File: __init__.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (42 lines) | stat: -rw-r--r-- 1,219 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
The :mod:`sklearn.neighbors` module implements the k-nearest neighbors
algorithm.
"""

from ._ball_tree import BallTree
from ._base import VALID_METRICS, VALID_METRICS_SPARSE, sort_graph_by_row_values
from ._classification import KNeighborsClassifier, RadiusNeighborsClassifier
from ._graph import (
    KNeighborsTransformer,
    RadiusNeighborsTransformer,
    kneighbors_graph,
    radius_neighbors_graph,
)
from ._kd_tree import KDTree
from ._kde import KernelDensity
from ._lof import LocalOutlierFactor
from ._nca import NeighborhoodComponentsAnalysis
from ._nearest_centroid import NearestCentroid
from ._regression import KNeighborsRegressor, RadiusNeighborsRegressor
from ._unsupervised import NearestNeighbors

__all__ = [
    "BallTree",
    "KDTree",
    "KNeighborsClassifier",
    "KNeighborsRegressor",
    "KNeighborsTransformer",
    "NearestCentroid",
    "NearestNeighbors",
    "RadiusNeighborsClassifier",
    "RadiusNeighborsRegressor",
    "RadiusNeighborsTransformer",
    "kneighbors_graph",
    "radius_neighbors_graph",
    "KernelDensity",
    "LocalOutlierFactor",
    "NeighborhoodComponentsAnalysis",
    "sort_graph_by_row_values",
    "VALID_METRICS",
    "VALID_METRICS_SPARSE",
]