File: _multilayer_perceptron.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1645 lines) | stat: -rw-r--r-- 60,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
"""Multi-layer Perceptron
"""

# Authors: Issam H. Laradji <issam.laradji@gmail.com>
#          Andreas Mueller
#          Jiyuan Qian
# License: BSD 3 clause

import warnings
from abc import ABCMeta, abstractmethod
from itertools import chain
from numbers import Integral, Real

import numpy as np
import scipy.optimize

from ..base import (
    BaseEstimator,
    ClassifierMixin,
    RegressorMixin,
    _fit_context,
    is_classifier,
)
from ..exceptions import ConvergenceWarning
from ..metrics import accuracy_score, r2_score
from ..model_selection import train_test_split
from ..preprocessing import LabelBinarizer
from ..utils import (
    _safe_indexing,
    check_random_state,
    column_or_1d,
    gen_batches,
    shuffle,
)
from ..utils._param_validation import Interval, Options, StrOptions
from ..utils.extmath import safe_sparse_dot
from ..utils.metaestimators import available_if
from ..utils.multiclass import (
    _check_partial_fit_first_call,
    type_of_target,
    unique_labels,
)
from ..utils.optimize import _check_optimize_result
from ..utils.validation import check_is_fitted
from ._base import ACTIVATIONS, DERIVATIVES, LOSS_FUNCTIONS
from ._stochastic_optimizers import AdamOptimizer, SGDOptimizer

_STOCHASTIC_SOLVERS = ["sgd", "adam"]


def _pack(coefs_, intercepts_):
    """Pack the parameters into a single vector."""
    return np.hstack([l.ravel() for l in coefs_ + intercepts_])


class BaseMultilayerPerceptron(BaseEstimator, metaclass=ABCMeta):
    """Base class for MLP classification and regression.

    Warning: This class should not be used directly.
    Use derived classes instead.

    .. versionadded:: 0.18
    """

    _parameter_constraints: dict = {
        "hidden_layer_sizes": [
            "array-like",
            Interval(Integral, 1, None, closed="left"),
        ],
        "activation": [StrOptions({"identity", "logistic", "tanh", "relu"})],
        "solver": [StrOptions({"lbfgs", "sgd", "adam"})],
        "alpha": [Interval(Real, 0, None, closed="left")],
        "batch_size": [
            StrOptions({"auto"}),
            Interval(Integral, 1, None, closed="left"),
        ],
        "learning_rate": [StrOptions({"constant", "invscaling", "adaptive"})],
        "learning_rate_init": [Interval(Real, 0, None, closed="neither")],
        "power_t": [Interval(Real, 0, None, closed="left")],
        "max_iter": [Interval(Integral, 1, None, closed="left")],
        "shuffle": ["boolean"],
        "random_state": ["random_state"],
        "tol": [Interval(Real, 0, None, closed="left")],
        "verbose": ["verbose"],
        "warm_start": ["boolean"],
        "momentum": [Interval(Real, 0, 1, closed="both")],
        "nesterovs_momentum": ["boolean"],
        "early_stopping": ["boolean"],
        "validation_fraction": [Interval(Real, 0, 1, closed="left")],
        "beta_1": [Interval(Real, 0, 1, closed="left")],
        "beta_2": [Interval(Real, 0, 1, closed="left")],
        "epsilon": [Interval(Real, 0, None, closed="neither")],
        "n_iter_no_change": [
            Interval(Integral, 1, None, closed="left"),
            Options(Real, {np.inf}),
        ],
        "max_fun": [Interval(Integral, 1, None, closed="left")],
    }

    @abstractmethod
    def __init__(
        self,
        hidden_layer_sizes,
        activation,
        solver,
        alpha,
        batch_size,
        learning_rate,
        learning_rate_init,
        power_t,
        max_iter,
        loss,
        shuffle,
        random_state,
        tol,
        verbose,
        warm_start,
        momentum,
        nesterovs_momentum,
        early_stopping,
        validation_fraction,
        beta_1,
        beta_2,
        epsilon,
        n_iter_no_change,
        max_fun,
    ):
        self.activation = activation
        self.solver = solver
        self.alpha = alpha
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.learning_rate_init = learning_rate_init
        self.power_t = power_t
        self.max_iter = max_iter
        self.loss = loss
        self.hidden_layer_sizes = hidden_layer_sizes
        self.shuffle = shuffle
        self.random_state = random_state
        self.tol = tol
        self.verbose = verbose
        self.warm_start = warm_start
        self.momentum = momentum
        self.nesterovs_momentum = nesterovs_momentum
        self.early_stopping = early_stopping
        self.validation_fraction = validation_fraction
        self.beta_1 = beta_1
        self.beta_2 = beta_2
        self.epsilon = epsilon
        self.n_iter_no_change = n_iter_no_change
        self.max_fun = max_fun

    def _unpack(self, packed_parameters):
        """Extract the coefficients and intercepts from packed_parameters."""
        for i in range(self.n_layers_ - 1):
            start, end, shape = self._coef_indptr[i]
            self.coefs_[i] = np.reshape(packed_parameters[start:end], shape)

            start, end = self._intercept_indptr[i]
            self.intercepts_[i] = packed_parameters[start:end]

    def _forward_pass(self, activations):
        """Perform a forward pass on the network by computing the values
        of the neurons in the hidden layers and the output layer.

        Parameters
        ----------
        activations : list, length = n_layers - 1
            The ith element of the list holds the values of the ith layer.
        """
        hidden_activation = ACTIVATIONS[self.activation]
        # Iterate over the hidden layers
        for i in range(self.n_layers_ - 1):
            activations[i + 1] = safe_sparse_dot(activations[i], self.coefs_[i])
            activations[i + 1] += self.intercepts_[i]

            # For the hidden layers
            if (i + 1) != (self.n_layers_ - 1):
                hidden_activation(activations[i + 1])

        # For the last layer
        output_activation = ACTIVATIONS[self.out_activation_]
        output_activation(activations[i + 1])

        return activations

    def _forward_pass_fast(self, X, check_input=True):
        """Predict using the trained model

        This is the same as _forward_pass but does not record the activations
        of all layers and only returns the last layer's activation.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        check_input : bool, default=True
            Perform input data validation or not.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The decision function of the samples for each class in the model.
        """
        if check_input:
            X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False)

        # Initialize first layer
        activation = X

        # Forward propagate
        hidden_activation = ACTIVATIONS[self.activation]
        for i in range(self.n_layers_ - 1):
            activation = safe_sparse_dot(activation, self.coefs_[i])
            activation += self.intercepts_[i]
            if i != self.n_layers_ - 2:
                hidden_activation(activation)
        output_activation = ACTIVATIONS[self.out_activation_]
        output_activation(activation)

        return activation

    def _compute_loss_grad(
        self, layer, n_samples, activations, deltas, coef_grads, intercept_grads
    ):
        """Compute the gradient of loss with respect to coefs and intercept for
        specified layer.

        This function does backpropagation for the specified one layer.
        """
        coef_grads[layer] = safe_sparse_dot(activations[layer].T, deltas[layer])
        coef_grads[layer] += self.alpha * self.coefs_[layer]
        coef_grads[layer] /= n_samples

        intercept_grads[layer] = np.mean(deltas[layer], 0)

    def _loss_grad_lbfgs(
        self, packed_coef_inter, X, y, activations, deltas, coef_grads, intercept_grads
    ):
        """Compute the MLP loss function and its corresponding derivatives
        with respect to the different parameters given in the initialization.

        Returned gradients are packed in a single vector so it can be used
        in lbfgs

        Parameters
        ----------
        packed_coef_inter : ndarray
            A vector comprising the flattened coefficients and intercepts.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        y : ndarray of shape (n_samples,)
            The target values.

        activations : list, length = n_layers - 1
            The ith element of the list holds the values of the ith layer.

        deltas : list, length = n_layers - 1
            The ith element of the list holds the difference between the
            activations of the i + 1 layer and the backpropagated error.
            More specifically, deltas are gradients of loss with respect to z
            in each layer, where z = wx + b is the value of a particular layer
            before passing through the activation function

        coef_grads : list, length = n_layers - 1
            The ith element contains the amount of change used to update the
            coefficient parameters of the ith layer in an iteration.

        intercept_grads : list, length = n_layers - 1
            The ith element contains the amount of change used to update the
            intercept parameters of the ith layer in an iteration.

        Returns
        -------
        loss : float
        grad : array-like, shape (number of nodes of all layers,)
        """
        self._unpack(packed_coef_inter)
        loss, coef_grads, intercept_grads = self._backprop(
            X, y, activations, deltas, coef_grads, intercept_grads
        )
        grad = _pack(coef_grads, intercept_grads)
        return loss, grad

    def _backprop(self, X, y, activations, deltas, coef_grads, intercept_grads):
        """Compute the MLP loss function and its corresponding derivatives
        with respect to each parameter: weights and bias vectors.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        y : ndarray of shape (n_samples,)
            The target values.

        activations : list, length = n_layers - 1
             The ith element of the list holds the values of the ith layer.

        deltas : list, length = n_layers - 1
            The ith element of the list holds the difference between the
            activations of the i + 1 layer and the backpropagated error.
            More specifically, deltas are gradients of loss with respect to z
            in each layer, where z = wx + b is the value of a particular layer
            before passing through the activation function

        coef_grads : list, length = n_layers - 1
            The ith element contains the amount of change used to update the
            coefficient parameters of the ith layer in an iteration.

        intercept_grads : list, length = n_layers - 1
            The ith element contains the amount of change used to update the
            intercept parameters of the ith layer in an iteration.

        Returns
        -------
        loss : float
        coef_grads : list, length = n_layers - 1
        intercept_grads : list, length = n_layers - 1
        """
        n_samples = X.shape[0]

        # Forward propagate
        activations = self._forward_pass(activations)

        # Get loss
        loss_func_name = self.loss
        if loss_func_name == "log_loss" and self.out_activation_ == "logistic":
            loss_func_name = "binary_log_loss"
        loss = LOSS_FUNCTIONS[loss_func_name](y, activations[-1])
        # Add L2 regularization term to loss
        values = 0
        for s in self.coefs_:
            s = s.ravel()
            values += np.dot(s, s)
        loss += (0.5 * self.alpha) * values / n_samples

        # Backward propagate
        last = self.n_layers_ - 2

        # The calculation of delta[last] here works with following
        # combinations of output activation and loss function:
        # sigmoid and binary cross entropy, softmax and categorical cross
        # entropy, and identity with squared loss
        deltas[last] = activations[-1] - y

        # Compute gradient for the last layer
        self._compute_loss_grad(
            last, n_samples, activations, deltas, coef_grads, intercept_grads
        )

        inplace_derivative = DERIVATIVES[self.activation]
        # Iterate over the hidden layers
        for i in range(self.n_layers_ - 2, 0, -1):
            deltas[i - 1] = safe_sparse_dot(deltas[i], self.coefs_[i].T)
            inplace_derivative(activations[i], deltas[i - 1])

            self._compute_loss_grad(
                i - 1, n_samples, activations, deltas, coef_grads, intercept_grads
            )

        return loss, coef_grads, intercept_grads

    def _initialize(self, y, layer_units, dtype):
        # set all attributes, allocate weights etc. for first call
        # Initialize parameters
        self.n_iter_ = 0
        self.t_ = 0
        self.n_outputs_ = y.shape[1]

        # Compute the number of layers
        self.n_layers_ = len(layer_units)

        # Output for regression
        if not is_classifier(self):
            self.out_activation_ = "identity"
        # Output for multi class
        elif self._label_binarizer.y_type_ == "multiclass":
            self.out_activation_ = "softmax"
        # Output for binary class and multi-label
        else:
            self.out_activation_ = "logistic"

        # Initialize coefficient and intercept layers
        self.coefs_ = []
        self.intercepts_ = []

        for i in range(self.n_layers_ - 1):
            coef_init, intercept_init = self._init_coef(
                layer_units[i], layer_units[i + 1], dtype
            )
            self.coefs_.append(coef_init)
            self.intercepts_.append(intercept_init)

        if self.solver in _STOCHASTIC_SOLVERS:
            self.loss_curve_ = []
            self._no_improvement_count = 0
            if self.early_stopping:
                self.validation_scores_ = []
                self.best_validation_score_ = -np.inf
                self.best_loss_ = None
            else:
                self.best_loss_ = np.inf
                self.validation_scores_ = None
                self.best_validation_score_ = None

    def _init_coef(self, fan_in, fan_out, dtype):
        # Use the initialization method recommended by
        # Glorot et al.
        factor = 6.0
        if self.activation == "logistic":
            factor = 2.0
        init_bound = np.sqrt(factor / (fan_in + fan_out))

        # Generate weights and bias:
        coef_init = self._random_state.uniform(
            -init_bound, init_bound, (fan_in, fan_out)
        )
        intercept_init = self._random_state.uniform(-init_bound, init_bound, fan_out)
        coef_init = coef_init.astype(dtype, copy=False)
        intercept_init = intercept_init.astype(dtype, copy=False)
        return coef_init, intercept_init

    def _fit(self, X, y, incremental=False):
        # Make sure self.hidden_layer_sizes is a list
        hidden_layer_sizes = self.hidden_layer_sizes
        if not hasattr(hidden_layer_sizes, "__iter__"):
            hidden_layer_sizes = [hidden_layer_sizes]
        hidden_layer_sizes = list(hidden_layer_sizes)

        if np.any(np.array(hidden_layer_sizes) <= 0):
            raise ValueError(
                "hidden_layer_sizes must be > 0, got %s." % hidden_layer_sizes
            )
        first_pass = not hasattr(self, "coefs_") or (
            not self.warm_start and not incremental
        )

        X, y = self._validate_input(X, y, incremental, reset=first_pass)

        n_samples, n_features = X.shape

        # Ensure y is 2D
        if y.ndim == 1:
            y = y.reshape((-1, 1))

        self.n_outputs_ = y.shape[1]

        layer_units = [n_features] + hidden_layer_sizes + [self.n_outputs_]

        # check random state
        self._random_state = check_random_state(self.random_state)

        if first_pass:
            # First time training the model
            self._initialize(y, layer_units, X.dtype)

        # Initialize lists
        activations = [X] + [None] * (len(layer_units) - 1)
        deltas = [None] * (len(activations) - 1)

        coef_grads = [
            np.empty((n_fan_in_, n_fan_out_), dtype=X.dtype)
            for n_fan_in_, n_fan_out_ in zip(layer_units[:-1], layer_units[1:])
        ]

        intercept_grads = [
            np.empty(n_fan_out_, dtype=X.dtype) for n_fan_out_ in layer_units[1:]
        ]

        # Run the Stochastic optimization solver
        if self.solver in _STOCHASTIC_SOLVERS:
            self._fit_stochastic(
                X,
                y,
                activations,
                deltas,
                coef_grads,
                intercept_grads,
                layer_units,
                incremental,
            )

        # Run the LBFGS solver
        elif self.solver == "lbfgs":
            self._fit_lbfgs(
                X, y, activations, deltas, coef_grads, intercept_grads, layer_units
            )

        # validate parameter weights
        weights = chain(self.coefs_, self.intercepts_)
        if not all(np.isfinite(w).all() for w in weights):
            raise ValueError(
                "Solver produced non-finite parameter weights. The input data may"
                " contain large values and need to be preprocessed."
            )

        return self

    def _fit_lbfgs(
        self, X, y, activations, deltas, coef_grads, intercept_grads, layer_units
    ):
        # Store meta information for the parameters
        self._coef_indptr = []
        self._intercept_indptr = []
        start = 0

        # Save sizes and indices of coefficients for faster unpacking
        for i in range(self.n_layers_ - 1):
            n_fan_in, n_fan_out = layer_units[i], layer_units[i + 1]

            end = start + (n_fan_in * n_fan_out)
            self._coef_indptr.append((start, end, (n_fan_in, n_fan_out)))
            start = end

        # Save sizes and indices of intercepts for faster unpacking
        for i in range(self.n_layers_ - 1):
            end = start + layer_units[i + 1]
            self._intercept_indptr.append((start, end))
            start = end

        # Run LBFGS
        packed_coef_inter = _pack(self.coefs_, self.intercepts_)

        if self.verbose is True or self.verbose >= 1:
            iprint = 1
        else:
            iprint = -1

        opt_res = scipy.optimize.minimize(
            self._loss_grad_lbfgs,
            packed_coef_inter,
            method="L-BFGS-B",
            jac=True,
            options={
                "maxfun": self.max_fun,
                "maxiter": self.max_iter,
                "iprint": iprint,
                "gtol": self.tol,
            },
            args=(X, y, activations, deltas, coef_grads, intercept_grads),
        )
        self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)
        self.loss_ = opt_res.fun
        self._unpack(opt_res.x)

    def _fit_stochastic(
        self,
        X,
        y,
        activations,
        deltas,
        coef_grads,
        intercept_grads,
        layer_units,
        incremental,
    ):
        params = self.coefs_ + self.intercepts_
        if not incremental or not hasattr(self, "_optimizer"):
            if self.solver == "sgd":
                self._optimizer = SGDOptimizer(
                    params,
                    self.learning_rate_init,
                    self.learning_rate,
                    self.momentum,
                    self.nesterovs_momentum,
                    self.power_t,
                )
            elif self.solver == "adam":
                self._optimizer = AdamOptimizer(
                    params,
                    self.learning_rate_init,
                    self.beta_1,
                    self.beta_2,
                    self.epsilon,
                )

        # early_stopping in partial_fit doesn't make sense
        if self.early_stopping and incremental:
            raise ValueError("partial_fit does not support early_stopping=True")
        early_stopping = self.early_stopping
        if early_stopping:
            # don't stratify in multilabel classification
            should_stratify = is_classifier(self) and self.n_outputs_ == 1
            stratify = y if should_stratify else None
            X, X_val, y, y_val = train_test_split(
                X,
                y,
                random_state=self._random_state,
                test_size=self.validation_fraction,
                stratify=stratify,
            )
            if is_classifier(self):
                y_val = self._label_binarizer.inverse_transform(y_val)
        else:
            X_val = None
            y_val = None

        n_samples = X.shape[0]
        sample_idx = np.arange(n_samples, dtype=int)

        if self.batch_size == "auto":
            batch_size = min(200, n_samples)
        else:
            if self.batch_size > n_samples:
                warnings.warn(
                    "Got `batch_size` less than 1 or larger than "
                    "sample size. It is going to be clipped"
                )
            batch_size = np.clip(self.batch_size, 1, n_samples)

        try:
            self.n_iter_ = 0
            for it in range(self.max_iter):
                if self.shuffle:
                    # Only shuffle the sample indices instead of X and y to
                    # reduce the memory footprint. These indices will be used
                    # to slice the X and y.
                    sample_idx = shuffle(sample_idx, random_state=self._random_state)

                accumulated_loss = 0.0
                for batch_slice in gen_batches(n_samples, batch_size):
                    if self.shuffle:
                        X_batch = _safe_indexing(X, sample_idx[batch_slice])
                        y_batch = y[sample_idx[batch_slice]]
                    else:
                        X_batch = X[batch_slice]
                        y_batch = y[batch_slice]

                    activations[0] = X_batch
                    batch_loss, coef_grads, intercept_grads = self._backprop(
                        X_batch,
                        y_batch,
                        activations,
                        deltas,
                        coef_grads,
                        intercept_grads,
                    )
                    accumulated_loss += batch_loss * (
                        batch_slice.stop - batch_slice.start
                    )

                    # update weights
                    grads = coef_grads + intercept_grads
                    self._optimizer.update_params(params, grads)

                self.n_iter_ += 1
                self.loss_ = accumulated_loss / X.shape[0]

                self.t_ += n_samples
                self.loss_curve_.append(self.loss_)
                if self.verbose:
                    print("Iteration %d, loss = %.8f" % (self.n_iter_, self.loss_))

                # update no_improvement_count based on training loss or
                # validation score according to early_stopping
                self._update_no_improvement_count(early_stopping, X_val, y_val)

                # for learning rate that needs to be updated at iteration end
                self._optimizer.iteration_ends(self.t_)

                if self._no_improvement_count > self.n_iter_no_change:
                    # not better than last `n_iter_no_change` iterations by tol
                    # stop or decrease learning rate
                    if early_stopping:
                        msg = (
                            "Validation score did not improve more than "
                            "tol=%f for %d consecutive epochs."
                            % (self.tol, self.n_iter_no_change)
                        )
                    else:
                        msg = (
                            "Training loss did not improve more than tol=%f"
                            " for %d consecutive epochs."
                            % (self.tol, self.n_iter_no_change)
                        )

                    is_stopping = self._optimizer.trigger_stopping(msg, self.verbose)
                    if is_stopping:
                        break
                    else:
                        self._no_improvement_count = 0

                if incremental:
                    break

                if self.n_iter_ == self.max_iter:
                    warnings.warn(
                        "Stochastic Optimizer: Maximum iterations (%d) "
                        "reached and the optimization hasn't converged yet."
                        % self.max_iter,
                        ConvergenceWarning,
                    )
        except KeyboardInterrupt:
            warnings.warn("Training interrupted by user.")

        if early_stopping:
            # restore best weights
            self.coefs_ = self._best_coefs
            self.intercepts_ = self._best_intercepts

    def _update_no_improvement_count(self, early_stopping, X_val, y_val):
        if early_stopping:
            # compute validation score, use that for stopping
            self.validation_scores_.append(self._score(X_val, y_val))

            if self.verbose:
                print("Validation score: %f" % self.validation_scores_[-1])
            # update best parameters
            # use validation_scores_, not loss_curve_
            # let's hope no-one overloads .score with mse
            last_valid_score = self.validation_scores_[-1]

            if last_valid_score < (self.best_validation_score_ + self.tol):
                self._no_improvement_count += 1
            else:
                self._no_improvement_count = 0

            if last_valid_score > self.best_validation_score_:
                self.best_validation_score_ = last_valid_score
                self._best_coefs = [c.copy() for c in self.coefs_]
                self._best_intercepts = [i.copy() for i in self.intercepts_]
        else:
            if self.loss_curve_[-1] > self.best_loss_ - self.tol:
                self._no_improvement_count += 1
            else:
                self._no_improvement_count = 0
            if self.loss_curve_[-1] < self.best_loss_:
                self.best_loss_ = self.loss_curve_[-1]

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y):
        """Fit the model to data matrix X and target(s) y.

        Parameters
        ----------
        X : ndarray or sparse matrix of shape (n_samples, n_features)
            The input data.

        y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels in classification, real numbers in
            regression).

        Returns
        -------
        self : object
            Returns a trained MLP model.
        """
        return self._fit(X, y, incremental=False)

    def _check_solver(self):
        if self.solver not in _STOCHASTIC_SOLVERS:
            raise AttributeError(
                "partial_fit is only available for stochastic"
                " optimizers. %s is not stochastic."
                % self.solver
            )
        return True


class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):
    """Multi-layer Perceptron classifier.

    This model optimizes the log-loss function using LBFGS or stochastic
    gradient descent.

    .. versionadded:: 0.18

    Parameters
    ----------
    hidden_layer_sizes : array-like of shape(n_layers - 2,), default=(100,)
        The ith element represents the number of neurons in the ith
        hidden layer.

    activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu'
        Activation function for the hidden layer.

        - 'identity', no-op activation, useful to implement linear bottleneck,
          returns f(x) = x

        - 'logistic', the logistic sigmoid function,
          returns f(x) = 1 / (1 + exp(-x)).

        - 'tanh', the hyperbolic tan function,
          returns f(x) = tanh(x).

        - 'relu', the rectified linear unit function,
          returns f(x) = max(0, x)

    solver : {'lbfgs', 'sgd', 'adam'}, default='adam'
        The solver for weight optimization.

        - 'lbfgs' is an optimizer in the family of quasi-Newton methods.

        - 'sgd' refers to stochastic gradient descent.

        - 'adam' refers to a stochastic gradient-based optimizer proposed
          by Kingma, Diederik, and Jimmy Ba

        Note: The default solver 'adam' works pretty well on relatively
        large datasets (with thousands of training samples or more) in terms of
        both training time and validation score.
        For small datasets, however, 'lbfgs' can converge faster and perform
        better.

    alpha : float, default=0.0001
        Strength of the L2 regularization term. The L2 regularization term
        is divided by the sample size when added to the loss.

    batch_size : int, default='auto'
        Size of minibatches for stochastic optimizers.
        If the solver is 'lbfgs', the classifier will not use minibatch.
        When set to "auto", `batch_size=min(200, n_samples)`.

    learning_rate : {'constant', 'invscaling', 'adaptive'}, default='constant'
        Learning rate schedule for weight updates.

        - 'constant' is a constant learning rate given by
          'learning_rate_init'.

        - 'invscaling' gradually decreases the learning rate at each
          time step 't' using an inverse scaling exponent of 'power_t'.
          effective_learning_rate = learning_rate_init / pow(t, power_t)

        - 'adaptive' keeps the learning rate constant to
          'learning_rate_init' as long as training loss keeps decreasing.
          Each time two consecutive epochs fail to decrease training loss by at
          least tol, or fail to increase validation score by at least tol if
          'early_stopping' is on, the current learning rate is divided by 5.

        Only used when ``solver='sgd'``.

    learning_rate_init : float, default=0.001
        The initial learning rate used. It controls the step-size
        in updating the weights. Only used when solver='sgd' or 'adam'.

    power_t : float, default=0.5
        The exponent for inverse scaling learning rate.
        It is used in updating effective learning rate when the learning_rate
        is set to 'invscaling'. Only used when solver='sgd'.

    max_iter : int, default=200
        Maximum number of iterations. The solver iterates until convergence
        (determined by 'tol') or this number of iterations. For stochastic
        solvers ('sgd', 'adam'), note that this determines the number of epochs
        (how many times each data point will be used), not the number of
        gradient steps.

    shuffle : bool, default=True
        Whether to shuffle samples in each iteration. Only used when
        solver='sgd' or 'adam'.

    random_state : int, RandomState instance, default=None
        Determines random number generation for weights and bias
        initialization, train-test split if early stopping is used, and batch
        sampling when solver='sgd' or 'adam'.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    tol : float, default=1e-4
        Tolerance for the optimization. When the loss or score is not improving
        by at least ``tol`` for ``n_iter_no_change`` consecutive iterations,
        unless ``learning_rate`` is set to 'adaptive', convergence is
        considered to be reached and training stops.

    verbose : bool, default=False
        Whether to print progress messages to stdout.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous
        call to fit as initialization, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    momentum : float, default=0.9
        Momentum for gradient descent update. Should be between 0 and 1. Only
        used when solver='sgd'.

    nesterovs_momentum : bool, default=True
        Whether to use Nesterov's momentum. Only used when solver='sgd' and
        momentum > 0.

    early_stopping : bool, default=False
        Whether to use early stopping to terminate training when validation
        score is not improving. If set to true, it will automatically set
        aside 10% of training data as validation and terminate training when
        validation score is not improving by at least ``tol`` for
        ``n_iter_no_change`` consecutive epochs. The split is stratified,
        except in a multilabel setting.
        If early stopping is False, then the training stops when the training
        loss does not improve by more than tol for n_iter_no_change consecutive
        passes over the training set.
        Only effective when solver='sgd' or 'adam'.

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if early_stopping is True.

    beta_1 : float, default=0.9
        Exponential decay rate for estimates of first moment vector in adam,
        should be in [0, 1). Only used when solver='adam'.

    beta_2 : float, default=0.999
        Exponential decay rate for estimates of second moment vector in adam,
        should be in [0, 1). Only used when solver='adam'.

    epsilon : float, default=1e-8
        Value for numerical stability in adam. Only used when solver='adam'.

    n_iter_no_change : int, default=10
        Maximum number of epochs to not meet ``tol`` improvement.
        Only effective when solver='sgd' or 'adam'.

        .. versionadded:: 0.20

    max_fun : int, default=15000
        Only used when solver='lbfgs'. Maximum number of loss function calls.
        The solver iterates until convergence (determined by 'tol'), number
        of iterations reaches max_iter, or this number of loss function calls.
        Note that number of loss function calls will be greater than or equal
        to the number of iterations for the `MLPClassifier`.

        .. versionadded:: 0.22

    Attributes
    ----------
    classes_ : ndarray or list of ndarray of shape (n_classes,)
        Class labels for each output.

    loss_ : float
        The current loss computed with the loss function.

    best_loss_ : float or None
        The minimum loss reached by the solver throughout fitting.
        If `early_stopping=True`, this attribute is set to `None`. Refer to
        the `best_validation_score_` fitted attribute instead.

    loss_curve_ : list of shape (`n_iter_`,)
        The ith element in the list represents the loss at the ith iteration.

    validation_scores_ : list of shape (`n_iter_`,) or None
        The score at each iteration on a held-out validation set. The score
        reported is the accuracy score. Only available if `early_stopping=True`,
        otherwise the attribute is set to `None`.

    best_validation_score_ : float or None
        The best validation score (i.e. accuracy score) that triggered the
        early stopping. Only available if `early_stopping=True`, otherwise the
        attribute is set to `None`.

    t_ : int
        The number of training samples seen by the solver during fitting.

    coefs_ : list of shape (n_layers - 1,)
        The ith element in the list represents the weight matrix corresponding
        to layer i.

    intercepts_ : list of shape (n_layers - 1,)
        The ith element in the list represents the bias vector corresponding to
        layer i + 1.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        The number of iterations the solver has run.

    n_layers_ : int
        Number of layers.

    n_outputs_ : int
        Number of outputs.

    out_activation_ : str
        Name of the output activation function.

    See Also
    --------
    MLPRegressor : Multi-layer Perceptron regressor.
    BernoulliRBM : Bernoulli Restricted Boltzmann Machine (RBM).

    Notes
    -----
    MLPClassifier trains iteratively since at each time step
    the partial derivatives of the loss function with respect to the model
    parameters are computed to update the parameters.

    It can also have a regularization term added to the loss function
    that shrinks model parameters to prevent overfitting.

    This implementation works with data represented as dense numpy arrays or
    sparse scipy arrays of floating point values.

    References
    ----------
    Hinton, Geoffrey E. "Connectionist learning procedures."
    Artificial intelligence 40.1 (1989): 185-234.

    Glorot, Xavier, and Yoshua Bengio.
    "Understanding the difficulty of training deep feedforward neural networks."
    International Conference on Artificial Intelligence and Statistics. 2010.

    :arxiv:`He, Kaiming, et al (2015). "Delving deep into rectifiers:
    Surpassing human-level performance on imagenet classification." <1502.01852>`

    :arxiv:`Kingma, Diederik, and Jimmy Ba (2014)
    "Adam: A method for stochastic optimization." <1412.6980>`

    Examples
    --------
    >>> from sklearn.neural_network import MLPClassifier
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_classification(n_samples=100, random_state=1)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
    ...                                                     random_state=1)
    >>> clf = MLPClassifier(random_state=1, max_iter=300).fit(X_train, y_train)
    >>> clf.predict_proba(X_test[:1])
    array([[0.038..., 0.961...]])
    >>> clf.predict(X_test[:5, :])
    array([1, 0, 1, 0, 1])
    >>> clf.score(X_test, y_test)
    0.8...
    """

    def __init__(
        self,
        hidden_layer_sizes=(100,),
        activation="relu",
        *,
        solver="adam",
        alpha=0.0001,
        batch_size="auto",
        learning_rate="constant",
        learning_rate_init=0.001,
        power_t=0.5,
        max_iter=200,
        shuffle=True,
        random_state=None,
        tol=1e-4,
        verbose=False,
        warm_start=False,
        momentum=0.9,
        nesterovs_momentum=True,
        early_stopping=False,
        validation_fraction=0.1,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-8,
        n_iter_no_change=10,
        max_fun=15000,
    ):
        super().__init__(
            hidden_layer_sizes=hidden_layer_sizes,
            activation=activation,
            solver=solver,
            alpha=alpha,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_rate_init=learning_rate_init,
            power_t=power_t,
            max_iter=max_iter,
            loss="log_loss",
            shuffle=shuffle,
            random_state=random_state,
            tol=tol,
            verbose=verbose,
            warm_start=warm_start,
            momentum=momentum,
            nesterovs_momentum=nesterovs_momentum,
            early_stopping=early_stopping,
            validation_fraction=validation_fraction,
            beta_1=beta_1,
            beta_2=beta_2,
            epsilon=epsilon,
            n_iter_no_change=n_iter_no_change,
            max_fun=max_fun,
        )

    def _validate_input(self, X, y, incremental, reset):
        X, y = self._validate_data(
            X,
            y,
            accept_sparse=["csr", "csc"],
            multi_output=True,
            dtype=(np.float64, np.float32),
            reset=reset,
        )
        if y.ndim == 2 and y.shape[1] == 1:
            y = column_or_1d(y, warn=True)

        # Matrix of actions to be taken under the possible combinations:
        # The case that incremental == True and classes_ not defined is
        # already checked by _check_partial_fit_first_call that is called
        # in _partial_fit below.
        # The cases are already grouped into the respective if blocks below.
        #
        # incremental warm_start classes_ def  action
        #    0            0         0        define classes_
        #    0            1         0        define classes_
        #    0            0         1        redefine classes_
        #
        #    0            1         1        check compat warm_start
        #    1            1         1        check compat warm_start
        #
        #    1            0         1        check compat last fit
        #
        # Note the reliance on short-circuiting here, so that the second
        # or part implies that classes_ is defined.
        if (not hasattr(self, "classes_")) or (not self.warm_start and not incremental):
            self._label_binarizer = LabelBinarizer()
            self._label_binarizer.fit(y)
            self.classes_ = self._label_binarizer.classes_
        else:
            classes = unique_labels(y)
            if self.warm_start:
                if set(classes) != set(self.classes_):
                    raise ValueError(
                        "warm_start can only be used where `y` has the same "
                        "classes as in the previous call to fit. Previously "
                        f"got {self.classes_}, `y` has {classes}"
                    )
            elif len(np.setdiff1d(classes, self.classes_, assume_unique=True)):
                raise ValueError(
                    "`y` has classes not in `self.classes_`. "
                    f"`self.classes_` has {self.classes_}. 'y' has {classes}."
                )

        # This downcast to bool is to prevent upcasting when working with
        # float32 data
        y = self._label_binarizer.transform(y).astype(bool)
        return X, y

    def predict(self, X):
        """Predict using the multi-layer perceptron classifier.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y : ndarray, shape (n_samples,) or (n_samples, n_classes)
            The predicted classes.
        """
        check_is_fitted(self)
        return self._predict(X)

    def _predict(self, X, check_input=True):
        """Private predict method with optional input validation"""
        y_pred = self._forward_pass_fast(X, check_input=check_input)

        if self.n_outputs_ == 1:
            y_pred = y_pred.ravel()

        return self._label_binarizer.inverse_transform(y_pred)

    def _score(self, X, y):
        """Private score method without input validation"""
        # Input validation would remove feature names, so we disable it
        return accuracy_score(y, self._predict(X, check_input=False))

    @available_if(lambda est: est._check_solver())
    @_fit_context(prefer_skip_nested_validation=True)
    def partial_fit(self, X, y, classes=None):
        """Update the model with a single iteration over the given data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        y : array-like of shape (n_samples,)
            The target values.

        classes : array of shape (n_classes,), default=None
            Classes across all calls to partial_fit.
            Can be obtained via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is required for the first call to partial_fit
            and can be omitted in the subsequent calls.
            Note that y doesn't need to contain all labels in `classes`.

        Returns
        -------
        self : object
            Trained MLP model.
        """
        if _check_partial_fit_first_call(self, classes):
            self._label_binarizer = LabelBinarizer()
            if type_of_target(y).startswith("multilabel"):
                self._label_binarizer.fit(y)
            else:
                self._label_binarizer.fit(classes)

        return self._fit(X, y, incremental=True)

    def predict_log_proba(self, X):
        """Return the log of probability estimates.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        log_y_prob : ndarray of shape (n_samples, n_classes)
            The predicted log-probability of the sample for each class
            in the model, where classes are ordered as they are in
            `self.classes_`. Equivalent to `log(predict_proba(X))`.
        """
        y_prob = self.predict_proba(X)
        return np.log(y_prob, out=y_prob)

    def predict_proba(self, X):
        """Probability estimates.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y_prob : ndarray of shape (n_samples, n_classes)
            The predicted probability of the sample for each class in the
            model, where classes are ordered as they are in `self.classes_`.
        """
        check_is_fitted(self)
        y_pred = self._forward_pass_fast(X)

        if self.n_outputs_ == 1:
            y_pred = y_pred.ravel()

        if y_pred.ndim == 1:
            return np.vstack([1 - y_pred, y_pred]).T
        else:
            return y_pred

    def _more_tags(self):
        return {"multilabel": True}


class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
    """Multi-layer Perceptron regressor.

    This model optimizes the squared error using LBFGS or stochastic gradient
    descent.

    .. versionadded:: 0.18

    Parameters
    ----------
    hidden_layer_sizes : array-like of shape(n_layers - 2,), default=(100,)
        The ith element represents the number of neurons in the ith
        hidden layer.

    activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu'
        Activation function for the hidden layer.

        - 'identity', no-op activation, useful to implement linear bottleneck,
          returns f(x) = x

        - 'logistic', the logistic sigmoid function,
          returns f(x) = 1 / (1 + exp(-x)).

        - 'tanh', the hyperbolic tan function,
          returns f(x) = tanh(x).

        - 'relu', the rectified linear unit function,
          returns f(x) = max(0, x)

    solver : {'lbfgs', 'sgd', 'adam'}, default='adam'
        The solver for weight optimization.

        - 'lbfgs' is an optimizer in the family of quasi-Newton methods.

        - 'sgd' refers to stochastic gradient descent.

        - 'adam' refers to a stochastic gradient-based optimizer proposed by
          Kingma, Diederik, and Jimmy Ba

        Note: The default solver 'adam' works pretty well on relatively
        large datasets (with thousands of training samples or more) in terms of
        both training time and validation score.
        For small datasets, however, 'lbfgs' can converge faster and perform
        better.

    alpha : float, default=0.0001
        Strength of the L2 regularization term. The L2 regularization term
        is divided by the sample size when added to the loss.

    batch_size : int, default='auto'
        Size of minibatches for stochastic optimizers.
        If the solver is 'lbfgs', the regressor will not use minibatch.
        When set to "auto", `batch_size=min(200, n_samples)`.

    learning_rate : {'constant', 'invscaling', 'adaptive'}, default='constant'
        Learning rate schedule for weight updates.

        - 'constant' is a constant learning rate given by
          'learning_rate_init'.

        - 'invscaling' gradually decreases the learning rate ``learning_rate_``
          at each time step 't' using an inverse scaling exponent of 'power_t'.
          effective_learning_rate = learning_rate_init / pow(t, power_t)

        - 'adaptive' keeps the learning rate constant to
          'learning_rate_init' as long as training loss keeps decreasing.
          Each time two consecutive epochs fail to decrease training loss by at
          least tol, or fail to increase validation score by at least tol if
          'early_stopping' is on, the current learning rate is divided by 5.

        Only used when solver='sgd'.

    learning_rate_init : float, default=0.001
        The initial learning rate used. It controls the step-size
        in updating the weights. Only used when solver='sgd' or 'adam'.

    power_t : float, default=0.5
        The exponent for inverse scaling learning rate.
        It is used in updating effective learning rate when the learning_rate
        is set to 'invscaling'. Only used when solver='sgd'.

    max_iter : int, default=200
        Maximum number of iterations. The solver iterates until convergence
        (determined by 'tol') or this number of iterations. For stochastic
        solvers ('sgd', 'adam'), note that this determines the number of epochs
        (how many times each data point will be used), not the number of
        gradient steps.

    shuffle : bool, default=True
        Whether to shuffle samples in each iteration. Only used when
        solver='sgd' or 'adam'.

    random_state : int, RandomState instance, default=None
        Determines random number generation for weights and bias
        initialization, train-test split if early stopping is used, and batch
        sampling when solver='sgd' or 'adam'.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    tol : float, default=1e-4
        Tolerance for the optimization. When the loss or score is not improving
        by at least ``tol`` for ``n_iter_no_change`` consecutive iterations,
        unless ``learning_rate`` is set to 'adaptive', convergence is
        considered to be reached and training stops.

    verbose : bool, default=False
        Whether to print progress messages to stdout.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous
        call to fit as initialization, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    momentum : float, default=0.9
        Momentum for gradient descent update. Should be between 0 and 1. Only
        used when solver='sgd'.

    nesterovs_momentum : bool, default=True
        Whether to use Nesterov's momentum. Only used when solver='sgd' and
        momentum > 0.

    early_stopping : bool, default=False
        Whether to use early stopping to terminate training when validation
        score is not improving. If set to True, it will automatically set
        aside ``validation_fraction`` of training data as validation and
        terminate training when validation score is not improving by at
        least ``tol`` for ``n_iter_no_change`` consecutive epochs.
        Only effective when solver='sgd' or 'adam'.

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if early_stopping is True.

    beta_1 : float, default=0.9
        Exponential decay rate for estimates of first moment vector in adam,
        should be in [0, 1). Only used when solver='adam'.

    beta_2 : float, default=0.999
        Exponential decay rate for estimates of second moment vector in adam,
        should be in [0, 1). Only used when solver='adam'.

    epsilon : float, default=1e-8
        Value for numerical stability in adam. Only used when solver='adam'.

    n_iter_no_change : int, default=10
        Maximum number of epochs to not meet ``tol`` improvement.
        Only effective when solver='sgd' or 'adam'.

        .. versionadded:: 0.20

    max_fun : int, default=15000
        Only used when solver='lbfgs'. Maximum number of function calls.
        The solver iterates until convergence (determined by ``tol``), number
        of iterations reaches max_iter, or this number of function calls.
        Note that number of function calls will be greater than or equal to
        the number of iterations for the MLPRegressor.

        .. versionadded:: 0.22

    Attributes
    ----------
    loss_ : float
        The current loss computed with the loss function.

    best_loss_ : float
        The minimum loss reached by the solver throughout fitting.
        If `early_stopping=True`, this attribute is set to `None`. Refer to
        the `best_validation_score_` fitted attribute instead.
        Only accessible when solver='sgd' or 'adam'.

    loss_curve_ : list of shape (`n_iter_`,)
        Loss value evaluated at the end of each training step.
        The ith element in the list represents the loss at the ith iteration.
        Only accessible when solver='sgd' or 'adam'.

    validation_scores_ : list of shape (`n_iter_`,) or None
        The score at each iteration on a held-out validation set. The score
        reported is the R2 score. Only available if `early_stopping=True`,
        otherwise the attribute is set to `None`.
        Only accessible when solver='sgd' or 'adam'.

    best_validation_score_ : float or None
        The best validation score (i.e. R2 score) that triggered the
        early stopping. Only available if `early_stopping=True`, otherwise the
        attribute is set to `None`.
        Only accessible when solver='sgd' or 'adam'.

    t_ : int
        The number of training samples seen by the solver during fitting.
        Mathematically equals `n_iters * X.shape[0]`, it means
        `time_step` and it is used by optimizer's learning rate scheduler.

    coefs_ : list of shape (n_layers - 1,)
        The ith element in the list represents the weight matrix corresponding
        to layer i.

    intercepts_ : list of shape (n_layers - 1,)
        The ith element in the list represents the bias vector corresponding to
        layer i + 1.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        The number of iterations the solver has run.

    n_layers_ : int
        Number of layers.

    n_outputs_ : int
        Number of outputs.

    out_activation_ : str
        Name of the output activation function.

    See Also
    --------
    BernoulliRBM : Bernoulli Restricted Boltzmann Machine (RBM).
    MLPClassifier : Multi-layer Perceptron classifier.
    sklearn.linear_model.SGDRegressor : Linear model fitted by minimizing
        a regularized empirical loss with SGD.

    Notes
    -----
    MLPRegressor trains iteratively since at each time step
    the partial derivatives of the loss function with respect to the model
    parameters are computed to update the parameters.

    It can also have a regularization term added to the loss function
    that shrinks model parameters to prevent overfitting.

    This implementation works with data represented as dense and sparse numpy
    arrays of floating point values.

    References
    ----------
    Hinton, Geoffrey E. "Connectionist learning procedures."
    Artificial intelligence 40.1 (1989): 185-234.

    Glorot, Xavier, and Yoshua Bengio.
    "Understanding the difficulty of training deep feedforward neural networks."
    International Conference on Artificial Intelligence and Statistics. 2010.

    :arxiv:`He, Kaiming, et al (2015). "Delving deep into rectifiers:
    Surpassing human-level performance on imagenet classification." <1502.01852>`

    :arxiv:`Kingma, Diederik, and Jimmy Ba (2014)
    "Adam: A method for stochastic optimization." <1412.6980>`

    Examples
    --------
    >>> from sklearn.neural_network import MLPRegressor
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_regression(n_samples=200, random_state=1)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=1)
    >>> regr = MLPRegressor(random_state=1, max_iter=500).fit(X_train, y_train)
    >>> regr.predict(X_test[:2])
    array([-0.9..., -7.1...])
    >>> regr.score(X_test, y_test)
    0.4...
    """

    def __init__(
        self,
        hidden_layer_sizes=(100,),
        activation="relu",
        *,
        solver="adam",
        alpha=0.0001,
        batch_size="auto",
        learning_rate="constant",
        learning_rate_init=0.001,
        power_t=0.5,
        max_iter=200,
        shuffle=True,
        random_state=None,
        tol=1e-4,
        verbose=False,
        warm_start=False,
        momentum=0.9,
        nesterovs_momentum=True,
        early_stopping=False,
        validation_fraction=0.1,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-8,
        n_iter_no_change=10,
        max_fun=15000,
    ):
        super().__init__(
            hidden_layer_sizes=hidden_layer_sizes,
            activation=activation,
            solver=solver,
            alpha=alpha,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_rate_init=learning_rate_init,
            power_t=power_t,
            max_iter=max_iter,
            loss="squared_error",
            shuffle=shuffle,
            random_state=random_state,
            tol=tol,
            verbose=verbose,
            warm_start=warm_start,
            momentum=momentum,
            nesterovs_momentum=nesterovs_momentum,
            early_stopping=early_stopping,
            validation_fraction=validation_fraction,
            beta_1=beta_1,
            beta_2=beta_2,
            epsilon=epsilon,
            n_iter_no_change=n_iter_no_change,
            max_fun=max_fun,
        )

    def predict(self, X):
        """Predict using the multi-layer perceptron model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y : ndarray of shape (n_samples, n_outputs)
            The predicted values.
        """
        check_is_fitted(self)
        return self._predict(X)

    def _predict(self, X, check_input=True):
        """Private predict method with optional input validation"""
        y_pred = self._forward_pass_fast(X, check_input=check_input)
        if y_pred.shape[1] == 1:
            return y_pred.ravel()
        return y_pred

    def _score(self, X, y):
        """Private score method without input validation"""
        # Input validation would remove feature names, so we disable it
        y_pred = self._predict(X, check_input=False)
        return r2_score(y, y_pred)

    def _validate_input(self, X, y, incremental, reset):
        X, y = self._validate_data(
            X,
            y,
            accept_sparse=["csr", "csc"],
            multi_output=True,
            y_numeric=True,
            dtype=(np.float64, np.float32),
            reset=reset,
        )
        if y.ndim == 2 and y.shape[1] == 1:
            y = column_or_1d(y, warn=True)
        return X, y

    @available_if(lambda est: est._check_solver)
    @_fit_context(prefer_skip_nested_validation=True)
    def partial_fit(self, X, y):
        """Update the model with a single iteration over the given data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.

        y : ndarray of shape (n_samples,)
            The target values.

        Returns
        -------
        self : object
            Trained MLP model.
        """
        return self._fit(X, y, incremental=True)