error_message = "ValueError: Failing classifier failed as required"
error_message = re.compile(
(
"All the 15 fits failed.+your model is misconfigured.+"
f"{individual_fit_error_message}"
),
flags=re.DOTALL,
)
with pytest.raises(ValueError, match=error_message):
gs.fit(X, y)
def test_n_features_in():
# make sure grid search and random search delegate n_features_in to the
# best estimator
n_features = 4
X, y = make_classification(n_features=n_features)
gbdt = HistGradientBoostingClassifier()
param_grid = {"max_iter": [3, 4]}
gs = GridSearchCV(gbdt, param_grid)
rs = RandomizedSearchCV(gbdt, param_grid, n_iter=1)
assert not hasattr(gs, "n_features_in_")
assert not hasattr(rs, "n_features_in_")
gs.fit(X, y)
rs.fit(X, y)
assert gs.n_features_in_ == n_features
assert rs.n_features_in_ == n_features
@pytest.mark.parametrize("pairwise", [True, False])
def test_search_cv_pairwise_property_delegated_to_base_estimator(pairwise):
"""
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
"""
class TestEstimator(BaseEstimator):
def _more_tags(self):
return {"pairwise": pairwise}
est = TestEstimator()
attr_message = "BaseSearchCV pairwise tag must match estimator"
cv = GridSearchCV(est, {"n_neighbors": [10]})
assert pairwise == cv._get_tags()["pairwise"], attr_message
def test_search_cv__pairwise_property_delegated_to_base_estimator():
"""
Test implementation of BaseSearchCV has the pairwise property
which matches the pairwise tag of its estimator.
This test make sure pairwise tag is delegated to the base estimator.
Non-regression test for issue #13920.
"""
class EstimatorPairwise(BaseEstimator):
def __init__(self, pairwise=True):
self.pairwise = pairwise
def _more_tags(self):
return {"pairwise": self.pairwise}
est = EstimatorPairwise()
attr_message = "BaseSearchCV _pairwise property must match estimator"
for _pairwise_setting in [True, False]:
est.set_params(pairwise=_pairwise_setting)
cv = GridSearchCV(est, {"n_neighbors": [10]})
assert _pairwise_setting == cv._get_tags()["pairwise"], attr_message
def test_search_cv_pairwise_property_equivalence_of_precomputed():
"""
Test implementation of BaseSearchCV has the pairwise tag
which matches the pairwise tag of its estimator.
This test ensures the equivalence of 'precomputed'.
Non-regression test for issue #13920.
"""
n_samples = 50
n_splits = 2
X, y = make_classification(n_samples=n_samples, random_state=0)
grid_params = {"n_neighbors": [10]}
# defaults to euclidean metric (minkowski p = 2)
clf = KNeighborsClassifier()
cv = GridSearchCV(clf, grid_params, cv=n_splits)
cv.fit(X, y)
preds_original = cv.predict(X)
# precompute euclidean metric to validate pairwise is working
X_precomputed = euclidean_distances(X)
clf = KNeighborsClassifier(metric="precomputed")
cv = GridSearchCV(clf, grid_params, cv=n_splits)
cv.fit(X_precomputed, y)
preds_precomputed = cv.predict(X_precomputed)
attr_message = "GridSearchCV not identical with precomputed metric"
assert (preds_original == preds_precomputed).all(), attr_message
@pytest.mark.parametrize(
"SearchCV, param_search",
[(GridSearchCV, {"a": [0.1, 0.01]}), (RandomizedSearchCV, {"a": uniform(1, 3)})],
)
def test_scalar_fit_param(SearchCV, param_search):
# unofficially sanctioned tolerance for scalar values in fit_params
# non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/15805
class TestEstimator(ClassifierMixin, BaseEstimator):
def __init__(self, a=None):
self.a = a
def fit(self, X, y, r=None):
self.r_ = r
def predict(self, X):
return np.zeros(shape=(len(X)))
model = SearchCV(TestEstimator(), param_search)
X, y = make_classification(random_state=42)
model.fit(X, y, r=42)
assert model.best_estimator_.r_ == 42
@pytest.mark.parametrize(
"SearchCV, param_search",
[
(GridSearchCV, {"alpha": [0.1, 0.01]}),
(RandomizedSearchCV, {"alpha": uniform(0.01, 0.1)}),
],
)
def test_scalar_fit_param_compat(SearchCV, param_search):
# check support for scalar values in fit_params, for instance in LightGBM
# that do not exactly respect the scikit-learn API contract but that we do
# not want to break without an explicit deprecation cycle and API
# recommendations for implementing early stopping with a user provided
# validation set. non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/15805
X_train, X_valid, y_train, y_valid = train_test_split(
*make_classification(random_state=42), random_state=42
)
class _FitParamClassifier(SGDClassifier):
def fit(
self,
X,
y,
sample_weight=None,
tuple_of_arrays=None,
scalar_param=None,
callable_param=None,
):
super().fit(X, y, sample_weight=sample_weight)
assert scalar_param > 0
assert callable(callable_param)
# The tuple of arrays should be preserved as tuple.
assert isinstance(tuple_of_arrays, tuple)
assert tuple_of_arrays[0].ndim == 2
assert tuple_of_arrays[1].ndim == 1
return self
def _fit_param_callable():
pass
model = SearchCV(_FitParamClassifier(), param_search)
# NOTE: `fit_params` should be data dependent (e.g. `sample_weight`) which
# is not the case for the following parameters. But this abuse is common in
# popular third-party libraries and we should tolerate this behavior for
# now and be careful not to break support for those without following
# proper deprecation cycle.
fit_params = {
"tuple_of_arrays": (X_valid, y_valid),
"callable_param": _fit_param_callable,
"scalar_param": 42,
}
model.fit(X_train, y_train, **fit_params)
# FIXME: Replace this test with a full `check_estimator` once we have API only
# checks.
@pytest.mark.filterwarnings("ignore:The total space of parameters 4 is")
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
@pytest.mark.parametrize("Predictor", [MinimalRegressor, MinimalClassifier])
def test_search_cv_using_minimal_compatible_estimator(SearchCV, Predictor):
# Check that third-party library can run tests without inheriting from
# BaseEstimator.
rng = np.random.RandomState(0)
X, y = rng.randn(25, 2), np.array([0] * 5 + [1] * 20)
model = Pipeline(
[("transformer", MinimalTransformer()), ("predictor", Predictor())]
)
params = {
"transformer__param": [1, 10],
"predictor__parama": [1, 10],
}
search = SearchCV(model, params, error_score="raise")
search.fit(X, y)
assert search.best_params_.keys() == params.keys()
y_pred = search.predict(X)
if is_classifier(search):
assert_array_equal(y_pred, 1)
assert search.score(X, y) == pytest.approx(accuracy_score(y, y_pred))
else:
assert_allclose(y_pred, y.mean())
assert search.score(X, y) == pytest.approx(r2_score(y, y_pred))
@pytest.mark.parametrize("return_train_score", [True, False])
def test_search_cv_verbose_3(capsys, return_train_score):
"""Check that search cv with verbose>2 shows the score for single
metrics. non-regression test for #19658."""
X, y = make_classification(n_samples=100, n_classes=2, flip_y=0.2, random_state=0)
clf = LinearSVC(dual="auto", random_state=0)
grid = {"C": [0.1]}
GridSearchCV(
clf,
grid,
scoring="accuracy",
verbose=3,
cv=3,
return_train_score=return_train_score,
).fit(X, y)
captured = capsys.readouterr().out
if return_train_score:
match = re.findall(r"score=\(train=[\d\.]+, test=[\d.]+\)", captured)
else:
match = re.findall(r"score=[\d\.]+", captured)
assert len(match) == 3
@pytest.mark.parametrize(
"SearchCV, param_search",
[
(GridSearchCV, "param_grid"),
(RandomizedSearchCV, "param_distributions"),
(HalvingGridSearchCV, "param_grid"),
],
)
def test_search_estimator_param(SearchCV, param_search):
# test that SearchCV object doesn't change the object given in the parameter grid
X, y = make_classification(random_state=42)
params = {"clf": [LinearSVC(dual="auto")], "clf__C": [0.01]}
orig_C = params["clf"][0].C
pipe = Pipeline([("trs", MinimalTransformer()), ("clf", None)])
param_grid_search = {param_search: params}
gs = SearchCV(pipe, refit=True, cv=2, scoring="accuracy", **param_grid_search).fit(
X, y
)
# testing that the original object in params is not changed
assert params["clf"][0].C == orig_C
# testing that the GS is setting the parameter of the step correctly
assert gs.best_estimator_.named_steps["clf"].C == 0.01
# Metadata Routing Tests
# ======================
@pytest.mark.usefixtures("enable_slep006")
@pytest.mark.parametrize(
"SearchCV, param_search",
[
(GridSearchCV, "param_grid"),
(RandomizedSearchCV, "param_distributions"),
],
)
def test_multi_metric_search_forwards_metadata(SearchCV, param_search):
"""Test that *SearchCV forwards metadata correctly when passed multiple metrics."""
X, y = make_classification(random_state=42)
n_samples = _num_samples(X)
rng = np.random.RandomState(0)
score_weights = rng.rand(n_samples)
score_metadata = rng.rand(n_samples)
est = LinearSVC(dual="auto")
param_grid_search = {param_search: {"C": [1]}}
scorer_registry = _Registry()
scorer = ConsumingScorer(registry=scorer_registry).set_score_request(
sample_weight="score_weights", metadata="score_metadata"
)
scoring = dict(my_scorer=scorer, accuracy="accuracy")
SearchCV(est, refit="accuracy", cv=2, scoring=scoring, **param_grid_search).fit(
X, y, score_weights=score_weights, score_metadata=score_metadata
)
assert len(scorer_registry)
for _scorer in scorer_registry:
check_recorded_metadata(
obj=_scorer,
method="score",
split_params=("sample_weight", "metadata"),
sample_weight=score_weights,
metadata=score_metadata,
)
@pytest.mark.parametrize(
"SearchCV, param_search",
[
(GridSearchCV, "param_grid"),
(RandomizedSearchCV, "param_distributions"),
(HalvingGridSearchCV, "param_grid"),
],
)
def test_score_rejects_params_with_no_routing_enabled(SearchCV, param_search):
"""*SearchCV should reject **params when metadata routing is not enabled
since this is added only when routing is enabled."""
X, y = make_classification(random_state=42)
est = LinearSVC(dual="auto")
param_grid_search = {param_search: {"C": [1]}}
gs = SearchCV(est, cv=2, **param_grid_search).fit(X, y)
with pytest.raises(ValueError, match="is only supported if"):
gs.score(X, y, metadata=1)
# End of Metadata Routing Tests
# =============================
|