1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
import itertools
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_equal
from sklearn.neighbors._ball_tree import BallTree, BallTree32, BallTree64
from sklearn.utils import check_random_state
from sklearn.utils._testing import _convert_container
from sklearn.utils.validation import check_array
rng = np.random.RandomState(10)
V_mahalanobis = rng.rand(3, 3)
V_mahalanobis = np.dot(V_mahalanobis, V_mahalanobis.T)
DIMENSION = 3
METRICS = {
"euclidean": {},
"manhattan": {},
"minkowski": dict(p=3),
"chebyshev": {},
}
DISCRETE_METRICS = ["hamming", "canberra", "braycurtis"]
BOOLEAN_METRICS = [
"jaccard",
"dice",
"rogerstanimoto",
"russellrao",
"sokalmichener",
"sokalsneath",
]
BALL_TREE_CLASSES = [
BallTree64,
BallTree32,
]
def brute_force_neighbors(X, Y, k, metric, **kwargs):
from sklearn.metrics import DistanceMetric
X, Y = check_array(X), check_array(Y)
D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X)
ind = np.argsort(D, axis=1)[:, :k]
dist = D[np.arange(Y.shape[0])[:, None], ind]
return dist, ind
def test_BallTree_is_BallTree64_subclass():
assert issubclass(BallTree, BallTree64)
@pytest.mark.parametrize("metric", itertools.chain(BOOLEAN_METRICS, DISCRETE_METRICS))
@pytest.mark.parametrize("array_type", ["list", "array"])
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
def test_ball_tree_query_metrics(metric, array_type, BallTreeImplementation):
rng = check_random_state(0)
if metric in BOOLEAN_METRICS:
X = rng.random_sample((40, 10)).round(0)
Y = rng.random_sample((10, 10)).round(0)
elif metric in DISCRETE_METRICS:
X = (4 * rng.random_sample((40, 10))).round(0)
Y = (4 * rng.random_sample((10, 10))).round(0)
X = _convert_container(X, array_type)
Y = _convert_container(Y, array_type)
k = 5
bt = BallTreeImplementation(X, leaf_size=1, metric=metric)
dist1, ind1 = bt.query(Y, k)
dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
assert_array_almost_equal(dist1, dist2)
@pytest.mark.parametrize(
"BallTreeImplementation, decimal_tol", zip(BALL_TREE_CLASSES, [6, 5])
)
def test_query_haversine(BallTreeImplementation, decimal_tol):
rng = check_random_state(0)
X = 2 * np.pi * rng.random_sample((40, 2))
bt = BallTreeImplementation(X, leaf_size=1, metric="haversine")
dist1, ind1 = bt.query(X, k=5)
dist2, ind2 = brute_force_neighbors(X, X, k=5, metric="haversine")
assert_array_almost_equal(dist1, dist2, decimal=decimal_tol)
assert_array_almost_equal(ind1, ind2)
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
def test_array_object_type(BallTreeImplementation):
"""Check that we do not accept object dtype array."""
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
with pytest.raises(ValueError, match="setting an array element with a sequence"):
BallTreeImplementation(X)
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
def test_bad_pyfunc_metric(BallTreeImplementation):
def wrong_returned_value(x, y):
return "1"
def one_arg_func(x):
return 1.0 # pragma: no cover
X = np.ones((5, 2))
msg = "Custom distance function must accept two vectors and return a float."
with pytest.raises(TypeError, match=msg):
BallTreeImplementation(X, metric=wrong_returned_value)
msg = "takes 1 positional argument but 2 were given"
with pytest.raises(TypeError, match=msg):
BallTreeImplementation(X, metric=one_arg_func)
@pytest.mark.parametrize("metric", itertools.chain(METRICS, BOOLEAN_METRICS))
def test_ball_tree_numerical_consistency(global_random_seed, metric):
# Results on float64 and float32 versions of a dataset must be
# numerically close.
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(
random_seed=global_random_seed, features=50
)
metric_params = METRICS.get(metric, {})
bt_64 = BallTree64(X_64, leaf_size=1, metric=metric, **metric_params)
bt_32 = BallTree32(X_32, leaf_size=1, metric=metric, **metric_params)
# Test consistency with respect to the `query` method
k = 5
dist_64, ind_64 = bt_64.query(Y_64, k=k)
dist_32, ind_32 = bt_32.query(Y_32, k=k)
assert_allclose(dist_64, dist_32, rtol=1e-5)
assert_equal(ind_64, ind_32)
assert dist_64.dtype == np.float64
assert dist_32.dtype == np.float32
# Test consistency with respect to the `query_radius` method
r = 2.38
ind_64 = bt_64.query_radius(Y_64, r=r)
ind_32 = bt_32.query_radius(Y_32, r=r)
for _ind64, _ind32 in zip(ind_64, ind_32):
assert_equal(_ind64, _ind32)
# Test consistency with respect to the `query_radius` method
# with return distances being true
ind_64, dist_64 = bt_64.query_radius(Y_64, r=r, return_distance=True)
ind_32, dist_32 = bt_32.query_radius(Y_32, r=r, return_distance=True)
for _ind64, _ind32, _dist_64, _dist_32 in zip(ind_64, ind_32, dist_64, dist_32):
assert_equal(_ind64, _ind32)
assert_allclose(_dist_64, _dist_32, rtol=1e-5)
assert _dist_64.dtype == np.float64
assert _dist_32.dtype == np.float32
@pytest.mark.parametrize("metric", itertools.chain(METRICS, BOOLEAN_METRICS))
def test_kernel_density_numerical_consistency(global_random_seed, metric):
# Test consistency with respect to the `kernel_density` method
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(random_seed=global_random_seed)
metric_params = METRICS.get(metric, {})
bt_64 = BallTree64(X_64, leaf_size=1, metric=metric, **metric_params)
bt_32 = BallTree32(X_32, leaf_size=1, metric=metric, **metric_params)
kernel = "gaussian"
h = 0.1
density64 = bt_64.kernel_density(Y_64, h=h, kernel=kernel, breadth_first=True)
density32 = bt_32.kernel_density(Y_32, h=h, kernel=kernel, breadth_first=True)
assert_allclose(density64, density32, rtol=1e-5)
assert density64.dtype == np.float64
assert density32.dtype == np.float32
def test_two_point_correlation_numerical_consistency(global_random_seed):
# Test consistency with respect to the `two_point_correlation` method
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(random_seed=global_random_seed)
bt_64 = BallTree64(X_64, leaf_size=10)
bt_32 = BallTree32(X_32, leaf_size=10)
r = np.linspace(0, 1, 10)
counts_64 = bt_64.two_point_correlation(Y_64, r=r, dualtree=True)
counts_32 = bt_32.two_point_correlation(Y_32, r=r, dualtree=True)
assert_allclose(counts_64, counts_32)
def get_dataset_for_binary_tree(random_seed, features=3):
rng = np.random.RandomState(random_seed)
_X = rng.rand(100, features)
_Y = rng.rand(5, features)
X_64 = _X.astype(dtype=np.float64, copy=False)
Y_64 = _Y.astype(dtype=np.float64, copy=False)
X_32 = _X.astype(dtype=np.float32, copy=False)
Y_32 = _Y.astype(dtype=np.float32, copy=False)
return X_64, X_32, Y_64, Y_32
|