File: test_search.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (2537 lines) | stat: -rw-r--r-- 84,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
"""Test the search module"""

import pickle
import re
import sys
from collections.abc import Iterable, Sized
from functools import partial
from io import StringIO
from itertools import chain, product
from types import GeneratorType

import numpy as np
import pytest
from scipy.stats import bernoulli, expon, uniform

from sklearn.base import BaseEstimator, ClassifierMixin, is_classifier
from sklearn.cluster import KMeans
from sklearn.datasets import (
    make_blobs,
    make_classification,
    make_multilabel_classification,
)
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.exceptions import FitFailedWarning
from sklearn.experimental import enable_halving_search_cv  # noqa
from sklearn.impute import SimpleImputer
from sklearn.linear_model import (
    LinearRegression,
    Ridge,
    SGDClassifier,
)
from sklearn.metrics import (
    accuracy_score,
    confusion_matrix,
    f1_score,
    make_scorer,
    r2_score,
    recall_score,
    roc_auc_score,
)
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.model_selection import (
    GridSearchCV,
    GroupKFold,
    GroupShuffleSplit,
    HalvingGridSearchCV,
    KFold,
    LeaveOneGroupOut,
    LeavePGroupsOut,
    ParameterGrid,
    ParameterSampler,
    RandomizedSearchCV,
    StratifiedKFold,
    StratifiedShuffleSplit,
    train_test_split,
)
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection.tests.common import OneTimeSplitter
from sklearn.neighbors import KernelDensity, KNeighborsClassifier, LocalOutlierFactor
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC, LinearSVC
from sklearn.tests.metadata_routing_common import (
    ConsumingScorer,
    _Registry,
    check_recorded_metadata,
)
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from sklearn.utils._testing import (
    MinimalClassifier,
    MinimalRegressor,
    MinimalTransformer,
    assert_allclose,
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.fixes import CSR_CONTAINERS
from sklearn.utils.validation import _num_samples


# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
    """Dummy classifier to test the parameter search algorithms"""

    def __init__(self, foo_param=0):
        self.foo_param = foo_param

    def fit(self, X, Y):
        assert len(X) == len(Y)
        self.classes_ = np.unique(Y)
        return self

    def predict(self, T):
        return T.shape[0]

    def transform(self, X):
        return X + self.foo_param

    def inverse_transform(self, X):
        return X - self.foo_param

    predict_proba = predict
    predict_log_proba = predict
    decision_function = predict

    def score(self, X=None, Y=None):
        if self.foo_param > 1:
            score = 1.0
        else:
            score = 0.0
        return score

    def get_params(self, deep=False):
        return {"foo_param": self.foo_param}

    def set_params(self, **params):
        self.foo_param = params["foo_param"]
        return self


class LinearSVCNoScore(LinearSVC):
    """A LinearSVC classifier that has no score method."""

    @property
    def score(self):
        raise AttributeError


X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])


def assert_grid_iter_equals_getitem(grid):
    assert list(grid) == [grid[i] for i in range(len(grid))]


@pytest.mark.parametrize("klass", [ParameterGrid, partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
    "input, error_type, error_message",
    [
        (0, TypeError, r"Parameter .* a dict or a list, got: 0 of type int"),
        ([{"foo": [0]}, 0], TypeError, r"Parameter .* is not a dict \(0\)"),
        (
            {"foo": 0},
            TypeError,
            r"Parameter (grid|distribution) for parameter 'foo' (is not|needs to be) "
            r"(a list or a numpy array|iterable or a distribution).*",
        ),
    ],
)
def test_validate_parameter_input(klass, input, error_type, error_message):
    with pytest.raises(error_type, match=error_message):
        klass(input)


def test_parameter_grid():
    # Test basic properties of ParameterGrid.
    params1 = {"foo": [1, 2, 3]}
    grid1 = ParameterGrid(params1)
    assert isinstance(grid1, Iterable)
    assert isinstance(grid1, Sized)
    assert len(grid1) == 3
    assert_grid_iter_equals_getitem(grid1)

    params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]}
    grid2 = ParameterGrid(params2)
    assert len(grid2) == 6

    # loop to assert we can iterate over the grid multiple times
    for i in range(2):
        # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
        points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
        assert points == set(
            ("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"])
        )
    assert_grid_iter_equals_getitem(grid2)

    # Special case: empty grid (useful to get default estimator settings)
    empty = ParameterGrid({})
    assert len(empty) == 1
    assert list(empty) == [{}]
    assert_grid_iter_equals_getitem(empty)
    with pytest.raises(IndexError):
        empty[1]

    has_empty = ParameterGrid([{"C": [1, 10]}, {}, {"C": [0.5]}])
    assert len(has_empty) == 4
    assert list(has_empty) == [{"C": 1}, {"C": 10}, {}, {"C": 0.5}]
    assert_grid_iter_equals_getitem(has_empty)


def test_grid_search():
    # Test that the best estimator contains the right value for foo_param
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=3, verbose=3)
    # make sure it selects the smallest parameter in case of ties
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    grid_search.fit(X, y)
    sys.stdout = old_stdout
    assert grid_search.best_estimator_.foo_param == 2

    assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3])

    # Smoke test the score etc:
    grid_search.score(X, y)
    grid_search.predict_proba(X)
    grid_search.decision_function(X)
    grid_search.transform(X)

    # Test exception handling on scoring
    grid_search.scoring = "sklearn"
    with pytest.raises(ValueError):
        grid_search.fit(X, y)


def test_grid_search_pipeline_steps():
    # check that parameters that are estimators are cloned before fitting
    pipe = Pipeline([("regressor", LinearRegression())])
    param_grid = {"regressor": [LinearRegression(), Ridge()]}
    grid_search = GridSearchCV(pipe, param_grid, cv=2)
    grid_search.fit(X, y)
    regressor_results = grid_search.cv_results_["param_regressor"]
    assert isinstance(regressor_results[0], LinearRegression)
    assert isinstance(regressor_results[1], Ridge)
    assert not hasattr(regressor_results[0], "coef_")
    assert not hasattr(regressor_results[1], "coef_")
    assert regressor_results[0] is not grid_search.best_estimator_
    assert regressor_results[1] is not grid_search.best_estimator_
    # check that we didn't modify the parameter grid that was passed
    assert not hasattr(param_grid["regressor"][0], "coef_")
    assert not hasattr(param_grid["regressor"][1], "coef_")


@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    clf = CheckingClassifier(expected_fit_params=["spam", "eggs"])
    searcher = SearchCV(clf, {"foo_param": [1, 2, 3]}, cv=2, error_score="raise")

    # The CheckingClassifier generates an assertion error if
    # a parameter is missing or has length != len(X).
    err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
    with pytest.raises(AssertionError, match=err_msg):
        searcher.fit(X, y, spam=np.ones(10))

    err_msg = "Fit parameter spam has length 1; expected"
    with pytest.raises(AssertionError, match=err_msg):
        searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
    searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))


@ignore_warnings
def test_grid_search_no_score():
    # Test grid-search on classifier that has no score function.
    clf = LinearSVC(dual="auto", random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [0.1, 1, 10]
    clf_no_score = LinearSVCNoScore(dual="auto", random_state=0)
    grid_search = GridSearchCV(clf, {"C": Cs}, scoring="accuracy")
    grid_search.fit(X, y)

    grid_search_no_score = GridSearchCV(clf_no_score, {"C": Cs}, scoring="accuracy")
    # smoketest grid search
    grid_search_no_score.fit(X, y)

    # check that best params are equal
    assert grid_search_no_score.best_params_ == grid_search.best_params_
    # check that we can call score and that it gives the correct result
    assert grid_search.score(X, y) == grid_search_no_score.score(X, y)

    # giving no scoring function raises an error
    grid_search_no_score = GridSearchCV(clf_no_score, {"C": Cs})
    with pytest.raises(TypeError, match="no scoring"):
        grid_search_no_score.fit([[1]])


def test_grid_search_score_method():
    X, y = make_classification(n_samples=100, n_classes=2, flip_y=0.2, random_state=0)
    clf = LinearSVC(dual="auto", random_state=0)
    grid = {"C": [0.1]}

    search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
    search_accuracy = GridSearchCV(clf, grid, scoring="accuracy").fit(X, y)
    search_no_score_method_auc = GridSearchCV(
        LinearSVCNoScore(dual="auto"), grid, scoring="roc_auc"
    ).fit(X, y)
    search_auc = GridSearchCV(clf, grid, scoring="roc_auc").fit(X, y)

    # Check warning only occurs in situation where behavior changed:
    # estimator requires score method to compete with scoring parameter
    score_no_scoring = search_no_scoring.score(X, y)
    score_accuracy = search_accuracy.score(X, y)
    score_no_score_auc = search_no_score_method_auc.score(X, y)
    score_auc = search_auc.score(X, y)

    # ensure the test is sane
    assert score_auc < 1.0
    assert score_accuracy < 1.0
    assert score_auc != score_accuracy

    assert_almost_equal(score_accuracy, score_no_scoring)
    assert_almost_equal(score_auc, score_no_score_auc)


def test_grid_search_groups():
    # Check if ValueError (when groups is None) propagates to GridSearchCV
    # And also check if groups is correctly passed to the cv object
    rng = np.random.RandomState(0)

    X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
    groups = rng.randint(0, 3, 15)

    clf = LinearSVC(dual="auto", random_state=0)
    grid = {"C": [1]}

    group_cvs = [
        LeaveOneGroupOut(),
        LeavePGroupsOut(2),
        GroupKFold(n_splits=3),
        GroupShuffleSplit(),
    ]
    error_msg = "The 'groups' parameter should not be None."
    for cv in group_cvs:
        gs = GridSearchCV(clf, grid, cv=cv)
        with pytest.raises(ValueError, match=error_msg):
            gs.fit(X, y)
        gs.fit(X, y, groups=groups)

    non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
    for cv in non_group_cvs:
        gs = GridSearchCV(clf, grid, cv=cv)
        # Should not raise an error
        gs.fit(X, y)


def test_classes__property():
    # Test that classes_ property matches best_estimator_.classes_
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    Cs = [0.1, 1, 10]

    grid_search = GridSearchCV(LinearSVC(dual="auto", random_state=0), {"C": Cs})
    grid_search.fit(X, y)
    assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_)

    # Test that regressors do not have a classes_ attribute
    grid_search = GridSearchCV(Ridge(), {"alpha": [1.0, 2.0]})
    grid_search.fit(X, y)
    assert not hasattr(grid_search, "classes_")

    # Test that the grid searcher has no classes_ attribute before it's fit
    grid_search = GridSearchCV(LinearSVC(dual="auto", random_state=0), {"C": Cs})
    assert not hasattr(grid_search, "classes_")

    # Test that the grid searcher has no classes_ attribute without a refit
    grid_search = GridSearchCV(
        LinearSVC(dual="auto", random_state=0), {"C": Cs}, refit=False
    )
    grid_search.fit(X, y)
    assert not hasattr(grid_search, "classes_")


def test_trivial_cv_results_attr():
    # Test search over a "grid" with only one point.
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {"foo_param": [1]}, cv=3)
    grid_search.fit(X, y)
    assert hasattr(grid_search, "cv_results_")

    random_search = RandomizedSearchCV(clf, {"foo_param": [0]}, n_iter=1, cv=3)
    random_search.fit(X, y)
    assert hasattr(grid_search, "cv_results_")


def test_no_refit():
    # Test that GSCV can be used for model selection alone without refitting
    clf = MockClassifier()
    for scoring in [None, ["accuracy", "precision"]]:
        grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, refit=False, cv=3)
        grid_search.fit(X, y)
        assert (
            not hasattr(grid_search, "best_estimator_")
            and hasattr(grid_search, "best_index_")
            and hasattr(grid_search, "best_params_")
        )

        # Make sure the functions predict/transform etc. raise meaningful
        # error messages
        for fn_name in (
            "predict",
            "predict_proba",
            "predict_log_proba",
            "transform",
            "inverse_transform",
        ):
            outer_msg = f"has no attribute '{fn_name}'"
            inner_msg = (
                f"`refit=False`. {fn_name} is available only after "
                "refitting on the best parameters"
            )
            with pytest.raises(AttributeError, match=outer_msg) as exec_info:
                getattr(grid_search, fn_name)(X)

            assert isinstance(exec_info.value.__cause__, AttributeError)
            assert inner_msg in str(exec_info.value.__cause__)

    # Test that an invalid refit param raises appropriate error messages
    error_msg = (
        "For multi-metric scoring, the parameter refit must be set to a scorer key"
    )
    for refit in [True, "recall", "accuracy"]:
        with pytest.raises(ValueError, match=error_msg):
            GridSearchCV(
                clf, {}, refit=refit, scoring={"acc": "accuracy", "prec": "precision"}
            ).fit(X, y)


def test_grid_search_error():
    # Test that grid search will capture errors on data with different length
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC(dual="auto")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
    with pytest.raises(ValueError):
        cv.fit(X_[:180], y_)


def test_grid_search_one_grid_point():
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
    param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}

    clf = SVC(gamma="auto")
    cv = GridSearchCV(clf, param_dict)
    cv.fit(X_, y_)

    clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
    clf.fit(X_, y_)

    assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)


def test_grid_search_when_param_grid_includes_range():
    # Test that the best estimator contains the right value for foo_param
    clf = MockClassifier()
    grid_search = None
    grid_search = GridSearchCV(clf, {"foo_param": range(1, 4)}, cv=3)
    grid_search.fit(X, y)
    assert grid_search.best_estimator_.foo_param == 2


def test_grid_search_bad_param_grid():
    X, y = make_classification(n_samples=10, n_features=5, random_state=0)
    param_dict = {"C": 1}
    clf = SVC(gamma="auto")
    error_msg = re.escape(
        "Parameter grid for parameter 'C' needs to be a list or "
        "a numpy array, but got 1 (of type int) instead. Single "
        "values need to be wrapped in a list with one element."
    )
    search = GridSearchCV(clf, param_dict)
    with pytest.raises(TypeError, match=error_msg):
        search.fit(X, y)

    param_dict = {"C": []}
    clf = SVC()
    error_msg = re.escape(
        "Parameter grid for parameter 'C' need to be a non-empty sequence, got: []"
    )
    search = GridSearchCV(clf, param_dict)
    with pytest.raises(ValueError, match=error_msg):
        search.fit(X, y)

    param_dict = {"C": "1,2,3"}
    clf = SVC(gamma="auto")
    error_msg = re.escape(
        "Parameter grid for parameter 'C' needs to be a list or a numpy array, "
        "but got '1,2,3' (of type str) instead. Single values need to be "
        "wrapped in a list with one element."
    )
    search = GridSearchCV(clf, param_dict)
    with pytest.raises(TypeError, match=error_msg):
        search.fit(X, y)

    param_dict = {"C": np.ones((3, 2))}
    clf = SVC()
    search = GridSearchCV(clf, param_dict)
    with pytest.raises(ValueError):
        search.fit(X, y)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_grid_search_sparse(csr_container):
    # Test that grid search works with both dense and sparse matrices
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC(dual="auto")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = csr_container(X_)
    clf = LinearSVC(dual="auto")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
    cv.fit(X_[:180].tocoo(), y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert np.mean(y_pred == y_pred2) >= 0.9
    assert C == C2


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_grid_search_sparse_scoring(csr_container):
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC(dual="auto")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = csr_container(X_)
    clf = LinearSVC(dual="auto")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert_array_equal(y_pred, y_pred2)
    assert C == C2
    # Smoke test the score
    # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
    #                            cv.score(X_[:180], y[:180]))

    # test loss where greater is worse
    def f1_loss(y_true_, y_pred_):
        return -f1_score(y_true_, y_pred_)

    F1Loss = make_scorer(f1_loss, greater_is_better=False)
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]}, scoring=F1Loss)
    cv.fit(X_[:180], y_[:180])
    y_pred3 = cv.predict(X_[180:])
    C3 = cv.best_estimator_.C

    assert C == C3
    assert_array_equal(y_pred, y_pred3)


def test_grid_search_precomputed_kernel():
    # Test that grid search works when the input features are given in the
    # form of a precomputed kernel matrix
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    # compute the training kernel matrix corresponding to the linear kernel
    K_train = np.dot(X_[:180], X_[:180].T)
    y_train = y_[:180]

    clf = SVC(kernel="precomputed")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
    cv.fit(K_train, y_train)

    assert cv.best_score_ >= 0

    # compute the test kernel matrix
    K_test = np.dot(X_[180:], X_[:180].T)
    y_test = y_[180:]

    y_pred = cv.predict(K_test)

    assert np.mean(y_pred == y_test) >= 0

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    with pytest.raises(ValueError):
        cv.fit(K_train.tolist(), y_train)


def test_grid_search_precomputed_kernel_error_nonsquare():
    # Test that grid search returns an error with a non-square precomputed
    # training kernel matrix
    K_train = np.zeros((10, 20))
    y_train = np.ones((10,))
    clf = SVC(kernel="precomputed")
    cv = GridSearchCV(clf, {"C": [0.1, 1.0]})
    with pytest.raises(ValueError):
        cv.fit(K_train, y_train)


class BrokenClassifier(BaseEstimator):
    """Broken classifier that cannot be fit twice"""

    def __init__(self, parameter=None):
        self.parameter = parameter

    def fit(self, X, y):
        assert not hasattr(self, "has_been_fit_")
        self.has_been_fit_ = True

    def predict(self, X):
        return np.zeros(X.shape[0])


@ignore_warnings
def test_refit():
    # Regression test for bug in refitting
    # Simulates re-fitting a broken estimator; this used to break with
    # sparse SVMs.
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = GridSearchCV(
        BrokenClassifier(), [{"parameter": [0, 1]}], scoring="precision", refit=True
    )
    clf.fit(X, y)


def test_refit_callable():
    """
    Test refit=callable, which adds flexibility in identifying the
    "best" estimator.
    """

    def refit_callable(cv_results):
        """
        A dummy function tests `refit=callable` interface.
        Return the index of a model that has the least
        `mean_test_score`.
        """
        # Fit a dummy clf with `refit=True` to get a list of keys in
        # clf.cv_results_.
        X, y = make_classification(n_samples=100, n_features=4, random_state=42)
        clf = GridSearchCV(
            LinearSVC(dual="auto", random_state=42),
            {"C": [0.01, 0.1, 1]},
            scoring="precision",
            refit=True,
        )
        clf.fit(X, y)
        # Ensure that `best_index_ != 0` for this dummy clf
        assert clf.best_index_ != 0

        # Assert every key matches those in `cv_results`
        for key in clf.cv_results_.keys():
            assert key in cv_results

        return cv_results["mean_test_score"].argmin()

    X, y = make_classification(n_samples=100, n_features=4, random_state=42)
    clf = GridSearchCV(
        LinearSVC(dual="auto", random_state=42),
        {"C": [0.01, 0.1, 1]},
        scoring="precision",
        refit=refit_callable,
    )
    clf.fit(X, y)

    assert clf.best_index_ == 0
    # Ensure `best_score_` is disabled when using `refit=callable`
    assert not hasattr(clf, "best_score_")


def test_refit_callable_invalid_type():
    """
    Test implementation catches the errors when 'best_index_' returns an
    invalid result.
    """

    def refit_callable_invalid_type(cv_results):
        """
        A dummy function tests when returned 'best_index_' is not integer.
        """
        return None

    X, y = make_classification(n_samples=100, n_features=4, random_state=42)

    clf = GridSearchCV(
        LinearSVC(dual="auto", random_state=42),
        {"C": [0.1, 1]},
        scoring="precision",
        refit=refit_callable_invalid_type,
    )
    with pytest.raises(TypeError, match="best_index_ returned is not an integer"):
        clf.fit(X, y)


@pytest.mark.parametrize("out_bound_value", [-1, 2])
@pytest.mark.parametrize("search_cv", [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
    """
    Test implementation catches the errors when 'best_index_' returns an
    out of bound result.
    """

    def refit_callable_out_bound(cv_results):
        """
        A dummy function tests when returned 'best_index_' is out of bounds.
        """
        return out_bound_value

    X, y = make_classification(n_samples=100, n_features=4, random_state=42)

    clf = search_cv(
        LinearSVC(dual="auto", random_state=42),
        {"C": [0.1, 1]},
        scoring="precision",
        refit=refit_callable_out_bound,
    )
    with pytest.raises(IndexError, match="best_index_ index out of range"):
        clf.fit(X, y)


def test_refit_callable_multi_metric():
    """
    Test refit=callable in multiple metric evaluation setting
    """

    def refit_callable(cv_results):
        """
        A dummy function tests `refit=callable` interface.
        Return the index of a model that has the least
        `mean_test_prec`.
        """
        assert "mean_test_prec" in cv_results
        return cv_results["mean_test_prec"].argmin()

    X, y = make_classification(n_samples=100, n_features=4, random_state=42)
    scoring = {"Accuracy": make_scorer(accuracy_score), "prec": "precision"}
    clf = GridSearchCV(
        LinearSVC(dual="auto", random_state=42),
        {"C": [0.01, 0.1, 1]},
        scoring=scoring,
        refit=refit_callable,
    )
    clf.fit(X, y)

    assert clf.best_index_ == 0
    # Ensure `best_score_` is disabled when using `refit=callable`
    assert not hasattr(clf, "best_score_")


def test_gridsearch_nd():
    # Pass X as list in GridSearchCV
    X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
    y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)

    def check_X(x):
        return x.shape[1:] == (5, 3, 2)

    def check_y(x):
        return x.shape[1:] == (7, 11)

    clf = CheckingClassifier(
        check_X=check_X,
        check_y=check_y,
        methods_to_check=["fit"],
    )
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]})
    grid_search.fit(X_4d, y_3d).score(X, y)
    assert hasattr(grid_search, "cv_results_")


def test_X_as_list():
    # Pass X as list in GridSearchCV
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = CheckingClassifier(
        check_X=lambda x: isinstance(x, list),
        methods_to_check=["fit"],
    )
    cv = KFold(n_splits=3)
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=cv)
    grid_search.fit(X.tolist(), y).score(X, y)
    assert hasattr(grid_search, "cv_results_")


def test_y_as_list():
    # Pass y as list in GridSearchCV
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = CheckingClassifier(
        check_y=lambda x: isinstance(x, list),
        methods_to_check=["fit"],
    )
    cv = KFold(n_splits=3)
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=cv)
    grid_search.fit(X, y.tolist()).score(X, y)
    assert hasattr(grid_search, "cv_results_")


@ignore_warnings
def test_pandas_input():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import DataFrame, Series

        types.append((DataFrame, Series))
    except ImportError:
        pass

    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    for InputFeatureType, TargetType in types:
        # X dataframe, y series
        X_df, y_ser = InputFeatureType(X), TargetType(y)

        def check_df(x):
            return isinstance(x, InputFeatureType)

        def check_series(x):
            return isinstance(x, TargetType)

        clf = CheckingClassifier(check_X=check_df, check_y=check_series)

        grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]})
        grid_search.fit(X_df, y_ser).score(X_df, y_ser)
        grid_search.predict(X_df)
        assert hasattr(grid_search, "cv_results_")


def test_unsupervised_grid_search():
    # test grid-search with unsupervised estimator
    X, y = make_blobs(n_samples=50, random_state=0)
    km = KMeans(random_state=0, init="random", n_init=1)

    # Multi-metric evaluation unsupervised
    scoring = ["adjusted_rand_score", "fowlkes_mallows_score"]
    for refit in ["adjusted_rand_score", "fowlkes_mallows_score"]:
        grid_search = GridSearchCV(
            km, param_grid=dict(n_clusters=[2, 3, 4]), scoring=scoring, refit=refit
        )
        grid_search.fit(X, y)
        # Both ARI and FMS can find the right number :)
        assert grid_search.best_params_["n_clusters"] == 3

    # Single metric evaluation unsupervised
    grid_search = GridSearchCV(
        km, param_grid=dict(n_clusters=[2, 3, 4]), scoring="fowlkes_mallows_score"
    )
    grid_search.fit(X, y)
    assert grid_search.best_params_["n_clusters"] == 3

    # Now without a score, and without y
    grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
    grid_search.fit(X)
    assert grid_search.best_params_["n_clusters"] == 4


def test_gridsearch_no_predict():
    # test grid-search with an estimator without predict.
    # slight duplication of a test from KDE
    def custom_scoring(estimator, X):
        return 42 if estimator.bandwidth == 0.1 else 0

    X, _ = make_blobs(cluster_std=0.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]])
    search = GridSearchCV(
        KernelDensity(),
        param_grid=dict(bandwidth=[0.01, 0.1, 1]),
        scoring=custom_scoring,
    )
    search.fit(X)
    assert search.best_params_["bandwidth"] == 0.1
    assert search.best_score_ == 42


def test_param_sampler():
    # test basic properties of param sampler
    param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)}
    sampler = ParameterSampler(
        param_distributions=param_distributions, n_iter=10, random_state=0
    )
    samples = [x for x in sampler]
    assert len(samples) == 10
    for sample in samples:
        assert sample["kernel"] in ["rbf", "linear"]
        assert 0 <= sample["C"] <= 1

    # test that repeated calls yield identical parameters
    param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
    sampler = ParameterSampler(
        param_distributions=param_distributions, n_iter=3, random_state=0
    )
    assert [x for x in sampler] == [x for x in sampler]

    param_distributions = {"C": uniform(0, 1)}
    sampler = ParameterSampler(
        param_distributions=param_distributions, n_iter=10, random_state=0
    )
    assert [x for x in sampler] == [x for x in sampler]


def check_cv_results_array_types(search, param_keys, score_keys):
    # Check if the search `cv_results`'s array are of correct types
    cv_results = search.cv_results_
    assert all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)
    assert all(cv_results[key].dtype == object for key in param_keys)
    assert not any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)
    assert all(
        cv_results[key].dtype == np.float64
        for key in score_keys
        if not key.startswith("rank")
    )

    scorer_keys = search.scorer_.keys() if search.multimetric_ else ["score"]

    for key in scorer_keys:
        assert cv_results["rank_test_%s" % key].dtype == np.int32


def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand, extra_keys=()):
    # Test the search.cv_results_ contains all the required results
    all_keys = param_keys + score_keys + extra_keys
    assert_array_equal(sorted(cv_results.keys()), sorted(all_keys + ("params",)))
    assert all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)


def test_grid_search_cv_results():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_grid_points = 6
    params = [
        dict(
            kernel=[
                "rbf",
            ],
            C=[1, 10],
            gamma=[0.1, 1],
        ),
        dict(
            kernel=[
                "poly",
            ],
            degree=[1, 2],
        ),
    ]

    param_keys = ("param_C", "param_degree", "param_gamma", "param_kernel")
    score_keys = (
        "mean_test_score",
        "mean_train_score",
        "rank_test_score",
        "split0_test_score",
        "split1_test_score",
        "split2_test_score",
        "split0_train_score",
        "split1_train_score",
        "split2_train_score",
        "std_test_score",
        "std_train_score",
        "mean_fit_time",
        "std_fit_time",
        "mean_score_time",
        "std_score_time",
    )
    n_candidates = n_grid_points

    search = GridSearchCV(SVC(), cv=3, param_grid=params, return_train_score=True)
    search.fit(X, y)
    cv_results = search.cv_results_
    # Check if score and timing are reasonable
    assert all(cv_results["rank_test_score"] >= 1)
    assert (all(cv_results[k] >= 0) for k in score_keys if k != "rank_test_score")
    assert (
        all(cv_results[k] <= 1)
        for k in score_keys
        if "time" not in k and k != "rank_test_score"
    )
    # Check cv_results structure
    check_cv_results_array_types(search, param_keys, score_keys)
    check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
    # Check masking
    cv_results = search.cv_results_

    poly_results = [
        (
            cv_results["param_C"].mask[i]
            and cv_results["param_gamma"].mask[i]
            and not cv_results["param_degree"].mask[i]
        )
        for i in range(n_candidates)
        if cv_results["param_kernel"][i] == "poly"
    ]
    assert all(poly_results)
    assert len(poly_results) == 2

    rbf_results = [
        (
            not cv_results["param_C"].mask[i]
            and not cv_results["param_gamma"].mask[i]
            and cv_results["param_degree"].mask[i]
        )
        for i in range(n_candidates)
        if cv_results["param_kernel"][i] == "rbf"
    ]
    assert all(rbf_results)
    assert len(rbf_results) == 4


def test_random_search_cv_results():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_search_iter = 30

    params = [
        {"kernel": ["rbf"], "C": expon(scale=10), "gamma": expon(scale=0.1)},
        {"kernel": ["poly"], "degree": [2, 3]},
    ]
    param_keys = ("param_C", "param_degree", "param_gamma", "param_kernel")
    score_keys = (
        "mean_test_score",
        "mean_train_score",
        "rank_test_score",
        "split0_test_score",
        "split1_test_score",
        "split2_test_score",
        "split0_train_score",
        "split1_train_score",
        "split2_train_score",
        "std_test_score",
        "std_train_score",
        "mean_fit_time",
        "std_fit_time",
        "mean_score_time",
        "std_score_time",
    )
    n_candidates = n_search_iter

    search = RandomizedSearchCV(
        SVC(),
        n_iter=n_search_iter,
        cv=3,
        param_distributions=params,
        return_train_score=True,
    )
    search.fit(X, y)
    cv_results = search.cv_results_
    # Check results structure
    check_cv_results_array_types(search, param_keys, score_keys)
    check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
    assert all(
        (
            cv_results["param_C"].mask[i]
            and cv_results["param_gamma"].mask[i]
            and not cv_results["param_degree"].mask[i]
        )
        for i in range(n_candidates)
        if cv_results["param_kernel"][i] == "poly"
    )
    assert all(
        (
            not cv_results["param_C"].mask[i]
            and not cv_results["param_gamma"].mask[i]
            and cv_results["param_degree"].mask[i]
        )
        for i in range(n_candidates)
        if cv_results["param_kernel"][i] == "rbf"
    )


@pytest.mark.parametrize(
    "SearchCV, specialized_params",
    [
        (GridSearchCV, {"param_grid": {"C": [1, 10]}}),
        (RandomizedSearchCV, {"param_distributions": {"C": [1, 10]}, "n_iter": 2}),
    ],
)
def test_search_default_iid(SearchCV, specialized_params):
    # Test the IID parameter  TODO: Clearly this test does something else???
    # noise-free simple 2d-data
    X, y = make_blobs(
        centers=[[0, 0], [1, 0], [0, 1], [1, 1]],
        random_state=0,
        cluster_std=0.1,
        shuffle=False,
        n_samples=80,
    )
    # split dataset into two folds that are not iid
    # first one contains data of all 4 blobs, second only from two.
    mask = np.ones(X.shape[0], dtype=bool)
    mask[np.where(y == 1)[0][::2]] = 0
    mask[np.where(y == 2)[0][::2]] = 0
    # this leads to perfect classification on one fold and a score of 1/3 on
    # the other
    # create "cv" for splits
    cv = [[mask, ~mask], [~mask, mask]]

    common_params = {"estimator": SVC(), "cv": cv, "return_train_score": True}
    search = SearchCV(**common_params, **specialized_params)
    search.fit(X, y)

    test_cv_scores = np.array(
        [
            search.cv_results_["split%d_test_score" % s][0]
            for s in range(search.n_splits_)
        ]
    )
    test_mean = search.cv_results_["mean_test_score"][0]
    test_std = search.cv_results_["std_test_score"][0]

    train_cv_scores = np.array(
        [
            search.cv_results_["split%d_train_score" % s][0]
            for s in range(search.n_splits_)
        ]
    )
    train_mean = search.cv_results_["mean_train_score"][0]
    train_std = search.cv_results_["std_train_score"][0]

    assert search.cv_results_["param_C"][0] == 1
    # scores are the same as above
    assert_allclose(test_cv_scores, [1, 1.0 / 3.0])
    assert_allclose(train_cv_scores, [1, 1])
    # Unweighted mean/std is used
    assert test_mean == pytest.approx(np.mean(test_cv_scores))
    assert test_std == pytest.approx(np.std(test_cv_scores))

    # For the train scores, we do not take a weighted mean irrespective of
    # i.i.d. or not
    assert train_mean == pytest.approx(1)
    assert train_std == pytest.approx(0)


def test_grid_search_cv_results_multimetric():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    params = [
        dict(
            kernel=[
                "rbf",
            ],
            C=[1, 10],
            gamma=[0.1, 1],
        ),
        dict(
            kernel=[
                "poly",
            ],
            degree=[1, 2],
        ),
    ]

    grid_searches = []
    for scoring in (
        {"accuracy": make_scorer(accuracy_score), "recall": make_scorer(recall_score)},
        "accuracy",
        "recall",
    ):
        grid_search = GridSearchCV(
            SVC(), cv=n_splits, param_grid=params, scoring=scoring, refit=False
        )
        grid_search.fit(X, y)
        grid_searches.append(grid_search)

    compare_cv_results_multimetric_with_single(*grid_searches)


def test_random_search_cv_results_multimetric():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    n_search_iter = 30

    # Scipy 0.12's stats dists do not accept seed, hence we use param grid
    params = dict(C=np.logspace(-4, 1, 3), gamma=np.logspace(-5, 0, 3, base=0.1))
    for refit in (True, False):
        random_searches = []
        for scoring in (("accuracy", "recall"), "accuracy", "recall"):
            # If True, for multi-metric pass refit='accuracy'
            if refit:
                probability = True
                refit = "accuracy" if isinstance(scoring, tuple) else refit
            else:
                probability = False
            clf = SVC(probability=probability, random_state=42)
            random_search = RandomizedSearchCV(
                clf,
                n_iter=n_search_iter,
                cv=n_splits,
                param_distributions=params,
                scoring=scoring,
                refit=refit,
                random_state=0,
            )
            random_search.fit(X, y)
            random_searches.append(random_search)

        compare_cv_results_multimetric_with_single(*random_searches)
        compare_refit_methods_when_refit_with_acc(
            random_searches[0], random_searches[1], refit
        )


def compare_cv_results_multimetric_with_single(search_multi, search_acc, search_rec):
    """Compare multi-metric cv_results with the ensemble of multiple
    single metric cv_results from single metric grid/random search"""

    assert search_multi.multimetric_
    assert_array_equal(sorted(search_multi.scorer_), ("accuracy", "recall"))

    cv_results_multi = search_multi.cv_results_
    cv_results_acc_rec = {
        re.sub("_score$", "_accuracy", k): v for k, v in search_acc.cv_results_.items()
    }
    cv_results_acc_rec.update(
        {re.sub("_score$", "_recall", k): v for k, v in search_rec.cv_results_.items()}
    )

    # Check if score and timing are reasonable, also checks if the keys
    # are present
    assert all(
        (
            np.all(cv_results_multi[k] <= 1)
            for k in (
                "mean_score_time",
                "std_score_time",
                "mean_fit_time",
                "std_fit_time",
            )
        )
    )

    # Compare the keys, other than time keys, among multi-metric and
    # single metric grid search results. np.testing.assert_equal performs a
    # deep nested comparison of the two cv_results dicts
    np.testing.assert_equal(
        {k: v for k, v in cv_results_multi.items() if not k.endswith("_time")},
        {k: v for k, v in cv_results_acc_rec.items() if not k.endswith("_time")},
    )


def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
    """Compare refit multi-metric search methods with single metric methods"""
    assert search_acc.refit == refit
    if refit:
        assert search_multi.refit == "accuracy"
    else:
        assert not search_multi.refit
        return  # search cannot predict/score without refit

    X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
    for method in ("predict", "predict_proba", "predict_log_proba"):
        assert_almost_equal(
            getattr(search_multi, method)(X), getattr(search_acc, method)(X)
        )
    assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
    for key in ("best_index_", "best_score_", "best_params_"):
        assert getattr(search_multi, key) == getattr(search_acc, key)


@pytest.mark.parametrize(
    "search_cv",
    [
        RandomizedSearchCV(
            estimator=DecisionTreeClassifier(),
            param_distributions={"max_depth": [5, 10]},
        ),
        GridSearchCV(
            estimator=DecisionTreeClassifier(), param_grid={"max_depth": [5, 10]}
        ),
    ],
)
def test_search_cv_score_samples_error(search_cv):
    X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
    search_cv.fit(X, y)

    # Make sure to error out when underlying estimator does not implement
    # the method `score_samples`
    outer_msg = f"'{search_cv.__class__.__name__}' has no attribute 'score_samples'"
    inner_msg = "'DecisionTreeClassifier' object has no attribute 'score_samples'"

    with pytest.raises(AttributeError, match=outer_msg) as exec_info:
        search_cv.score_samples(X)
    assert isinstance(exec_info.value.__cause__, AttributeError)
    assert inner_msg == str(exec_info.value.__cause__)


@pytest.mark.parametrize(
    "search_cv",
    [
        RandomizedSearchCV(
            estimator=LocalOutlierFactor(novelty=True),
            param_distributions={"n_neighbors": [5, 10]},
            scoring="precision",
        ),
        GridSearchCV(
            estimator=LocalOutlierFactor(novelty=True),
            param_grid={"n_neighbors": [5, 10]},
            scoring="precision",
        ),
    ],
)
def test_search_cv_score_samples_method(search_cv):
    # Set parameters
    rng = np.random.RandomState(42)
    n_samples = 300
    outliers_fraction = 0.15
    n_outliers = int(outliers_fraction * n_samples)
    n_inliers = n_samples - n_outliers

    # Create dataset
    X = make_blobs(
        n_samples=n_inliers,
        n_features=2,
        centers=[[0, 0], [0, 0]],
        cluster_std=0.5,
        random_state=0,
    )[0]
    # Add some noisy points
    X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)

    # Define labels to be able to score the estimator with `search_cv`
    y_true = np.array([1] * n_samples)
    y_true[-n_outliers:] = -1

    # Fit on data
    search_cv.fit(X, y_true)

    # Verify that the stand alone estimator yields the same results
    # as the ones obtained with *SearchCV
    assert_allclose(
        search_cv.score_samples(X), search_cv.best_estimator_.score_samples(X)
    )


def test_search_cv_results_rank_tie_breaking():
    X, y = make_blobs(n_samples=50, random_state=42)

    # The two C values are close enough to give similar models
    # which would result in a tie of their mean cv-scores
    param_grid = {"C": [1, 1.001, 0.001]}

    grid_search = GridSearchCV(SVC(), param_grid=param_grid, return_train_score=True)
    random_search = RandomizedSearchCV(
        SVC(), n_iter=3, param_distributions=param_grid, return_train_score=True
    )

    for search in (grid_search, random_search):
        search.fit(X, y)
        cv_results = search.cv_results_
        # Check tie breaking strategy -
        # Check that there is a tie in the mean scores between
        # candidates 1 and 2 alone
        assert_almost_equal(
            cv_results["mean_test_score"][0], cv_results["mean_test_score"][1]
        )
        assert_almost_equal(
            cv_results["mean_train_score"][0], cv_results["mean_train_score"][1]
        )
        assert not np.allclose(
            cv_results["mean_test_score"][1], cv_results["mean_test_score"][2]
        )
        assert not np.allclose(
            cv_results["mean_train_score"][1], cv_results["mean_train_score"][2]
        )
        # 'min' rank should be assigned to the tied candidates
        assert_almost_equal(search.cv_results_["rank_test_score"], [1, 1, 3])


def test_search_cv_results_none_param():
    X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
    estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
    est_parameters = {"random_state": [0, None]}
    cv = KFold()

    for est in estimators:
        grid_search = GridSearchCV(
            est,
            est_parameters,
            cv=cv,
        ).fit(X, y)
        assert_array_equal(grid_search.cv_results_["param_random_state"], [0, None])


@ignore_warnings()
def test_search_cv_timing():
    svc = LinearSVC(dual="auto", random_state=0)

    X = [
        [
            1,
        ],
        [
            2,
        ],
        [
            3,
        ],
        [
            4,
        ],
    ]
    y = [0, 1, 1, 0]

    gs = GridSearchCV(svc, {"C": [0, 1]}, cv=2, error_score=0)
    rs = RandomizedSearchCV(svc, {"C": [0, 1]}, cv=2, error_score=0, n_iter=2)

    for search in (gs, rs):
        search.fit(X, y)
        for key in ["mean_fit_time", "std_fit_time"]:
            # NOTE The precision of time.time in windows is not high
            # enough for the fit/score times to be non-zero for trivial X and y
            assert np.all(search.cv_results_[key] >= 0)
            assert np.all(search.cv_results_[key] < 1)

        for key in ["mean_score_time", "std_score_time"]:
            assert search.cv_results_[key][1] >= 0
            assert search.cv_results_[key][0] == 0.0
            assert np.all(search.cv_results_[key] < 1)

        assert hasattr(search, "refit_time_")
        assert isinstance(search.refit_time_, float)
        assert search.refit_time_ >= 0


def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(dual="auto", random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [0.1, 1, 10]
    for score in ["f1", "roc_auc"]:
        grid_search = GridSearchCV(clf, {"C": Cs}, scoring=score, cv=n_splits)
        cv_results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(cv_results.keys())
        expected_keys = ("mean_test_score", "rank_test_score") + tuple(
            "split%d_test_score" % cv_i for cv_i in range(n_splits)
        )
        assert all(np.isin(expected_keys, result_keys))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                [
                    grid_search.cv_results_["split%d_test_score" % s][candidate_i]
                    for s in range(n_splits)
                ]
            )
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])


def test_pickle():
    # Test that a fit search can be pickled
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, refit=True, cv=3)
    grid_search.fit(X, y)
    grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
    assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X))

    random_search = RandomizedSearchCV(
        clf, {"foo_param": [1, 2, 3]}, refit=True, n_iter=3, cv=3
    )
    random_search.fit(X, y)
    random_search_pickled = pickle.loads(pickle.dumps(random_search))
    assert_array_almost_equal(
        random_search.predict(X), random_search_pickled.predict(X)
    )


def test_grid_search_with_multioutput_data():
    # Test search with multi-output estimator

    X, y = make_multilabel_classification(return_indicator=True, random_state=0)

    est_parameters = {"max_depth": [1, 2, 3, 4]}
    cv = KFold()

    estimators = [
        DecisionTreeRegressor(random_state=0),
        DecisionTreeClassifier(random_state=0),
    ]

    # Test with grid search cv
    for est in estimators:
        grid_search = GridSearchCV(est, est_parameters, cv=cv)
        grid_search.fit(X, y)
        res_params = grid_search.cv_results_["params"]
        for cand_i in range(len(res_params)):
            est.set_params(**res_params[cand_i])

            for i, (train, test) in enumerate(cv.split(X, y)):
                est.fit(X[train], y[train])
                correct_score = est.score(X[test], y[test])
                assert_almost_equal(
                    correct_score,
                    grid_search.cv_results_["split%d_test_score" % i][cand_i],
                )

    # Test with a randomized search
    for est in estimators:
        random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3)
        random_search.fit(X, y)
        res_params = random_search.cv_results_["params"]
        for cand_i in range(len(res_params)):
            est.set_params(**res_params[cand_i])

            for i, (train, test) in enumerate(cv.split(X, y)):
                est.fit(X[train], y[train])
                correct_score = est.score(X[test], y[test])
                assert_almost_equal(
                    correct_score,
                    random_search.cv_results_["split%d_test_score" % i][cand_i],
                )


def test_predict_proba_disabled():
    # Test predict_proba when disabled on estimator.
    X = np.arange(20).reshape(5, -1)
    y = [0, 0, 1, 1, 1]
    clf = SVC(probability=False)
    gs = GridSearchCV(clf, {}, cv=2).fit(X, y)
    assert not hasattr(gs, "predict_proba")


def test_grid_search_allows_nans():
    # Test GridSearchCV with SimpleImputer
    X = np.arange(20, dtype=np.float64).reshape(5, -1)
    X[2, :] = np.nan
    y = [0, 0, 1, 1, 1]
    p = Pipeline(
        [
            ("imputer", SimpleImputer(strategy="mean", missing_values=np.nan)),
            ("classifier", MockClassifier()),
        ]
    )
    GridSearchCV(p, {"classifier__foo_param": [1, 2, 3]}, cv=2).fit(X, y)


class FailingClassifier(BaseEstimator):
    """Classifier that raises a ValueError on fit()"""

    FAILING_PARAMETER = 2

    def __init__(self, parameter=None):
        self.parameter = parameter

    def fit(self, X, y=None):
        if self.parameter == FailingClassifier.FAILING_PARAMETER:
            raise ValueError("Failing classifier failed as required")

    def predict(self, X):
        return np.zeros(X.shape[0])

    def score(self, X=None, Y=None):
        return 0.0


def test_grid_search_failing_classifier():
    # GridSearchCV with on_error != 'raise'
    # Ensures that a warning is raised and score reset where appropriate.

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    # refit=False because we only want to check that errors caused by fits
    # to individual folds will be caught and warnings raised instead. If
    # refit was done, then an exception would be raised on refit and not
    # caught by grid_search (expected behavior), and this would cause an
    # error in this test.
    gs = GridSearchCV(
        clf,
        [{"parameter": [0, 1, 2]}],
        scoring="accuracy",
        refit=False,
        error_score=0.0,
    )

    warning_message = re.compile(
        "5 fits failed.+total of 15.+The score on these"
        r" train-test partitions for these parameters will be set to 0\.0.+"
        "5 fits failed with the following error.+ValueError.+Failing classifier failed"
        " as required",
        flags=re.DOTALL,
    )
    with pytest.warns(FitFailedWarning, match=warning_message):
        gs.fit(X, y)
    n_candidates = len(gs.cv_results_["params"])

    # Ensure that grid scores were set to zero as required for those fits
    # that are expected to fail.
    def get_cand_scores(i):
        return np.array(
            [gs.cv_results_["split%d_test_score" % s][i] for s in range(gs.n_splits_)]
        )

    assert all(
        (
            np.all(get_cand_scores(cand_i) == 0.0)
            for cand_i in range(n_candidates)
            if gs.cv_results_["param_parameter"][cand_i]
            == FailingClassifier.FAILING_PARAMETER
        )
    )

    gs = GridSearchCV(
        clf,
        [{"parameter": [0, 1, 2]}],
        scoring="accuracy",
        refit=False,
        error_score=float("nan"),
    )
    warning_message = re.compile(
        "5 fits failed.+total of 15.+The score on these"
        r" train-test partitions for these parameters will be set to nan.+"
        "5 fits failed with the following error.+ValueError.+Failing classifier failed"
        " as required",
        flags=re.DOTALL,
    )
    with pytest.warns(FitFailedWarning, match=warning_message):
        gs.fit(X, y)
    n_candidates = len(gs.cv_results_["params"])
    assert all(
        np.all(np.isnan(get_cand_scores(cand_i)))
        for cand_i in range(n_candidates)
        if gs.cv_results_["param_parameter"][cand_i]
        == FailingClassifier.FAILING_PARAMETER
    )

    ranks = gs.cv_results_["rank_test_score"]

    # Check that succeeded estimators have lower ranks
    assert ranks[0] <= 2 and ranks[1] <= 2
    # Check that failed estimator has the highest rank
    assert ranks[clf.FAILING_PARAMETER] == 3
    assert gs.best_index_ != clf.FAILING_PARAMETER


def test_grid_search_classifier_all_fits_fail():
    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    gs = GridSearchCV(
        clf,
        [{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
        error_score=0.0,
    )

    warning_message = re.compile(
        (
            "All the 15 fits failed.+15 fits failed with the following"
            " error.+ValueError.+Failing classifier failed as required"
        ),
        flags=re.DOTALL,
    )
    with pytest.raises(ValueError, match=warning_message):
        gs.fit(X, y)


def test_grid_search_failing_classifier_raise():
    # GridSearchCV with on_error == 'raise' raises the error

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    # refit=False because we want to test the behaviour of the grid search part
    gs = GridSearchCV(
        clf,
        [{"parameter": [0, 1, 2]}],
        scoring="accuracy",
        refit=False,
        error_score="raise",
    )

    # FailingClassifier issues a ValueError so this is what we look for.
    with pytest.raises(ValueError):
        gs.fit(X, y)


def test_parameters_sampler_replacement():
    # raise warning if n_iter is bigger than total parameter space
    params = [
        {"first": [0, 1], "second": ["a", "b", "c"]},
        {"third": ["two", "values"]},
    ]
    sampler = ParameterSampler(params, n_iter=9)
    n_iter = 9
    grid_size = 8
    expected_warning = (
        "The total space of parameters %d is smaller "
        "than n_iter=%d. Running %d iterations. For "
        "exhaustive searches, use GridSearchCV." % (grid_size, n_iter, grid_size)
    )
    with pytest.warns(UserWarning, match=expected_warning):
        list(sampler)

    # degenerates to GridSearchCV if n_iter the same as grid_size
    sampler = ParameterSampler(params, n_iter=8)
    samples = list(sampler)
    assert len(samples) == 8
    for values in ParameterGrid(params):
        assert values in samples
    assert len(ParameterSampler(params, n_iter=1000)) == 8

    # test sampling without replacement in a large grid
    params = {"a": range(10), "b": range(10), "c": range(10)}
    sampler = ParameterSampler(params, n_iter=99, random_state=42)
    samples = list(sampler)
    assert len(samples) == 99
    hashable_samples = ["a%db%dc%d" % (p["a"], p["b"], p["c"]) for p in samples]
    assert len(set(hashable_samples)) == 99

    # doesn't go into infinite loops
    params_distribution = {"first": bernoulli(0.5), "second": ["a", "b", "c"]}
    sampler = ParameterSampler(params_distribution, n_iter=7)
    samples = list(sampler)
    assert len(samples) == 7


def test_stochastic_gradient_loss_param():
    # Make sure the predict_proba works when loss is specified
    # as one of the parameters in the param_grid.
    param_grid = {
        "loss": ["log_loss"],
    }
    X = np.arange(24).reshape(6, -1)
    y = [0, 0, 0, 1, 1, 1]
    clf = GridSearchCV(
        estimator=SGDClassifier(loss="hinge"), param_grid=param_grid, cv=3
    )

    # When the estimator is not fitted, `predict_proba` is not available as the
    # loss is 'hinge'.
    assert not hasattr(clf, "predict_proba")
    clf.fit(X, y)
    clf.predict_proba(X)
    clf.predict_log_proba(X)

    # Make sure `predict_proba` is not available when setting loss=['hinge']
    # in param_grid
    param_grid = {
        "loss": ["hinge"],
    }
    clf = GridSearchCV(
        estimator=SGDClassifier(loss="hinge"), param_grid=param_grid, cv=3
    )
    assert not hasattr(clf, "predict_proba")
    clf.fit(X, y)
    assert not hasattr(clf, "predict_proba")


def test_search_train_scores_set_to_false():
    X = np.arange(6).reshape(6, -1)
    y = [0, 0, 0, 1, 1, 1]
    clf = LinearSVC(dual="auto", random_state=0)

    gs = GridSearchCV(clf, param_grid={"C": [0.1, 0.2]}, cv=3)
    gs.fit(X, y)


def test_grid_search_cv_splits_consistency():
    # Check if a one time iterable is accepted as a cv parameter.
    n_samples = 100
    n_splits = 5
    X, y = make_classification(n_samples=n_samples, random_state=0)

    gs = GridSearchCV(
        LinearSVC(dual="auto", random_state=0),
        param_grid={"C": [0.1, 0.2, 0.3]},
        cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
        return_train_score=True,
    )
    gs.fit(X, y)

    gs2 = GridSearchCV(
        LinearSVC(dual="auto", random_state=0),
        param_grid={"C": [0.1, 0.2, 0.3]},
        cv=KFold(n_splits=n_splits),
        return_train_score=True,
    )
    gs2.fit(X, y)

    # Give generator as a cv parameter
    assert isinstance(
        KFold(n_splits=n_splits, shuffle=True, random_state=0).split(X, y),
        GeneratorType,
    )
    gs3 = GridSearchCV(
        LinearSVC(dual="auto", random_state=0),
        param_grid={"C": [0.1, 0.2, 0.3]},
        cv=KFold(n_splits=n_splits, shuffle=True, random_state=0).split(X, y),
        return_train_score=True,
    )
    gs3.fit(X, y)

    gs4 = GridSearchCV(
        LinearSVC(dual="auto", random_state=0),
        param_grid={"C": [0.1, 0.2, 0.3]},
        cv=KFold(n_splits=n_splits, shuffle=True, random_state=0),
        return_train_score=True,
    )
    gs4.fit(X, y)

    def _pop_time_keys(cv_results):
        for key in (
            "mean_fit_time",
            "std_fit_time",
            "mean_score_time",
            "std_score_time",
        ):
            cv_results.pop(key)
        return cv_results

    # Check if generators are supported as cv and
    # that the splits are consistent
    np.testing.assert_equal(
        _pop_time_keys(gs3.cv_results_), _pop_time_keys(gs4.cv_results_)
    )

    # OneTimeSplitter is a non-re-entrant cv where split can be called only
    # once if ``cv.split`` is called once per param setting in GridSearchCV.fit
    # the 2nd and 3rd parameter will not be evaluated as no train/test indices
    # will be generated for the 2nd and subsequent cv.split calls.
    # This is a check to make sure cv.split is not called once per param
    # setting.
    np.testing.assert_equal(
        {k: v for k, v in gs.cv_results_.items() if not k.endswith("_time")},
        {k: v for k, v in gs2.cv_results_.items() if not k.endswith("_time")},
    )

    # Check consistency of folds across the parameters
    gs = GridSearchCV(
        LinearSVC(dual="auto", random_state=0),
        param_grid={"C": [0.1, 0.1, 0.2, 0.2]},
        cv=KFold(n_splits=n_splits, shuffle=True),
        return_train_score=True,
    )
    gs.fit(X, y)

    # As the first two param settings (C=0.1) and the next two param
    # settings (C=0.2) are same, the test and train scores must also be
    # same as long as the same train/test indices are generated for all
    # the cv splits, for both param setting
    for score_type in ("train", "test"):
        per_param_scores = {}
        for param_i in range(4):
            per_param_scores[param_i] = [
                gs.cv_results_["split%d_%s_score" % (s, score_type)][param_i]
                for s in range(5)
            ]

        assert_array_almost_equal(per_param_scores[0], per_param_scores[1])
        assert_array_almost_equal(per_param_scores[2], per_param_scores[3])


def test_transform_inverse_transform_round_trip():
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {"foo_param": [1, 2, 3]}, cv=3, verbose=3)

    grid_search.fit(X, y)
    X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
    assert_array_equal(X, X_round_trip)


def test_custom_run_search():
    def check_results(results, gscv):
        exp_results = gscv.cv_results_
        assert sorted(results.keys()) == sorted(exp_results)
        for k in results:
            if not k.endswith("_time"):
                # XXX: results['params'] is a list :|
                results[k] = np.asanyarray(results[k])
                if results[k].dtype.kind == "O":
                    assert_array_equal(
                        exp_results[k], results[k], err_msg="Checking " + k
                    )
                else:
                    assert_allclose(exp_results[k], results[k], err_msg="Checking " + k)

    def fit_grid(param_grid):
        return GridSearchCV(clf, param_grid, return_train_score=True).fit(X, y)

    class CustomSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super().__init__(estimator, **kwargs)

        def _run_search(self, evaluate):
            results = evaluate([{"max_depth": 1}, {"max_depth": 2}])
            check_results(results, fit_grid({"max_depth": [1, 2]}))
            results = evaluate([{"min_samples_split": 5}, {"min_samples_split": 10}])
            check_results(
                results,
                fit_grid([{"max_depth": [1, 2]}, {"min_samples_split": [5, 10]}]),
            )

    # Using regressor to make sure each score differs
    clf = DecisionTreeRegressor(random_state=0)
    X, y = make_classification(n_samples=100, n_informative=4, random_state=0)
    mycv = CustomSearchCV(clf, return_train_score=True).fit(X, y)
    gscv = fit_grid([{"max_depth": [1, 2]}, {"min_samples_split": [5, 10]}])

    results = mycv.cv_results_
    check_results(results, gscv)
    for attr in dir(gscv):
        if (
            attr[0].islower()
            and attr[-1:] == "_"
            and attr
            not in {
                "cv_results_",
                "best_estimator_",
                "refit_time_",
                "classes_",
                "scorer_",
            }
        ):
            assert getattr(gscv, attr) == getattr(mycv, attr), (
                "Attribute %s not equal" % attr
            )


def test__custom_fit_no_run_search():
    class NoRunSearchSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super().__init__(estimator, **kwargs)

        def fit(self, X, y=None, groups=None, **fit_params):
            return self

    # this should not raise any exceptions
    NoRunSearchSearchCV(SVC()).fit(X, y)

    class BadSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super().__init__(estimator, **kwargs)

    with pytest.raises(NotImplementedError, match="_run_search not implemented."):
        # this should raise a NotImplementedError
        BadSearchCV(SVC()).fit(X, y)


def test_empty_cv_iterator_error():
    # Use global X, y

    # create cv
    cv = KFold(n_splits=3).split(X)

    # pop all of it, this should cause the expected ValueError
    [u for u in cv]
    # cv is empty now

    train_size = 100
    ridge = RandomizedSearchCV(Ridge(), {"alpha": [1e-3, 1e-2, 1e-1]}, cv=cv, n_jobs=4)

    # assert that this raises an error
    with pytest.raises(
        ValueError,
        match=(
            "No fits were performed. "
            "Was the CV iterator empty\\? "
            "Were there no candidates\\?"
        ),
    ):
        ridge.fit(X[:train_size], y[:train_size])


def test_random_search_bad_cv():
    # Use global X, y

    class BrokenKFold(KFold):
        def get_n_splits(self, *args, **kw):
            return 1

    # create bad cv
    cv = BrokenKFold(n_splits=3)

    train_size = 100
    ridge = RandomizedSearchCV(Ridge(), {"alpha": [1e-3, 1e-2, 1e-1]}, cv=cv, n_jobs=4)

    # assert that this raises an error
    with pytest.raises(
        ValueError,
        match=(
            "cv.split and cv.get_n_splits returned "
            "inconsistent results. Expected \\d+ "
            "splits, got \\d+"
        ),
    ):
        ridge.fit(X[:train_size], y[:train_size])


@pytest.mark.parametrize("return_train_score", [False, True])
@pytest.mark.parametrize(
    "SearchCV, specialized_params",
    [
        (GridSearchCV, {"param_grid": {"max_depth": [2, 3, 5, 8]}}),
        (
            RandomizedSearchCV,
            {"param_distributions": {"max_depth": [2, 3, 5, 8]}, "n_iter": 4},
        ),
    ],
)
def test_searchcv_raise_warning_with_non_finite_score(
    SearchCV, specialized_params, return_train_score
):
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/10529
    # Check that we raise a UserWarning when a non-finite score is
    # computed in the SearchCV
    X, y = make_classification(n_classes=2, random_state=0)

    class FailingScorer:
        """Scorer that will fail for some split but not all."""

        def __init__(self):
            self.n_counts = 0

        def __call__(self, estimator, X, y):
            self.n_counts += 1
            if self.n_counts % 5 == 0:
                return np.nan
            return 1

    grid = SearchCV(
        DecisionTreeClassifier(),
        scoring=FailingScorer(),
        cv=3,
        return_train_score=return_train_score,
        **specialized_params,
    )

    with pytest.warns(UserWarning) as warn_msg:
        grid.fit(X, y)

    set_with_warning = ["test", "train"] if return_train_score else ["test"]
    assert len(warn_msg) == len(set_with_warning)
    for msg, dataset in zip(warn_msg, set_with_warning):
        assert f"One or more of the {dataset} scores are non-finite" in str(msg.message)

    # all non-finite scores should be equally ranked last
    last_rank = grid.cv_results_["rank_test_score"].max()
    non_finite_mask = np.isnan(grid.cv_results_["mean_test_score"])
    assert_array_equal(grid.cv_results_["rank_test_score"][non_finite_mask], last_rank)
    # all finite scores should be better ranked than the non-finite scores
    assert np.all(grid.cv_results_["rank_test_score"][~non_finite_mask] < last_rank)


def test_callable_multimetric_confusion_matrix():
    # Test callable with many metrics inserts the correct names and metrics
    # into the search cv object
    def custom_scorer(clf, X, y):
        y_pred = clf.predict(X)
        cm = confusion_matrix(y, y_pred)
        return {"tn": cm[0, 0], "fp": cm[0, 1], "fn": cm[1, 0], "tp": cm[1, 1]}

    X, y = make_classification(n_samples=40, n_features=4, random_state=42)
    est = LinearSVC(dual="auto", random_state=42)
    search = GridSearchCV(est, {"C": [0.1, 1]}, scoring=custom_scorer, refit="fp")

    search.fit(X, y)

    score_names = ["tn", "fp", "fn", "tp"]
    for name in score_names:
        assert "mean_test_{}".format(name) in search.cv_results_

    y_pred = search.predict(X)
    cm = confusion_matrix(y, y_pred)
    assert search.score(X, y) == pytest.approx(cm[0, 1])


def test_callable_multimetric_same_as_list_of_strings():
    # Test callable multimetric is the same as a list of strings
    def custom_scorer(est, X, y):
        y_pred = est.predict(X)
        return {
            "recall": recall_score(y, y_pred),
            "accuracy": accuracy_score(y, y_pred),
        }

    X, y = make_classification(n_samples=40, n_features=4, random_state=42)
    est = LinearSVC(dual="auto", random_state=42)
    search_callable = GridSearchCV(
        est, {"C": [0.1, 1]}, scoring=custom_scorer, refit="recall"
    )
    search_str = GridSearchCV(
        est, {"C": [0.1, 1]}, scoring=["recall", "accuracy"], refit="recall"
    )

    search_callable.fit(X, y)
    search_str.fit(X, y)

    assert search_callable.best_score_ == pytest.approx(search_str.best_score_)
    assert search_callable.best_index_ == search_str.best_index_
    assert search_callable.score(X, y) == pytest.approx(search_str.score(X, y))


def test_callable_single_metric_same_as_single_string():
    # Tests callable scorer is the same as scoring with a single string
    def custom_scorer(est, X, y):
        y_pred = est.predict(X)
        return recall_score(y, y_pred)

    X, y = make_classification(n_samples=40, n_features=4, random_state=42)
    est = LinearSVC(dual="auto", random_state=42)
    search_callable = GridSearchCV(
        est, {"C": [0.1, 1]}, scoring=custom_scorer, refit=True
    )
    search_str = GridSearchCV(est, {"C": [0.1, 1]}, scoring="recall", refit="recall")
    search_list_str = GridSearchCV(
        est, {"C": [0.1, 1]}, scoring=["recall"], refit="recall"
    )
    search_callable.fit(X, y)
    search_str.fit(X, y)
    search_list_str.fit(X, y)

    assert search_callable.best_score_ == pytest.approx(search_str.best_score_)
    assert search_callable.best_index_ == search_str.best_index_
    assert search_callable.score(X, y) == pytest.approx(search_str.score(X, y))

    assert search_list_str.best_score_ == pytest.approx(search_str.best_score_)
    assert search_list_str.best_index_ == search_str.best_index_
    assert search_list_str.score(X, y) == pytest.approx(search_str.score(X, y))


def test_callable_multimetric_error_on_invalid_key():
    # Raises when the callable scorer does not return a dict with `refit` key.
    def bad_scorer(est, X, y):
        return {"bad_name": 1}

    X, y = make_classification(n_samples=40, n_features=4, random_state=42)
    clf = GridSearchCV(
        LinearSVC(dual="auto", random_state=42),
        {"C": [0.1, 1]},
        scoring=bad_scorer,
        refit="good_name",
    )

    msg = (
        "For multi-metric scoring, the parameter refit must be set to a "
        "scorer key or a callable to refit"
    )
    with pytest.raises(ValueError, match=msg):
        clf.fit(X, y)


def test_callable_multimetric_error_failing_clf():
    # Warns when there is an estimator the fails to fit with a float
    # error_score
    def custom_scorer(est, X, y):
        return {"acc": 1}

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()
    gs = GridSearchCV(
        clf,
        [{"parameter": [0, 1, 2]}],
        scoring=custom_scorer,
        refit=False,
        error_score=0.1,
    )

    warning_message = re.compile(
        "5 fits failed.+total of 15.+The score on these"
        r" train-test partitions for these parameters will be set to 0\.1",
        flags=re.DOTALL,
    )
    with pytest.warns(FitFailedWarning, match=warning_message):
        gs.fit(X, y)

    assert_allclose(gs.cv_results_["mean_test_acc"], [1, 1, 0.1])


def test_callable_multimetric_clf_all_fits_fail():
    # Warns and raises when all estimator fails to fit.
    def custom_scorer(est, X, y):
        return {"acc": 1}

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    gs = GridSearchCV(
        clf,
        [{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
        scoring=custom_scorer,
        refit=False,
        error_score=0.1,
    )

    individual_fit_error_message = "ValueError: Failing classifier failed as required"
    error_message = re.compile(
        (
            "All the 15 fits failed.+your model is misconfigured.+"
            f"{individual_fit_error_message}"
        ),
        flags=re.DOTALL,
    )

    with pytest.raises(ValueError, match=error_message):
        gs.fit(X, y)


def test_n_features_in():
    # make sure grid search and random search delegate n_features_in to the
    # best estimator
    n_features = 4
    X, y = make_classification(n_features=n_features)
    gbdt = HistGradientBoostingClassifier()
    param_grid = {"max_iter": [3, 4]}
    gs = GridSearchCV(gbdt, param_grid)
    rs = RandomizedSearchCV(gbdt, param_grid, n_iter=1)
    assert not hasattr(gs, "n_features_in_")
    assert not hasattr(rs, "n_features_in_")
    gs.fit(X, y)
    rs.fit(X, y)
    assert gs.n_features_in_ == n_features
    assert rs.n_features_in_ == n_features


@pytest.mark.parametrize("pairwise", [True, False])
def test_search_cv_pairwise_property_delegated_to_base_estimator(pairwise):
    """
    Test implementation of BaseSearchCV has the pairwise tag
    which matches the pairwise tag of its estimator.
    This test make sure pairwise tag is delegated to the base estimator.

    Non-regression test for issue #13920.
    """

    class TestEstimator(BaseEstimator):
        def _more_tags(self):
            return {"pairwise": pairwise}

    est = TestEstimator()
    attr_message = "BaseSearchCV pairwise tag must match estimator"
    cv = GridSearchCV(est, {"n_neighbors": [10]})
    assert pairwise == cv._get_tags()["pairwise"], attr_message


def test_search_cv__pairwise_property_delegated_to_base_estimator():
    """
    Test implementation of BaseSearchCV has the pairwise property
    which matches the pairwise tag of its estimator.
    This test make sure pairwise tag is delegated to the base estimator.

    Non-regression test for issue #13920.
    """

    class EstimatorPairwise(BaseEstimator):
        def __init__(self, pairwise=True):
            self.pairwise = pairwise

        def _more_tags(self):
            return {"pairwise": self.pairwise}

    est = EstimatorPairwise()
    attr_message = "BaseSearchCV _pairwise property must match estimator"

    for _pairwise_setting in [True, False]:
        est.set_params(pairwise=_pairwise_setting)
        cv = GridSearchCV(est, {"n_neighbors": [10]})
        assert _pairwise_setting == cv._get_tags()["pairwise"], attr_message


def test_search_cv_pairwise_property_equivalence_of_precomputed():
    """
    Test implementation of BaseSearchCV has the pairwise tag
    which matches the pairwise tag of its estimator.
    This test ensures the equivalence of 'precomputed'.

    Non-regression test for issue #13920.
    """
    n_samples = 50
    n_splits = 2
    X, y = make_classification(n_samples=n_samples, random_state=0)
    grid_params = {"n_neighbors": [10]}

    # defaults to euclidean metric (minkowski p = 2)
    clf = KNeighborsClassifier()
    cv = GridSearchCV(clf, grid_params, cv=n_splits)
    cv.fit(X, y)
    preds_original = cv.predict(X)

    # precompute euclidean metric to validate pairwise is working
    X_precomputed = euclidean_distances(X)
    clf = KNeighborsClassifier(metric="precomputed")
    cv = GridSearchCV(clf, grid_params, cv=n_splits)
    cv.fit(X_precomputed, y)
    preds_precomputed = cv.predict(X_precomputed)

    attr_message = "GridSearchCV not identical with precomputed metric"
    assert (preds_original == preds_precomputed).all(), attr_message


@pytest.mark.parametrize(
    "SearchCV, param_search",
    [(GridSearchCV, {"a": [0.1, 0.01]}), (RandomizedSearchCV, {"a": uniform(1, 3)})],
)
def test_scalar_fit_param(SearchCV, param_search):
    # unofficially sanctioned tolerance for scalar values in fit_params
    # non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/15805
    class TestEstimator(ClassifierMixin, BaseEstimator):
        def __init__(self, a=None):
            self.a = a

        def fit(self, X, y, r=None):
            self.r_ = r

        def predict(self, X):
            return np.zeros(shape=(len(X)))

    model = SearchCV(TestEstimator(), param_search)
    X, y = make_classification(random_state=42)
    model.fit(X, y, r=42)
    assert model.best_estimator_.r_ == 42


@pytest.mark.parametrize(
    "SearchCV, param_search",
    [
        (GridSearchCV, {"alpha": [0.1, 0.01]}),
        (RandomizedSearchCV, {"alpha": uniform(0.01, 0.1)}),
    ],
)
def test_scalar_fit_param_compat(SearchCV, param_search):
    # check support for scalar values in fit_params, for instance in LightGBM
    # that do not exactly respect the scikit-learn API contract but that we do
    # not want to break without an explicit deprecation cycle and API
    # recommendations for implementing early stopping with a user provided
    # validation set. non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/15805
    X_train, X_valid, y_train, y_valid = train_test_split(
        *make_classification(random_state=42), random_state=42
    )

    class _FitParamClassifier(SGDClassifier):
        def fit(
            self,
            X,
            y,
            sample_weight=None,
            tuple_of_arrays=None,
            scalar_param=None,
            callable_param=None,
        ):
            super().fit(X, y, sample_weight=sample_weight)
            assert scalar_param > 0
            assert callable(callable_param)

            # The tuple of arrays should be preserved as tuple.
            assert isinstance(tuple_of_arrays, tuple)
            assert tuple_of_arrays[0].ndim == 2
            assert tuple_of_arrays[1].ndim == 1
            return self

    def _fit_param_callable():
        pass

    model = SearchCV(_FitParamClassifier(), param_search)

    # NOTE: `fit_params` should be data dependent (e.g. `sample_weight`) which
    # is not the case for the following parameters. But this abuse is common in
    # popular third-party libraries and we should tolerate this behavior for
    # now and be careful not to break support for those without following
    # proper deprecation cycle.
    fit_params = {
        "tuple_of_arrays": (X_valid, y_valid),
        "callable_param": _fit_param_callable,
        "scalar_param": 42,
    }
    model.fit(X_train, y_train, **fit_params)


# FIXME: Replace this test with a full `check_estimator` once we have API only
# checks.
@pytest.mark.filterwarnings("ignore:The total space of parameters 4 is")
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
@pytest.mark.parametrize("Predictor", [MinimalRegressor, MinimalClassifier])
def test_search_cv_using_minimal_compatible_estimator(SearchCV, Predictor):
    # Check that third-party library can run tests without inheriting from
    # BaseEstimator.
    rng = np.random.RandomState(0)
    X, y = rng.randn(25, 2), np.array([0] * 5 + [1] * 20)

    model = Pipeline(
        [("transformer", MinimalTransformer()), ("predictor", Predictor())]
    )

    params = {
        "transformer__param": [1, 10],
        "predictor__parama": [1, 10],
    }
    search = SearchCV(model, params, error_score="raise")
    search.fit(X, y)

    assert search.best_params_.keys() == params.keys()

    y_pred = search.predict(X)
    if is_classifier(search):
        assert_array_equal(y_pred, 1)
        assert search.score(X, y) == pytest.approx(accuracy_score(y, y_pred))
    else:
        assert_allclose(y_pred, y.mean())
        assert search.score(X, y) == pytest.approx(r2_score(y, y_pred))


@pytest.mark.parametrize("return_train_score", [True, False])
def test_search_cv_verbose_3(capsys, return_train_score):
    """Check that search cv with verbose>2 shows the score for single
    metrics. non-regression test for #19658."""
    X, y = make_classification(n_samples=100, n_classes=2, flip_y=0.2, random_state=0)
    clf = LinearSVC(dual="auto", random_state=0)
    grid = {"C": [0.1]}

    GridSearchCV(
        clf,
        grid,
        scoring="accuracy",
        verbose=3,
        cv=3,
        return_train_score=return_train_score,
    ).fit(X, y)
    captured = capsys.readouterr().out
    if return_train_score:
        match = re.findall(r"score=\(train=[\d\.]+, test=[\d.]+\)", captured)
    else:
        match = re.findall(r"score=[\d\.]+", captured)
    assert len(match) == 3


@pytest.mark.parametrize(
    "SearchCV, param_search",
    [
        (GridSearchCV, "param_grid"),
        (RandomizedSearchCV, "param_distributions"),
        (HalvingGridSearchCV, "param_grid"),
    ],
)
def test_search_estimator_param(SearchCV, param_search):
    # test that SearchCV object doesn't change the object given in the parameter grid
    X, y = make_classification(random_state=42)

    params = {"clf": [LinearSVC(dual="auto")], "clf__C": [0.01]}
    orig_C = params["clf"][0].C

    pipe = Pipeline([("trs", MinimalTransformer()), ("clf", None)])

    param_grid_search = {param_search: params}
    gs = SearchCV(pipe, refit=True, cv=2, scoring="accuracy", **param_grid_search).fit(
        X, y
    )

    # testing that the original object in params is not changed
    assert params["clf"][0].C == orig_C
    # testing that the GS is setting the parameter of the step correctly
    assert gs.best_estimator_.named_steps["clf"].C == 0.01


# Metadata Routing Tests
# ======================


@pytest.mark.usefixtures("enable_slep006")
@pytest.mark.parametrize(
    "SearchCV, param_search",
    [
        (GridSearchCV, "param_grid"),
        (RandomizedSearchCV, "param_distributions"),
    ],
)
def test_multi_metric_search_forwards_metadata(SearchCV, param_search):
    """Test that *SearchCV forwards metadata correctly when passed multiple metrics."""
    X, y = make_classification(random_state=42)
    n_samples = _num_samples(X)
    rng = np.random.RandomState(0)
    score_weights = rng.rand(n_samples)
    score_metadata = rng.rand(n_samples)

    est = LinearSVC(dual="auto")
    param_grid_search = {param_search: {"C": [1]}}

    scorer_registry = _Registry()
    scorer = ConsumingScorer(registry=scorer_registry).set_score_request(
        sample_weight="score_weights", metadata="score_metadata"
    )
    scoring = dict(my_scorer=scorer, accuracy="accuracy")
    SearchCV(est, refit="accuracy", cv=2, scoring=scoring, **param_grid_search).fit(
        X, y, score_weights=score_weights, score_metadata=score_metadata
    )
    assert len(scorer_registry)
    for _scorer in scorer_registry:
        check_recorded_metadata(
            obj=_scorer,
            method="score",
            split_params=("sample_weight", "metadata"),
            sample_weight=score_weights,
            metadata=score_metadata,
        )


@pytest.mark.parametrize(
    "SearchCV, param_search",
    [
        (GridSearchCV, "param_grid"),
        (RandomizedSearchCV, "param_distributions"),
        (HalvingGridSearchCV, "param_grid"),
    ],
)
def test_score_rejects_params_with_no_routing_enabled(SearchCV, param_search):
    """*SearchCV should reject **params when metadata routing is not enabled
    since this is added only when routing is enabled."""
    X, y = make_classification(random_state=42)
    est = LinearSVC(dual="auto")
    param_grid_search = {param_search: {"C": [1]}}

    gs = SearchCV(est, cv=2, **param_grid_search).fit(X, y)

    with pytest.raises(ValueError, match="is only supported if"):
        gs.score(X, y, metadata=1)


# End of Metadata Routing Tests
# =============================