File: test_function_transformer.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (591 lines) | stat: -rw-r--r-- 19,827 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import warnings

import numpy as np
import pytest

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer, StandardScaler
from sklearn.preprocessing._function_transformer import _get_adapter_from_container
from sklearn.utils._testing import (
    _convert_container,
    assert_allclose_dense_sparse,
    assert_array_equal,
)
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS


def test_get_adapter_from_container():
    """Check the behavior fo `_get_adapter_from_container`."""
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
    adapter = _get_adapter_from_container(X)
    assert adapter.container_lib == "pandas"
    err_msg = "The container does not have a registered adapter in scikit-learn."
    with pytest.raises(ValueError, match=err_msg):
        _get_adapter_from_container(X.to_numpy())


def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
    def _func(X, *args, **kwargs):
        args_store.append(X)
        args_store.extend(args)
        kwargs_store.update(kwargs)
        return func(X)

    return _func


def test_delegate_to_func():
    # (args|kwargs)_store will hold the positional and keyword arguments
    # passed to the function inside the FunctionTransformer.
    args_store = []
    kwargs_store = {}
    X = np.arange(10).reshape((5, 2))
    assert_array_equal(
        FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
        X,
        "transform should have returned X unchanged",
    )

    # The function should only have received X.
    assert args_store == [
        X
    ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)

    assert (
        not kwargs_store
    ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)

    # reset the argument stores.
    args_store[:] = []
    kwargs_store.clear()
    transformed = FunctionTransformer(
        _make_func(args_store, kwargs_store),
    ).transform(X)

    assert_array_equal(
        transformed, X, err_msg="transform should have returned X unchanged"
    )

    # The function should have received X
    assert args_store == [
        X
    ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)

    assert (
        not kwargs_store
    ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)


def test_np_log():
    X = np.arange(10).reshape((5, 2))

    # Test that the numpy.log example still works.
    assert_array_equal(
        FunctionTransformer(np.log1p).transform(X),
        np.log1p(X),
    )


def test_kw_arg():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=3))


def test_kw_arg_update():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args["decimals"] = 1

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=1))


def test_kw_arg_reset():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args = dict(decimals=1)

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=1))


def test_inverse_transform():
    X = np.array([1, 4, 9, 16]).reshape((2, 2))

    # Test that inverse_transform works correctly
    F = FunctionTransformer(
        func=np.sqrt,
        inverse_func=np.around,
        inv_kw_args=dict(decimals=3),
    )
    assert_array_equal(
        F.inverse_transform(F.transform(X)),
        np.around(np.sqrt(X), decimals=3),
    )


@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
def test_check_inverse(sparse_container):
    X = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
    if sparse_container is not None:
        X = sparse_container(X)

    trans = FunctionTransformer(
        func=np.sqrt,
        inverse_func=np.around,
        accept_sparse=sparse_container is not None,
        check_inverse=True,
        validate=True,
    )
    warning_message = (
        "The provided functions are not strictly"
        " inverse of each other. If you are sure you"
        " want to proceed regardless, set"
        " 'check_inverse=False'."
    )
    with pytest.warns(UserWarning, match=warning_message):
        trans.fit(X)

    trans = FunctionTransformer(
        func=np.expm1,
        inverse_func=np.log1p,
        accept_sparse=sparse_container is not None,
        check_inverse=True,
        validate=True,
    )
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        Xt = trans.fit_transform(X)

    assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))


def test_check_inverse_func_or_inverse_not_provided():
    # check that we don't check inverse when one of the func or inverse is not
    # provided.
    X = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))

    trans = FunctionTransformer(
        func=np.expm1, inverse_func=None, check_inverse=True, validate=True
    )
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        trans.fit(X)
    trans = FunctionTransformer(
        func=None, inverse_func=np.expm1, check_inverse=True, validate=True
    )
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        trans.fit(X)


def test_function_transformer_frame():
    pd = pytest.importorskip("pandas")
    X_df = pd.DataFrame(np.random.randn(100, 10))
    transformer = FunctionTransformer()
    X_df_trans = transformer.fit_transform(X_df)
    assert hasattr(X_df_trans, "loc")


@pytest.mark.parametrize("X_type", ["array", "series"])
def test_function_transformer_raise_error_with_mixed_dtype(X_type):
    """Check that `FunctionTransformer.check_inverse` raises error on mixed dtype."""
    mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"}
    inverse_mapping = {value: key for key, value in mapping.items()}
    dtype = "object"

    data = ["one", "two", "three", "one", "one", 5, 6]
    data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype)

    def func(X):
        return np.array([mapping[X[i]] for i in range(X.size)], dtype=object)

    def inverse_func(X):
        return _convert_container(
            [inverse_mapping[x] for x in X],
            X_type,
            columns_name=["value"],
            dtype=dtype,
        )

    transformer = FunctionTransformer(
        func=func, inverse_func=inverse_func, validate=False, check_inverse=True
    )

    msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
    with pytest.raises(ValueError, match=msg):
        transformer.fit(data)


def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True():
    """Check support for dataframes with only numerical values."""
    pd = pytest.importorskip("pandas")

    df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
    transformer = FunctionTransformer(
        func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True
    )

    # Does not raise an error
    df_out = transformer.fit_transform(df)
    assert_allclose_dense_sparse(df_out, df + 2)


def test_function_transformer_with_dataframe_and_check_inverse_True():
    """Check error is raised when check_inverse=True.

    Non-regresion test for gh-25261.
    """
    pd = pytest.importorskip("pandas")
    transformer = FunctionTransformer(
        func=lambda x: x, inverse_func=lambda x: x, check_inverse=True
    )

    df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
    msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
    with pytest.raises(ValueError, match=msg):
        transformer.fit(df_mixed)


@pytest.mark.parametrize(
    "X, feature_names_out, input_features, expected",
    [
        (
            # NumPy inputs, default behavior: generate names
            np.random.rand(100, 3),
            "one-to-one",
            None,
            ("x0", "x1", "x2"),
        ),
        (
            # Pandas input, default behavior: use input feature names
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            "one-to-one",
            None,
            ("a", "b"),
        ),
        (
            # NumPy input, feature_names_out=callable
            np.random.rand(100, 3),
            lambda transformer, input_features: ("a", "b"),
            None,
            ("a", "b"),
        ),
        (
            # Pandas input, feature_names_out=callable
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: ("c", "d", "e"),
            None,
            ("c", "d", "e"),
        ),
        (
            # NumPy input, feature_names_out=callable – default input_features
            np.random.rand(100, 3),
            lambda transformer, input_features: tuple(input_features) + ("a",),
            None,
            ("x0", "x1", "x2", "a"),
        ),
        (
            # Pandas input, feature_names_out=callable – default input_features
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: tuple(input_features) + ("c",),
            None,
            ("a", "b", "c"),
        ),
        (
            # NumPy input, input_features=list of names
            np.random.rand(100, 3),
            "one-to-one",
            ("a", "b", "c"),
            ("a", "b", "c"),
        ),
        (
            # Pandas input, input_features=list of names
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            "one-to-one",
            ("a", "b"),  # must match feature_names_in_
            ("a", "b"),
        ),
        (
            # NumPy input, feature_names_out=callable, input_features=list
            np.random.rand(100, 3),
            lambda transformer, input_features: tuple(input_features) + ("d",),
            ("a", "b", "c"),
            ("a", "b", "c", "d"),
        ),
        (
            # Pandas input, feature_names_out=callable, input_features=list
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: tuple(input_features) + ("c",),
            ("a", "b"),  # must match feature_names_in_
            ("a", "b", "c"),
        ),
    ],
)
@pytest.mark.parametrize("validate", [True, False])
def test_function_transformer_get_feature_names_out(
    X, feature_names_out, input_features, expected, validate
):
    if isinstance(X, dict):
        pd = pytest.importorskip("pandas")
        X = pd.DataFrame(X)

    transformer = FunctionTransformer(
        feature_names_out=feature_names_out, validate=validate
    )
    transformer.fit(X)
    names = transformer.get_feature_names_out(input_features)
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, expected)


def test_function_transformer_get_feature_names_out_without_validation():
    transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
    X = np.random.rand(100, 2)
    transformer.fit_transform(X)

    names = transformer.get_feature_names_out(("a", "b"))
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, ("a", "b"))


def test_function_transformer_feature_names_out_is_None():
    transformer = FunctionTransformer()
    X = np.random.rand(100, 2)
    transformer.fit_transform(X)

    msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
    with pytest.raises(AttributeError, match=msg):
        transformer.get_feature_names_out()


def test_function_transformer_feature_names_out_uses_estimator():
    def add_n_random_features(X, n):
        return np.concatenate([X, np.random.rand(len(X), n)], axis=1)

    def feature_names_out(transformer, input_features):
        n = transformer.kw_args["n"]
        return list(input_features) + [f"rnd{i}" for i in range(n)]

    transformer = FunctionTransformer(
        func=add_n_random_features,
        feature_names_out=feature_names_out,
        kw_args=dict(n=3),
        validate=True,
    )
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
    transformer.fit_transform(df)
    names = transformer.get_feature_names_out()

    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))


def test_function_transformer_validate_inverse():
    """Test that function transformer does not reset estimator in
    `inverse_transform`."""

    def add_constant_feature(X):
        X_one = np.ones((X.shape[0], 1))
        return np.concatenate((X, X_one), axis=1)

    def inverse_add_constant(X):
        return X[:, :-1]

    X = np.array([[1, 2], [3, 4], [3, 4]])
    trans = FunctionTransformer(
        func=add_constant_feature,
        inverse_func=inverse_add_constant,
        validate=True,
    )
    X_trans = trans.fit_transform(X)
    assert trans.n_features_in_ == X.shape[1]

    trans.inverse_transform(X_trans)
    assert trans.n_features_in_ == X.shape[1]


@pytest.mark.parametrize(
    "feature_names_out, expected",
    [
        ("one-to-one", ["pet", "color"]),
        [lambda est, names: [f"{n}_out" for n in names], ["pet_out", "color_out"]],
    ],
)
@pytest.mark.parametrize("in_pipeline", [True, False])
def test_get_feature_names_out_dataframe_with_string_data(
    feature_names_out, expected, in_pipeline
):
    """Check that get_feature_names_out works with DataFrames with string data."""
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]})

    def func(X):
        if feature_names_out == "one-to-one":
            return X
        else:
            name = feature_names_out(None, X.columns)
            return X.rename(columns=dict(zip(X.columns, name)))

    transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out)
    if in_pipeline:
        transformer = make_pipeline(transformer)

    X_trans = transformer.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)

    names = transformer.get_feature_names_out()
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, expected)


def test_set_output_func():
    """Check behavior of set_output with different settings."""
    pd = pytest.importorskip("pandas")

    X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})

    ft = FunctionTransformer(np.log, feature_names_out="one-to-one")

    # no warning is raised when feature_names_out is defined
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        ft.set_output(transform="pandas")

    X_trans = ft.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)
    assert_array_equal(X_trans.columns, ["a", "b"])

    ft = FunctionTransformer(lambda x: 2 * x)
    ft.set_output(transform="pandas")

    # no warning is raised when func returns a panda dataframe
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        X_trans = ft.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)
    assert_array_equal(X_trans.columns, ["a", "b"])

    # Warning is raised when func returns a ndarray
    ft_np = FunctionTransformer(lambda x: np.asarray(x))

    for transform in ("pandas", "polars"):
        ft_np.set_output(transform=transform)
        msg = (
            f"When `set_output` is configured to be '{transform}'.*{transform} "
            "DataFrame.*"
        )
        with pytest.warns(UserWarning, match=msg):
            ft_np.fit_transform(X)

    # default transform does not warn
    ft_np.set_output(transform="default")
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        ft_np.fit_transform(X)


def test_consistence_column_name_between_steps():
    """Check that we have a consistence between the feature names out of
    `FunctionTransformer` and the feature names in of the next step in the pipeline.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/27695
    """
    pd = pytest.importorskip("pandas")

    def with_suffix(_, names):
        return [name + "__log" for name in names]

    pipeline = make_pipeline(
        FunctionTransformer(np.log1p, feature_names_out=with_suffix), StandardScaler()
    )

    df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=["a", "b"])
    X_trans = pipeline.fit_transform(df)
    assert pipeline.get_feature_names_out().tolist() == ["a__log", "b__log"]
    # StandardScaler will convert to a numpy array
    assert isinstance(X_trans, np.ndarray)


@pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
@pytest.mark.parametrize("transform_output", ["default", "pandas", "polars"])
def test_function_transformer_overwrite_column_names(dataframe_lib, transform_output):
    """Check that we overwrite the column names when we should."""
    lib = pytest.importorskip(dataframe_lib)
    if transform_output != "numpy":
        pytest.importorskip(transform_output)

    df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})

    def with_suffix(_, names):
        return [name + "__log" for name in names]

    transformer = FunctionTransformer(feature_names_out=with_suffix).set_output(
        transform=transform_output
    )
    X_trans = transformer.fit_transform(df)
    assert_array_equal(np.asarray(X_trans), np.asarray(df))

    feature_names = transformer.get_feature_names_out()
    assert list(X_trans.columns) == with_suffix(None, df.columns)
    assert feature_names.tolist() == with_suffix(None, df.columns)


@pytest.mark.parametrize(
    "feature_names_out",
    ["one-to-one", lambda _, names: [f"{name}_log" for name in names]],
)
def test_function_transformer_overwrite_column_names_numerical(feature_names_out):
    """Check the same as `test_function_transformer_overwrite_column_names`
    but for the specific case of pandas where column names can be numerical."""
    pd = pytest.importorskip("pandas")

    df = pd.DataFrame({0: [1, 2, 3], 1: [10, 20, 100]})

    transformer = FunctionTransformer(feature_names_out=feature_names_out)
    X_trans = transformer.fit_transform(df)
    assert_array_equal(np.asarray(X_trans), np.asarray(df))

    feature_names = transformer.get_feature_names_out()
    assert list(X_trans.columns) == list(feature_names)


@pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
@pytest.mark.parametrize(
    "feature_names_out",
    ["one-to-one", lambda _, names: [f"{name}_log" for name in names]],
)
def test_function_transformer_error_column_inconsistent(
    dataframe_lib, feature_names_out
):
    """Check that we raise an error when `func` returns a dataframe with new
    column names that become inconsistent with `get_feature_names_out`."""
    lib = pytest.importorskip(dataframe_lib)

    df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})

    def func(df):
        if dataframe_lib == "pandas":
            return df.rename(columns={"a": "c"})
        else:
            return df.rename({"a": "c"})

    transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out)
    err_msg = "The output generated by `func` have different column names"
    with pytest.raises(ValueError, match=err_msg):
        transformer.fit_transform(df).columns