1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
import numpy as np
import pytest
from sklearn.neural_network._base import binary_log_loss, log_loss
def test_binary_log_loss_1_prob_finite():
# y_proba is equal to one should result in a finite logloss
y_true = np.array([[0, 0, 1]]).T
y_prob = np.array([[0.9, 1.0, 1.0]]).T
loss = binary_log_loss(y_true, y_prob)
assert np.isfinite(loss)
@pytest.mark.parametrize(
"y_true, y_prob",
[
(
np.array([[1, 0, 0], [0, 1, 0]]),
np.array([[0.0, 1.0, 0.0], [0.9, 0.05, 0.05]]),
),
(np.array([[0, 0, 1]]).T, np.array([[0.9, 1.0, 1.0]]).T),
],
)
def test_log_loss_1_prob_finite(y_true, y_prob):
# y_proba is equal to 1 should result in a finite logloss
loss = log_loss(y_true, y_prob)
assert np.isfinite(loss)
|