File: _ball_tree.pyx.tp

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (284 lines) | stat: -rw-r--r-- 9,326 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{{py:

# Generated file: _ball_tree.pyx

implementation_specific_values = [
    # The values are arranged as follows:
    #
    #       name_suffix, INPUT_DTYPE_t, INPUT_DTYPE
    #
    ('64', 'float64_t', 'np.float64'),
    ('32', 'float32_t', 'np.float32')
]

# Author: Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD 3 clause

}}


__all__ = ['BallTree', 'BallTree64', 'BallTree32']

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

DOC_DICT{{name_suffix}} = {
    'BinaryTree': 'BallTree{{name_suffix}}',
    'binary_tree': 'ball_tree{{name_suffix}}',
}

VALID_METRICS{{name_suffix}} = [
    'BrayCurtisDistance{{name_suffix}}',
    'CanberraDistance{{name_suffix}}',
    'ChebyshevDistance{{name_suffix}}',
    'DiceDistance{{name_suffix}}',
    'EuclideanDistance{{name_suffix}}',
    'HammingDistance{{name_suffix}}',
    'HaversineDistance{{name_suffix}}',
    'JaccardDistance{{name_suffix}}',
    'MahalanobisDistance{{name_suffix}}',
    'ManhattanDistance{{name_suffix}}',
    'MinkowskiDistance{{name_suffix}}',
    'PyFuncDistance{{name_suffix}}',
    'RogersTanimotoDistance{{name_suffix}}',
    'RussellRaoDistance{{name_suffix}}',
    'SEuclideanDistance{{name_suffix}}',
    'SokalMichenerDistance{{name_suffix}}',
    'SokalSneathDistance{{name_suffix}}',
    'WMinkowskiDistance{{name_suffix}}',
]

{{endfor}}

include "_binary_tree.pxi"

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

# Inherit BallTree{{name_suffix}} from BinaryTree{{name_suffix}}
cdef class BallTree{{name_suffix}}(BinaryTree{{name_suffix}}):
    __doc__ = CLASS_DOC.format(**DOC_DICT{{name_suffix}})
    pass

{{endfor}}


#----------------------------------------------------------------------
# The functions below specialized the Binary Tree as a Ball Tree
#
#   Note that these functions use the concept of "reduced distance".
#   The reduced distance, defined for some metrics, is a quantity which
#   is more efficient to compute than the distance, but preserves the
#   relative rankings of the true distance.  For example, the reduced
#   distance for the Euclidean metric is the squared-euclidean distance.
#   For some metrics, the reduced distance is simply the distance.

{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}

cdef int allocate_data{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t n_nodes,
    intp_t n_features,
) except -1:
    """Allocate arrays needed for the KD Tree"""
    tree.node_bounds = np.zeros((1, n_nodes, n_features), dtype={{INPUT_DTYPE}})
    return 0


cdef int init_node{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    NodeData_t[::1] node_data,
    intp_t i_node,
    intp_t idx_start,
    intp_t idx_end,
) except -1:
    """Initialize the node for the dataset stored in tree.data"""
    cdef intp_t n_features = tree.data.shape[1]
    cdef intp_t n_points = idx_end - idx_start

    cdef intp_t i, j
    cdef float64_t radius
    cdef const {{INPUT_DTYPE_t}} *this_pt

    cdef intp_t* idx_array = &tree.idx_array[0]
    cdef const {{INPUT_DTYPE_t}}* data = &tree.data[0, 0]
    cdef {{INPUT_DTYPE_t}}* centroid = &tree.node_bounds[0, i_node, 0]

    cdef bint with_sample_weight = tree.sample_weight is not None
    cdef const {{INPUT_DTYPE_t}}* sample_weight
    cdef float64_t sum_weight_node
    if with_sample_weight:
        sample_weight = &tree.sample_weight[0]

    # determine Node centroid
    for j in range(n_features):
        centroid[j] = 0

    if with_sample_weight:
        sum_weight_node = 0
        for i in range(idx_start, idx_end):
            sum_weight_node += sample_weight[idx_array[i]]
            this_pt = data + n_features * idx_array[i]
            for j from 0 <= j < n_features:
                centroid[j] += this_pt[j] * sample_weight[idx_array[i]]

        for j in range(n_features):
            centroid[j] /= sum_weight_node
    else:
        for i in range(idx_start, idx_end):
            this_pt = data + n_features * idx_array[i]
            for j from 0 <= j < n_features:
                centroid[j] += this_pt[j]

        for j in range(n_features):
            centroid[j] /= n_points

    # determine Node radius
    radius = 0
    for i in range(idx_start, idx_end):
        radius = fmax(radius,
                      tree.rdist(centroid,
                                 data + n_features * idx_array[i],
                                 n_features))

    node_data[i_node].radius = tree.dist_metric._rdist_to_dist(radius)
    node_data[i_node].idx_start = idx_start
    node_data[i_node].idx_end = idx_end
    return 0


cdef inline float64_t min_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1 nogil:
    """Compute the minimum distance between a point and a node"""
    cdef float64_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
                                     tree.data.shape[1])
    return fmax(0, dist_pt - tree.node_data[i_node].radius)


cdef inline float64_t max_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1:
    """Compute the maximum distance between a point and a node"""
    cdef float64_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
                                     tree.data.shape[1])
    return dist_pt + tree.node_data[i_node].radius


cdef inline int min_max_dist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
    float64_t* min_dist,
    float64_t* max_dist,
) except -1 nogil:
    """Compute the minimum and maximum distance between a point and a node"""
    cdef float64_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
                                     tree.data.shape[1])
    cdef float64_t rad = tree.node_data[i_node].radius
    min_dist[0] = fmax(0, dist_pt - rad)
    max_dist[0] = dist_pt + rad
    return 0


cdef inline float64_t min_rdist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1 nogil:
    """Compute the minimum reduced-distance between a point and a node"""
    if tree.euclidean:
        return euclidean_dist_to_rdist{{name_suffix}}(
            min_dist{{name_suffix}}(tree, i_node, pt)
        )
    else:
        return tree.dist_metric._dist_to_rdist(
            min_dist{{name_suffix}}(tree, i_node, pt)
        )


cdef inline float64_t max_rdist{{name_suffix}}(
    BinaryTree{{name_suffix}} tree,
    intp_t i_node,
    const {{INPUT_DTYPE_t}}* pt,
) except -1:
    """Compute the maximum reduced-distance between a point and a node"""
    if tree.euclidean:
        return euclidean_dist_to_rdist{{name_suffix}}(
            max_dist{{name_suffix}}(tree, i_node, pt)
        )
    else:
        return tree.dist_metric._dist_to_rdist(
            max_dist{{name_suffix}}(tree, i_node, pt)
        )


cdef inline float64_t min_dist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """compute the minimum distance between two nodes"""
    cdef float64_t dist_pt = tree1.dist(&tree2.node_bounds[0, i_node2, 0],
                                      &tree1.node_bounds[0, i_node1, 0],
                                      tree1.data.shape[1])
    return fmax(0, (dist_pt - tree1.node_data[i_node1].radius
                    - tree2.node_data[i_node2].radius))


cdef inline float64_t max_dist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """compute the maximum distance between two nodes"""
    cdef float64_t dist_pt = tree1.dist(&tree2.node_bounds[0, i_node2, 0],
                                      &tree1.node_bounds[0, i_node1, 0],
                                      tree1.data.shape[1])
    return (dist_pt + tree1.node_data[i_node1].radius
            + tree2.node_data[i_node2].radius)


cdef inline float64_t min_rdist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """compute the minimum reduced distance between two nodes"""
    if tree1.euclidean:
        return euclidean_dist_to_rdist{{name_suffix}}(
            min_dist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
        )
    else:
        return tree1.dist_metric._dist_to_rdist(
            min_dist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
        )


cdef inline float64_t max_rdist_dual{{name_suffix}}(
    BinaryTree{{name_suffix}} tree1,
    intp_t i_node1,
    BinaryTree{{name_suffix}} tree2,
    intp_t i_node2,
) except -1:
    """compute the maximum reduced distance between two nodes"""
    if tree1.euclidean:
        return euclidean_dist_to_rdist{{name_suffix}}(
            max_dist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
        )
    else:
        return tree1.dist_metric._dist_to_rdist(
            max_dist_dual{{name_suffix}}(tree1, i_node1, tree2, i_node2)
        )

{{endfor}}


class BallTree(BallTree64):
    __doc__ = CLASS_DOC.format(BinaryTree="BallTree")
    pass