File: __init__.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (63 lines) | stat: -rw-r--r-- 1,460 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
The :mod:`sklearn.preprocessing` module includes scaling, centering,
normalization, binarization methods.
"""

from ._data import (
    Binarizer,
    KernelCenterer,
    MaxAbsScaler,
    MinMaxScaler,
    Normalizer,
    PowerTransformer,
    QuantileTransformer,
    RobustScaler,
    StandardScaler,
    add_dummy_feature,
    binarize,
    maxabs_scale,
    minmax_scale,
    normalize,
    power_transform,
    quantile_transform,
    robust_scale,
    scale,
)
from ._discretization import KBinsDiscretizer
from ._encoders import OneHotEncoder, OrdinalEncoder
from ._function_transformer import FunctionTransformer
from ._label import LabelBinarizer, LabelEncoder, MultiLabelBinarizer, label_binarize
from ._polynomial import PolynomialFeatures, SplineTransformer
from ._target_encoder import TargetEncoder

__all__ = [
    "Binarizer",
    "FunctionTransformer",
    "KBinsDiscretizer",
    "KernelCenterer",
    "LabelBinarizer",
    "LabelEncoder",
    "MultiLabelBinarizer",
    "MinMaxScaler",
    "MaxAbsScaler",
    "QuantileTransformer",
    "Normalizer",
    "OneHotEncoder",
    "OrdinalEncoder",
    "PowerTransformer",
    "RobustScaler",
    "SplineTransformer",
    "StandardScaler",
    "TargetEncoder",
    "add_dummy_feature",
    "PolynomialFeatures",
    "binarize",
    "normalize",
    "scale",
    "robust_scale",
    "maxabs_scale",
    "minmax_scale",
    "label_binarize",
    "quantile_transform",
    "power_transform",
]