1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
import re
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.model_selection import (
KFold,
ShuffleSplit,
StratifiedKFold,
cross_val_score,
train_test_split,
)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
KBinsDiscretizer,
LabelBinarizer,
LabelEncoder,
TargetEncoder,
)
def _encode_target(X_ordinal, y_numeric, n_categories, smooth):
"""Simple Python implementation of target encoding."""
cur_encodings = np.zeros(n_categories, dtype=np.float64)
y_mean = np.mean(y_numeric)
if smooth == "auto":
y_variance = np.var(y_numeric)
for c in range(n_categories):
y_subset = y_numeric[X_ordinal == c]
n_i = y_subset.shape[0]
if n_i == 0:
cur_encodings[c] = y_mean
continue
y_subset_variance = np.var(y_subset)
m = y_subset_variance / y_variance
lambda_ = n_i / (n_i + m)
cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean
return cur_encodings
else: # float
for c in range(n_categories):
y_subset = y_numeric[X_ordinal == c]
current_sum = np.sum(y_subset) + y_mean * smooth
current_cnt = y_subset.shape[0] + smooth
cur_encodings[c] = current_sum / current_cnt
return cur_encodings
@pytest.mark.parametrize(
"categories, unknown_value",
[
([np.array([0, 1, 2], dtype=np.int64)], 4),
([np.array([1.0, 3.0, np.nan], dtype=np.float64)], 6.0),
([np.array(["cat", "dog", "snake"], dtype=object)], "bear"),
("auto", 3),
],
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary", "continuous"])
def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type):
"""Check encoding for binary and continuous targets.
Compare the values returned by `TargetEncoder.fit_transform` against the
expected encodings for cv splits from a naive reference Python
implementation in _encode_target.
"""
n_categories = 3
X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T
X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T
n_samples = X_train_int_array.shape[0]
if categories == "auto":
X_train = X_train_int_array
X_test = X_test_int_array
else:
X_train = categories[0][X_train_int_array]
X_test = categories[0][X_test_int_array]
X_test = np.concatenate((X_test, [[unknown_value]]))
data_rng = np.random.RandomState(global_random_seed)
n_splits = 3
if target_type == "binary":
y_numeric = data_rng.randint(low=0, high=2, size=n_samples)
target_names = np.array(["cat", "dog"], dtype=object)
y_train = target_names[y_numeric]
else:
assert target_type == "continuous"
y_numeric = data_rng.uniform(low=-10, high=20, size=n_samples)
y_train = y_numeric
shuffled_idx = data_rng.permutation(n_samples)
X_train_int_array = X_train_int_array[shuffled_idx]
X_train = X_train[shuffled_idx]
y_train = y_train[shuffled_idx]
y_numeric = y_numeric[shuffled_idx]
# Define our CV splitting strategy
if target_type == "binary":
cv = StratifiedKFold(
n_splits=n_splits, random_state=global_random_seed, shuffle=True
)
else:
cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True)
# Compute the expected values using our reference Python implementation of
# target encoding:
expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64)
for train_idx, test_idx in cv.split(X_train_int_array, y_train):
X_, y_ = X_train_int_array[train_idx, 0], y_numeric[train_idx]
cur_encodings = _encode_target(X_, y_, n_categories, smooth)
expected_X_fit_transform[test_idx, 0] = cur_encodings[
X_train_int_array[test_idx, 0]
]
# Check that we can obtain the same encodings by calling `fit_transform` on
# the estimator with the same CV parameters:
target_encoder = TargetEncoder(
smooth=smooth,
categories=categories,
cv=n_splits,
random_state=global_random_seed,
)
X_fit_transform = target_encoder.fit_transform(X_train, y_train)
assert target_encoder.target_type_ == target_type
assert_allclose(X_fit_transform, expected_X_fit_transform)
assert len(target_encoder.encodings_) == 1
if target_type == "binary":
assert_array_equal(target_encoder.classes_, target_names)
else:
assert target_encoder.classes_ is None
# compute encodings for all data to validate `transform`
y_mean = np.mean(y_numeric)
expected_encodings = _encode_target(
X_train_int_array[:, 0], y_numeric, n_categories, smooth
)
assert_allclose(target_encoder.encodings_[0], expected_encodings)
assert target_encoder.target_mean_ == pytest.approx(y_mean)
# Transform on test data, the last value is unknown so it is encoded as the target
# mean
expected_X_test_transform = np.concatenate(
(expected_encodings, np.array([y_mean]))
).reshape(-1, 1)
X_test_transform = target_encoder.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"categories, unknown_values",
[
([np.array([0, 1, 2], dtype=np.int64)], "auto"),
([np.array(["cat", "dog", "snake"], dtype=object)], ["bear", "rabbit"]),
],
)
@pytest.mark.parametrize(
"target_labels", [np.array([1, 2, 3]), np.array(["a", "b", "c"])]
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
def test_encoding_multiclass(
global_random_seed, categories, unknown_values, target_labels, smooth
):
"""Check encoding for multiclass targets."""
rng = np.random.RandomState(global_random_seed)
n_samples = 80
n_features = 2
feat_1_int = np.array(rng.randint(low=0, high=2, size=n_samples))
feat_2_int = np.array(rng.randint(low=0, high=3, size=n_samples))
feat_1 = categories[0][feat_1_int]
feat_2 = categories[0][feat_2_int]
X_train = np.column_stack((feat_1, feat_2))
X_train_int = np.column_stack((feat_1_int, feat_2_int))
categories_ = [[0, 1], [0, 1, 2]]
n_classes = 3
y_train_int = np.array(rng.randint(low=0, high=n_classes, size=n_samples))
y_train = target_labels[y_train_int]
y_train_enc = LabelBinarizer().fit_transform(y_train)
n_splits = 3
cv = StratifiedKFold(
n_splits=n_splits, random_state=global_random_seed, shuffle=True
)
# Manually compute encodings for cv splits to validate `fit_transform`
expected_X_fit_transform = np.empty(
(X_train_int.shape[0], X_train_int.shape[1] * n_classes),
dtype=np.float64,
)
for f_idx, cats in enumerate(categories_):
for c_idx in range(n_classes):
for train_idx, test_idx in cv.split(X_train, y_train):
y_class = y_train_enc[:, c_idx]
X_, y_ = X_train_int[train_idx, f_idx], y_class[train_idx]
current_encoding = _encode_target(X_, y_, len(cats), smooth)
# f_idx: 0, 0, 0, 1, 1, 1
# c_idx: 0, 1, 2, 0, 1, 2
# exp_idx: 0, 1, 2, 3, 4, 5
exp_idx = c_idx + (f_idx * n_classes)
expected_X_fit_transform[test_idx, exp_idx] = current_encoding[
X_train_int[test_idx, f_idx]
]
target_encoder = TargetEncoder(
smooth=smooth,
cv=n_splits,
random_state=global_random_seed,
)
X_fit_transform = target_encoder.fit_transform(X_train, y_train)
assert target_encoder.target_type_ == "multiclass"
assert_allclose(X_fit_transform, expected_X_fit_transform)
# Manually compute encoding to validate `transform`
expected_encodings = []
for f_idx, cats in enumerate(categories_):
for c_idx in range(n_classes):
y_class = y_train_enc[:, c_idx]
current_encoding = _encode_target(
X_train_int[:, f_idx], y_class, len(cats), smooth
)
expected_encodings.append(current_encoding)
assert len(target_encoder.encodings_) == n_features * n_classes
for i in range(n_features * n_classes):
assert_allclose(target_encoder.encodings_[i], expected_encodings[i])
assert_array_equal(target_encoder.classes_, target_labels)
# Include unknown values at the end
X_test_int = np.array([[0, 1], [1, 2], [4, 5]])
if unknown_values == "auto":
X_test = X_test_int
else:
X_test = np.empty_like(X_test_int[:-1, :], dtype=object)
for column_idx in range(X_test_int.shape[1]):
X_test[:, column_idx] = categories[0][X_test_int[:-1, column_idx]]
# Add unknown values at end
X_test = np.vstack((X_test, unknown_values))
y_mean = np.mean(y_train_enc, axis=0)
expected_X_test_transform = np.empty(
(X_test_int.shape[0], X_test_int.shape[1] * n_classes),
dtype=np.float64,
)
n_rows = X_test_int.shape[0]
f_idx = [0, 0, 0, 1, 1, 1]
# Last row are unknowns, dealt with later
for row_idx in range(n_rows - 1):
for i, enc in enumerate(expected_encodings):
expected_X_test_transform[row_idx, i] = enc[X_test_int[row_idx, f_idx[i]]]
# Unknowns encoded as target mean for each class
# `y_mean` contains target mean for each class, thus cycle through mean of
# each class, `n_features` times
mean_idx = [0, 1, 2, 0, 1, 2]
for i in range(n_classes * n_features):
expected_X_test_transform[n_rows - 1, i] = y_mean[mean_idx[i]]
X_test_transform = target_encoder.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"X, categories",
[
(
np.array([[0] * 10 + [1] * 10 + [3]], dtype=np.int64).T, # 3 is unknown
[[0, 1, 2]],
),
(
np.array(
[["cat"] * 10 + ["dog"] * 10 + ["snake"]], dtype=object
).T, # snake is unknown
[["dog", "cat", "cow"]],
),
],
)
@pytest.mark.parametrize("smooth", [4.0, "auto"])
def test_custom_categories(X, categories, smooth):
"""Custom categories with unknown categories that are not in training data."""
rng = np.random.RandomState(0)
y = rng.uniform(low=-10, high=20, size=X.shape[0])
enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y)
# The last element is unknown and encoded as the mean
y_mean = y.mean()
X_trans = enc.transform(X[-1:])
assert X_trans[0, 0] == pytest.approx(y_mean)
assert len(enc.encodings_) == 1
# custom category that is not in training data
assert enc.encodings_[0][-1] == pytest.approx(y_mean)
@pytest.mark.parametrize(
"y, msg",
[
([1, 2, 0, 1], "Found input variables with inconsistent"),
(
np.array([[1, 2, 0], [1, 2, 3]]).T,
"Target type was inferred to be 'multiclass-multioutput'",
),
],
)
def test_errors(y, msg):
"""Check invalidate input."""
X = np.array([[1, 0, 1]]).T
enc = TargetEncoder()
with pytest.raises(ValueError, match=msg):
enc.fit_transform(X, y)
def test_use_regression_target():
"""Check inferred and specified `target_type` on regression target."""
X = np.array([[0, 1, 0, 1, 0, 1]]).T
y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
enc = TargetEncoder(cv=2)
with pytest.warns(
UserWarning,
match=re.escape(
"The least populated class in y has only 1 members, which is less than"
" n_splits=2."
),
):
enc.fit_transform(X, y)
assert enc.target_type_ == "multiclass"
enc = TargetEncoder(cv=2, target_type="continuous")
enc.fit_transform(X, y)
assert enc.target_type_ == "continuous"
@pytest.mark.parametrize(
"y, feature_names",
[
([1, 2] * 10, ["A", "B"]),
([1, 2, 3] * 6 + [1, 2], ["A_1", "A_2", "A_3", "B_1", "B_2", "B_3"]),
(
["y1", "y2", "y3"] * 6 + ["y1", "y2"],
["A_y1", "A_y2", "A_y3", "B_y1", "B_y2", "B_y3"],
),
],
)
def test_feature_names_out_set_output(y, feature_names):
"""Check TargetEncoder works with set_output."""
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame({"A": ["a", "b"] * 10, "B": [1, 2] * 10})
enc_default = TargetEncoder(cv=2, smooth=3.0, random_state=0)
enc_default.set_output(transform="default")
enc_pandas = TargetEncoder(cv=2, smooth=3.0, random_state=0)
enc_pandas.set_output(transform="pandas")
X_default = enc_default.fit_transform(X_df, y)
X_pandas = enc_pandas.fit_transform(X_df, y)
assert_allclose(X_pandas.to_numpy(), X_default)
assert_array_equal(enc_pandas.get_feature_names_out(), feature_names)
assert_array_equal(enc_pandas.get_feature_names_out(), X_pandas.columns)
@pytest.mark.parametrize("to_pandas", [True, False])
@pytest.mark.parametrize("smooth", [1.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary-ints", "binary-str", "continuous"])
def test_multiple_features_quick(to_pandas, smooth, target_type):
"""Check target encoder with multiple features."""
X_ordinal = np.array(
[[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64
)
if target_type == "binary-str":
y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"])
y_integer = LabelEncoder().fit_transform(y_train)
cv = StratifiedKFold(2, random_state=0, shuffle=True)
elif target_type == "binary-ints":
y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4])
y_integer = LabelEncoder().fit_transform(y_train)
cv = StratifiedKFold(2, random_state=0, shuffle=True)
else:
y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32)
y_integer = y_train
cv = KFold(2, random_state=0, shuffle=True)
y_mean = np.mean(y_integer)
categories = [[0, 1, 2], [0, 1]]
X_test = np.array(
[
[0, 1],
[3, 0], # 3 is unknown
[1, 10], # 10 is unknown
],
dtype=np.int64,
)
if to_pandas:
pd = pytest.importorskip("pandas")
# convert second feature to an object
X_train = pd.DataFrame(
{
"feat0": X_ordinal[:, 0],
"feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]],
}
)
# "snake" is unknown
X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]})
else:
X_train = X_ordinal
# manually compute encoding for fit_transform
expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64)
for f_idx, cats in enumerate(categories):
for train_idx, test_idx in cv.split(X_ordinal, y_integer):
X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx]
current_encoding = _encode_target(X_, y_, len(cats), smooth)
expected_X_fit_transform[test_idx, f_idx] = current_encoding[
X_ordinal[test_idx, f_idx]
]
# manually compute encoding for transform
expected_encodings = []
for f_idx, cats in enumerate(categories):
current_encoding = _encode_target(
X_ordinal[:, f_idx], y_integer, len(cats), smooth
)
expected_encodings.append(current_encoding)
expected_X_test_transform = np.array(
[
[expected_encodings[0][0], expected_encodings[1][1]],
[y_mean, expected_encodings[1][0]],
[expected_encodings[0][1], y_mean],
],
dtype=np.float64,
)
enc = TargetEncoder(smooth=smooth, cv=2, random_state=0)
X_fit_transform = enc.fit_transform(X_train, y_train)
assert_allclose(X_fit_transform, expected_X_fit_transform)
assert len(enc.encodings_) == 2
for i in range(2):
assert_allclose(enc.encodings_[i], expected_encodings[i])
X_test_transform = enc.transform(X_test)
assert_allclose(X_test_transform, expected_X_test_transform)
@pytest.mark.parametrize(
"y, y_mean",
[
(np.array([3.4] * 20), 3.4),
(np.array([0] * 20), 0),
(np.array(["a"] * 20, dtype=object), 0),
],
ids=["continuous", "binary", "binary-string"],
)
@pytest.mark.parametrize("smooth", ["auto", 4.0, 0.0])
def test_constant_target_and_feature(y, y_mean, smooth):
"""Check edge case where feature and target is constant."""
X = np.array([[1] * 20]).T
n_samples = X.shape[0]
enc = TargetEncoder(cv=2, smooth=smooth, random_state=0)
X_trans = enc.fit_transform(X, y)
assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0))
assert enc.encodings_[0][0] == pytest.approx(y_mean)
assert enc.target_mean_ == pytest.approx(y_mean)
X_test = np.array([[1], [0]])
X_test_trans = enc.transform(X_test)
assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))
def test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not(
global_random_seed,
):
cardinality = 30 # not too large, otherwise we need a very large n_samples
n_samples = 3000
rng = np.random.RandomState(global_random_seed)
y_train = rng.normal(size=n_samples)
X_train = rng.randint(0, cardinality, size=n_samples).reshape(-1, 1)
# Sort by y_train to attempt to cause a leak
y_sorted_indices = y_train.argsort()
y_train = y_train[y_sorted_indices]
X_train = X_train[y_sorted_indices]
target_encoder = TargetEncoder(shuffle=True, random_state=global_random_seed)
X_encoded_train_shuffled = target_encoder.fit_transform(X_train, y_train)
target_encoder = TargetEncoder(shuffle=False)
X_encoded_train_no_shuffled = target_encoder.fit_transform(X_train, y_train)
# Check that no information about y_train has leaked into X_train:
regressor = RandomForestRegressor(
n_estimators=10, min_samples_leaf=20, random_state=global_random_seed
)
# It's impossible to learn a good predictive model on the training set when
# using the original representation X_train or the target encoded
# representation with shuffled inner CV. For the latter, no information
# about y_train has inadvertently leaked into the prior used to generate
# `X_encoded_train_shuffled`:
cv = ShuffleSplit(n_splits=50, random_state=global_random_seed)
assert cross_val_score(regressor, X_train, y_train, cv=cv).mean() < 0.1
assert (
cross_val_score(regressor, X_encoded_train_shuffled, y_train, cv=cv).mean()
< 0.1
)
# Without the inner CV shuffling, a lot of information about y_train goes into the
# the per-fold y_train.mean() priors: shrinkage is no longer effective in this
# case and would no longer be able to prevent downstream over-fitting.
assert (
cross_val_score(regressor, X_encoded_train_no_shuffled, y_train, cv=cv).mean()
> 0.5
)
def test_smooth_zero():
"""Check edge case with zero smoothing and cv does not contain category."""
X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T
y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0])
enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2)
X_trans = enc.fit_transform(X, y)
# With cv = 2, category 0 does not exist in the second half, thus
# it will be encoded as the mean of the second half
assert_allclose(X_trans[0], np.mean(y[5:]))
# category 1 does not exist in the first half, thus it will be encoded as
# the mean of the first half
assert_allclose(X_trans[-1], np.mean(y[:5]))
@pytest.mark.parametrize("smooth", [0.0, 1e3, "auto"])
def test_invariance_of_encoding_under_label_permutation(smooth, global_random_seed):
# Check that the encoding does not depend on the integer of the value of
# the integer labels. This is quite a trivial property but it is helpful
# to understand the following test.
rng = np.random.RandomState(global_random_seed)
# Random y and informative categorical X to make the test non-trivial when
# using smoothing.
y = rng.normal(size=1000)
n_categories = 30
X = KBinsDiscretizer(n_bins=n_categories, encode="ordinal").fit_transform(
y.reshape(-1, 1)
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=global_random_seed
)
# Shuffle the labels to make sure that the encoding is invariant to the
# permutation of the labels
permutated_labels = rng.permutation(n_categories)
X_train_permuted = permutated_labels[X_train.astype(np.int32)]
X_test_permuted = permutated_labels[X_test.astype(np.int32)]
target_encoder = TargetEncoder(smooth=smooth, random_state=global_random_seed)
X_train_encoded = target_encoder.fit_transform(X_train, y_train)
X_test_encoded = target_encoder.transform(X_test)
X_train_permuted_encoded = target_encoder.fit_transform(X_train_permuted, y_train)
X_test_permuted_encoded = target_encoder.transform(X_test_permuted)
assert_allclose(X_train_encoded, X_train_permuted_encoded)
assert_allclose(X_test_encoded, X_test_permuted_encoded)
# TODO(1.5) remove warning filter when kbd's subsample default is changed
@pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
@pytest.mark.parametrize("smooth", [0.0, "auto"])
def test_target_encoding_for_linear_regression(smooth, global_random_seed):
# Check some expected statistical properties when fitting a linear
# regression model on target encoded features depending on their relation
# with that target.
# In this test, we use the Ridge class with the "lsqr" solver and a little
# bit of regularization to implement a linear regression model that
# converges quickly for large `n_samples` and robustly in case of
# correlated features. Since we will fit this model on a mean centered
# target, we do not need to fit an intercept and this will help simplify
# the analysis with respect to the expected coefficients.
linear_regression = Ridge(alpha=1e-6, solver="lsqr", fit_intercept=False)
# Construct a random target variable. We need a large number of samples for
# this test to be stable across all values of the random seed.
n_samples = 50_000
rng = np.random.RandomState(global_random_seed)
y = rng.randn(n_samples)
# Generate a single informative ordinal feature with medium cardinality.
# Inject some irreducible noise to make it harder for a multivariate model
# to identify the informative feature from other pure noise features.
noise = 0.8 * rng.randn(n_samples)
n_categories = 100
X_informative = KBinsDiscretizer(
n_bins=n_categories,
encode="ordinal",
strategy="uniform",
random_state=rng,
).fit_transform((y + noise).reshape(-1, 1))
# Let's permute the labels to hide the fact that this feature is
# informative to naive linear regression model trained on the raw ordinal
# values. As highlighted in the previous test, the target encoding should be
# invariant to such a permutation.
permutated_labels = rng.permutation(n_categories)
X_informative = permutated_labels[X_informative.astype(np.int32)]
# Generate a shuffled copy of the informative feature to destroy the
# relationship with the target.
X_shuffled = rng.permutation(X_informative)
# Also include a very high cardinality categorical feature that is by
# itself independent of the target variable: target encoding such a feature
# without internal cross-validation should cause catastrophic overfitting
# for the downstream regressor, even with shrinkage. This kind of features
# typically represents near unique identifiers of samples. In general they
# should be removed from a machine learning datasets but here we want to
# study the ability of the default behavior of TargetEncoder to mitigate
# them automatically.
X_near_unique_categories = rng.choice(
int(0.9 * n_samples), size=n_samples, replace=True
).reshape(-1, 1)
# Assemble the dataset and do a train-test split:
X = np.concatenate(
[X_informative, X_shuffled, X_near_unique_categories],
axis=1,
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Let's first check that a linear regression model trained on the raw
# features underfits because of the meaning-less ordinal encoding of the
# labels.
raw_model = linear_regression.fit(X_train, y_train)
assert raw_model.score(X_train, y_train) < 0.1
assert raw_model.score(X_test, y_test) < 0.1
# Now do the same with target encoding using the internal CV mechanism
# implemented when using fit_transform.
model_with_cv = make_pipeline(
TargetEncoder(smooth=smooth, random_state=rng), linear_regression
).fit(X_train, y_train)
# This model should be able to fit the data well and also generalise to the
# test data (assuming that the binning is fine-grained enough). The R2
# scores are not perfect because of the noise injected during the
# generation of the unique informative feature.
coef = model_with_cv[-1].coef_
assert model_with_cv.score(X_train, y_train) > 0.5, coef
assert model_with_cv.score(X_test, y_test) > 0.5, coef
# The target encoder recovers the linear relationship with slope 1 between
# the target encoded unique informative predictor and the target. Since the
# target encoding of the 2 other features is not informative thanks to the
# use of internal cross-validation, the multivariate linear regressor
# assigns a coef of 1 to the first feature and 0 to the other 2.
assert coef[0] == pytest.approx(1, abs=1e-2)
assert (np.abs(coef[1:]) < 0.2).all()
# Let's now disable the internal cross-validation by calling fit and then
# transform separately on the training set:
target_encoder = TargetEncoder(smooth=smooth, random_state=rng).fit(
X_train, y_train
)
X_enc_no_cv_train = target_encoder.transform(X_train)
X_enc_no_cv_test = target_encoder.transform(X_test)
model_no_cv = linear_regression.fit(X_enc_no_cv_train, y_train)
# The linear regression model should always overfit because it assigns
# too much weight to the extremely high cardinality feature relatively to
# the informative feature. Note that this is the case even when using
# the empirical Bayes smoothing which is not enough to prevent such
# overfitting alone.
coef = model_no_cv.coef_
assert model_no_cv.score(X_enc_no_cv_train, y_train) > 0.7, coef
assert model_no_cv.score(X_enc_no_cv_test, y_test) < 0.5, coef
# The model overfits because it assigns too much weight to the high
# cardinality yet non-informative feature instead of the lower
# cardinality yet informative feature:
assert abs(coef[0]) < abs(coef[2])
def test_pandas_copy_on_write():
"""
Test target-encoder cython code when y is read-only.
The numpy array underlying df["y"] is read-only when copy-on-write is enabled.
Non-regression test for gh-27879.
"""
pd = pytest.importorskip("pandas", minversion="2.0")
with pd.option_context("mode.copy_on_write", True):
df = pd.DataFrame({"x": ["a", "b", "b"], "y": [4.0, 5.0, 6.0]})
TargetEncoder(target_type="continuous").fit(df[["x"]], df["y"])
|