File: test_target_encoder.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (716 lines) | stat: -rw-r--r-- 27,915 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
import re

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal

from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.model_selection import (
    KFold,
    ShuffleSplit,
    StratifiedKFold,
    cross_val_score,
    train_test_split,
)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
    KBinsDiscretizer,
    LabelBinarizer,
    LabelEncoder,
    TargetEncoder,
)


def _encode_target(X_ordinal, y_numeric, n_categories, smooth):
    """Simple Python implementation of target encoding."""
    cur_encodings = np.zeros(n_categories, dtype=np.float64)
    y_mean = np.mean(y_numeric)

    if smooth == "auto":
        y_variance = np.var(y_numeric)
        for c in range(n_categories):
            y_subset = y_numeric[X_ordinal == c]
            n_i = y_subset.shape[0]

            if n_i == 0:
                cur_encodings[c] = y_mean
                continue

            y_subset_variance = np.var(y_subset)
            m = y_subset_variance / y_variance
            lambda_ = n_i / (n_i + m)

            cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean
        return cur_encodings
    else:  # float
        for c in range(n_categories):
            y_subset = y_numeric[X_ordinal == c]
            current_sum = np.sum(y_subset) + y_mean * smooth
            current_cnt = y_subset.shape[0] + smooth
            cur_encodings[c] = current_sum / current_cnt
        return cur_encodings


@pytest.mark.parametrize(
    "categories, unknown_value",
    [
        ([np.array([0, 1, 2], dtype=np.int64)], 4),
        ([np.array([1.0, 3.0, np.nan], dtype=np.float64)], 6.0),
        ([np.array(["cat", "dog", "snake"], dtype=object)], "bear"),
        ("auto", 3),
    ],
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary", "continuous"])
def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type):
    """Check encoding for binary and continuous targets.

    Compare the values returned by `TargetEncoder.fit_transform` against the
    expected encodings for cv splits from a naive reference Python
    implementation in _encode_target.
    """

    n_categories = 3
    X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T
    X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T
    n_samples = X_train_int_array.shape[0]

    if categories == "auto":
        X_train = X_train_int_array
        X_test = X_test_int_array
    else:
        X_train = categories[0][X_train_int_array]
        X_test = categories[0][X_test_int_array]

    X_test = np.concatenate((X_test, [[unknown_value]]))

    data_rng = np.random.RandomState(global_random_seed)
    n_splits = 3
    if target_type == "binary":
        y_numeric = data_rng.randint(low=0, high=2, size=n_samples)
        target_names = np.array(["cat", "dog"], dtype=object)
        y_train = target_names[y_numeric]

    else:
        assert target_type == "continuous"
        y_numeric = data_rng.uniform(low=-10, high=20, size=n_samples)
        y_train = y_numeric

    shuffled_idx = data_rng.permutation(n_samples)
    X_train_int_array = X_train_int_array[shuffled_idx]
    X_train = X_train[shuffled_idx]
    y_train = y_train[shuffled_idx]
    y_numeric = y_numeric[shuffled_idx]

    # Define our CV splitting strategy
    if target_type == "binary":
        cv = StratifiedKFold(
            n_splits=n_splits, random_state=global_random_seed, shuffle=True
        )
    else:
        cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True)

    # Compute the expected values using our reference Python implementation of
    # target encoding:
    expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64)

    for train_idx, test_idx in cv.split(X_train_int_array, y_train):
        X_, y_ = X_train_int_array[train_idx, 0], y_numeric[train_idx]
        cur_encodings = _encode_target(X_, y_, n_categories, smooth)
        expected_X_fit_transform[test_idx, 0] = cur_encodings[
            X_train_int_array[test_idx, 0]
        ]

    # Check that we can obtain the same encodings by calling `fit_transform` on
    # the estimator with the same CV parameters:
    target_encoder = TargetEncoder(
        smooth=smooth,
        categories=categories,
        cv=n_splits,
        random_state=global_random_seed,
    )

    X_fit_transform = target_encoder.fit_transform(X_train, y_train)

    assert target_encoder.target_type_ == target_type
    assert_allclose(X_fit_transform, expected_X_fit_transform)
    assert len(target_encoder.encodings_) == 1
    if target_type == "binary":
        assert_array_equal(target_encoder.classes_, target_names)
    else:
        assert target_encoder.classes_ is None

    # compute encodings for all data to validate `transform`
    y_mean = np.mean(y_numeric)
    expected_encodings = _encode_target(
        X_train_int_array[:, 0], y_numeric, n_categories, smooth
    )
    assert_allclose(target_encoder.encodings_[0], expected_encodings)
    assert target_encoder.target_mean_ == pytest.approx(y_mean)

    # Transform on test data, the last value is unknown so it is encoded as the target
    # mean
    expected_X_test_transform = np.concatenate(
        (expected_encodings, np.array([y_mean]))
    ).reshape(-1, 1)

    X_test_transform = target_encoder.transform(X_test)
    assert_allclose(X_test_transform, expected_X_test_transform)


@pytest.mark.parametrize(
    "categories, unknown_values",
    [
        ([np.array([0, 1, 2], dtype=np.int64)], "auto"),
        ([np.array(["cat", "dog", "snake"], dtype=object)], ["bear", "rabbit"]),
    ],
)
@pytest.mark.parametrize(
    "target_labels", [np.array([1, 2, 3]), np.array(["a", "b", "c"])]
)
@pytest.mark.parametrize("smooth", [5.0, "auto"])
def test_encoding_multiclass(
    global_random_seed, categories, unknown_values, target_labels, smooth
):
    """Check encoding for multiclass targets."""
    rng = np.random.RandomState(global_random_seed)

    n_samples = 80
    n_features = 2
    feat_1_int = np.array(rng.randint(low=0, high=2, size=n_samples))
    feat_2_int = np.array(rng.randint(low=0, high=3, size=n_samples))
    feat_1 = categories[0][feat_1_int]
    feat_2 = categories[0][feat_2_int]
    X_train = np.column_stack((feat_1, feat_2))
    X_train_int = np.column_stack((feat_1_int, feat_2_int))
    categories_ = [[0, 1], [0, 1, 2]]

    n_classes = 3
    y_train_int = np.array(rng.randint(low=0, high=n_classes, size=n_samples))
    y_train = target_labels[y_train_int]
    y_train_enc = LabelBinarizer().fit_transform(y_train)

    n_splits = 3
    cv = StratifiedKFold(
        n_splits=n_splits, random_state=global_random_seed, shuffle=True
    )

    # Manually compute encodings for cv splits to validate `fit_transform`
    expected_X_fit_transform = np.empty(
        (X_train_int.shape[0], X_train_int.shape[1] * n_classes),
        dtype=np.float64,
    )
    for f_idx, cats in enumerate(categories_):
        for c_idx in range(n_classes):
            for train_idx, test_idx in cv.split(X_train, y_train):
                y_class = y_train_enc[:, c_idx]
                X_, y_ = X_train_int[train_idx, f_idx], y_class[train_idx]
                current_encoding = _encode_target(X_, y_, len(cats), smooth)
                # f_idx:   0, 0, 0, 1, 1, 1
                # c_idx:   0, 1, 2, 0, 1, 2
                # exp_idx: 0, 1, 2, 3, 4, 5
                exp_idx = c_idx + (f_idx * n_classes)
                expected_X_fit_transform[test_idx, exp_idx] = current_encoding[
                    X_train_int[test_idx, f_idx]
                ]

    target_encoder = TargetEncoder(
        smooth=smooth,
        cv=n_splits,
        random_state=global_random_seed,
    )
    X_fit_transform = target_encoder.fit_transform(X_train, y_train)

    assert target_encoder.target_type_ == "multiclass"
    assert_allclose(X_fit_transform, expected_X_fit_transform)

    # Manually compute encoding to validate `transform`
    expected_encodings = []
    for f_idx, cats in enumerate(categories_):
        for c_idx in range(n_classes):
            y_class = y_train_enc[:, c_idx]
            current_encoding = _encode_target(
                X_train_int[:, f_idx], y_class, len(cats), smooth
            )
            expected_encodings.append(current_encoding)

    assert len(target_encoder.encodings_) == n_features * n_classes
    for i in range(n_features * n_classes):
        assert_allclose(target_encoder.encodings_[i], expected_encodings[i])
    assert_array_equal(target_encoder.classes_, target_labels)

    # Include unknown values at the end
    X_test_int = np.array([[0, 1], [1, 2], [4, 5]])
    if unknown_values == "auto":
        X_test = X_test_int
    else:
        X_test = np.empty_like(X_test_int[:-1, :], dtype=object)
        for column_idx in range(X_test_int.shape[1]):
            X_test[:, column_idx] = categories[0][X_test_int[:-1, column_idx]]
        # Add unknown values at end
        X_test = np.vstack((X_test, unknown_values))

    y_mean = np.mean(y_train_enc, axis=0)
    expected_X_test_transform = np.empty(
        (X_test_int.shape[0], X_test_int.shape[1] * n_classes),
        dtype=np.float64,
    )
    n_rows = X_test_int.shape[0]
    f_idx = [0, 0, 0, 1, 1, 1]
    # Last row are unknowns, dealt with later
    for row_idx in range(n_rows - 1):
        for i, enc in enumerate(expected_encodings):
            expected_X_test_transform[row_idx, i] = enc[X_test_int[row_idx, f_idx[i]]]

    # Unknowns encoded as target mean for each class
    # `y_mean` contains target mean for each class, thus cycle through mean of
    # each class, `n_features` times
    mean_idx = [0, 1, 2, 0, 1, 2]
    for i in range(n_classes * n_features):
        expected_X_test_transform[n_rows - 1, i] = y_mean[mean_idx[i]]

    X_test_transform = target_encoder.transform(X_test)
    assert_allclose(X_test_transform, expected_X_test_transform)


@pytest.mark.parametrize(
    "X, categories",
    [
        (
            np.array([[0] * 10 + [1] * 10 + [3]], dtype=np.int64).T,  # 3 is unknown
            [[0, 1, 2]],
        ),
        (
            np.array(
                [["cat"] * 10 + ["dog"] * 10 + ["snake"]], dtype=object
            ).T,  # snake is unknown
            [["dog", "cat", "cow"]],
        ),
    ],
)
@pytest.mark.parametrize("smooth", [4.0, "auto"])
def test_custom_categories(X, categories, smooth):
    """Custom categories with unknown categories that are not in training data."""
    rng = np.random.RandomState(0)
    y = rng.uniform(low=-10, high=20, size=X.shape[0])
    enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y)

    # The last element is unknown and encoded as the mean
    y_mean = y.mean()
    X_trans = enc.transform(X[-1:])
    assert X_trans[0, 0] == pytest.approx(y_mean)

    assert len(enc.encodings_) == 1
    # custom category that is not in training data
    assert enc.encodings_[0][-1] == pytest.approx(y_mean)


@pytest.mark.parametrize(
    "y, msg",
    [
        ([1, 2, 0, 1], "Found input variables with inconsistent"),
        (
            np.array([[1, 2, 0], [1, 2, 3]]).T,
            "Target type was inferred to be 'multiclass-multioutput'",
        ),
    ],
)
def test_errors(y, msg):
    """Check invalidate input."""
    X = np.array([[1, 0, 1]]).T

    enc = TargetEncoder()
    with pytest.raises(ValueError, match=msg):
        enc.fit_transform(X, y)


def test_use_regression_target():
    """Check inferred and specified `target_type` on regression target."""
    X = np.array([[0, 1, 0, 1, 0, 1]]).T
    y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0])

    enc = TargetEncoder(cv=2)
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The least populated class in y has only 1 members, which is less than"
            " n_splits=2."
        ),
    ):
        enc.fit_transform(X, y)
    assert enc.target_type_ == "multiclass"

    enc = TargetEncoder(cv=2, target_type="continuous")
    enc.fit_transform(X, y)
    assert enc.target_type_ == "continuous"


@pytest.mark.parametrize(
    "y, feature_names",
    [
        ([1, 2] * 10, ["A", "B"]),
        ([1, 2, 3] * 6 + [1, 2], ["A_1", "A_2", "A_3", "B_1", "B_2", "B_3"]),
        (
            ["y1", "y2", "y3"] * 6 + ["y1", "y2"],
            ["A_y1", "A_y2", "A_y3", "B_y1", "B_y2", "B_y3"],
        ),
    ],
)
def test_feature_names_out_set_output(y, feature_names):
    """Check TargetEncoder works with set_output."""
    pd = pytest.importorskip("pandas")

    X_df = pd.DataFrame({"A": ["a", "b"] * 10, "B": [1, 2] * 10})

    enc_default = TargetEncoder(cv=2, smooth=3.0, random_state=0)
    enc_default.set_output(transform="default")
    enc_pandas = TargetEncoder(cv=2, smooth=3.0, random_state=0)
    enc_pandas.set_output(transform="pandas")

    X_default = enc_default.fit_transform(X_df, y)
    X_pandas = enc_pandas.fit_transform(X_df, y)

    assert_allclose(X_pandas.to_numpy(), X_default)
    assert_array_equal(enc_pandas.get_feature_names_out(), feature_names)
    assert_array_equal(enc_pandas.get_feature_names_out(), X_pandas.columns)


@pytest.mark.parametrize("to_pandas", [True, False])
@pytest.mark.parametrize("smooth", [1.0, "auto"])
@pytest.mark.parametrize("target_type", ["binary-ints", "binary-str", "continuous"])
def test_multiple_features_quick(to_pandas, smooth, target_type):
    """Check target encoder with multiple features."""
    X_ordinal = np.array(
        [[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64
    )
    if target_type == "binary-str":
        y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"])
        y_integer = LabelEncoder().fit_transform(y_train)
        cv = StratifiedKFold(2, random_state=0, shuffle=True)
    elif target_type == "binary-ints":
        y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4])
        y_integer = LabelEncoder().fit_transform(y_train)
        cv = StratifiedKFold(2, random_state=0, shuffle=True)
    else:
        y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32)
        y_integer = y_train
        cv = KFold(2, random_state=0, shuffle=True)
    y_mean = np.mean(y_integer)
    categories = [[0, 1, 2], [0, 1]]

    X_test = np.array(
        [
            [0, 1],
            [3, 0],  # 3 is unknown
            [1, 10],  # 10 is unknown
        ],
        dtype=np.int64,
    )

    if to_pandas:
        pd = pytest.importorskip("pandas")
        # convert second feature to an object
        X_train = pd.DataFrame(
            {
                "feat0": X_ordinal[:, 0],
                "feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]],
            }
        )
        # "snake" is unknown
        X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]})
    else:
        X_train = X_ordinal

    # manually compute encoding for fit_transform
    expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64)
    for f_idx, cats in enumerate(categories):
        for train_idx, test_idx in cv.split(X_ordinal, y_integer):
            X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx]
            current_encoding = _encode_target(X_, y_, len(cats), smooth)
            expected_X_fit_transform[test_idx, f_idx] = current_encoding[
                X_ordinal[test_idx, f_idx]
            ]

    # manually compute encoding for transform
    expected_encodings = []
    for f_idx, cats in enumerate(categories):
        current_encoding = _encode_target(
            X_ordinal[:, f_idx], y_integer, len(cats), smooth
        )
        expected_encodings.append(current_encoding)

    expected_X_test_transform = np.array(
        [
            [expected_encodings[0][0], expected_encodings[1][1]],
            [y_mean, expected_encodings[1][0]],
            [expected_encodings[0][1], y_mean],
        ],
        dtype=np.float64,
    )

    enc = TargetEncoder(smooth=smooth, cv=2, random_state=0)
    X_fit_transform = enc.fit_transform(X_train, y_train)
    assert_allclose(X_fit_transform, expected_X_fit_transform)

    assert len(enc.encodings_) == 2
    for i in range(2):
        assert_allclose(enc.encodings_[i], expected_encodings[i])

    X_test_transform = enc.transform(X_test)
    assert_allclose(X_test_transform, expected_X_test_transform)


@pytest.mark.parametrize(
    "y, y_mean",
    [
        (np.array([3.4] * 20), 3.4),
        (np.array([0] * 20), 0),
        (np.array(["a"] * 20, dtype=object), 0),
    ],
    ids=["continuous", "binary", "binary-string"],
)
@pytest.mark.parametrize("smooth", ["auto", 4.0, 0.0])
def test_constant_target_and_feature(y, y_mean, smooth):
    """Check edge case where feature and target is constant."""
    X = np.array([[1] * 20]).T
    n_samples = X.shape[0]

    enc = TargetEncoder(cv=2, smooth=smooth, random_state=0)
    X_trans = enc.fit_transform(X, y)
    assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0))
    assert enc.encodings_[0][0] == pytest.approx(y_mean)
    assert enc.target_mean_ == pytest.approx(y_mean)

    X_test = np.array([[1], [0]])
    X_test_trans = enc.transform(X_test)
    assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))


def test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not(
    global_random_seed,
):
    cardinality = 30  # not too large, otherwise we need a very large n_samples
    n_samples = 3000
    rng = np.random.RandomState(global_random_seed)
    y_train = rng.normal(size=n_samples)
    X_train = rng.randint(0, cardinality, size=n_samples).reshape(-1, 1)

    # Sort by y_train to attempt to cause a leak
    y_sorted_indices = y_train.argsort()
    y_train = y_train[y_sorted_indices]
    X_train = X_train[y_sorted_indices]

    target_encoder = TargetEncoder(shuffle=True, random_state=global_random_seed)
    X_encoded_train_shuffled = target_encoder.fit_transform(X_train, y_train)

    target_encoder = TargetEncoder(shuffle=False)
    X_encoded_train_no_shuffled = target_encoder.fit_transform(X_train, y_train)

    # Check that no information about y_train has leaked into X_train:
    regressor = RandomForestRegressor(
        n_estimators=10, min_samples_leaf=20, random_state=global_random_seed
    )

    # It's impossible to learn a good predictive model on the training set when
    # using the original representation X_train or the target encoded
    # representation with shuffled inner CV. For the latter, no information
    # about y_train has inadvertently leaked into the prior used to generate
    # `X_encoded_train_shuffled`:
    cv = ShuffleSplit(n_splits=50, random_state=global_random_seed)
    assert cross_val_score(regressor, X_train, y_train, cv=cv).mean() < 0.1
    assert (
        cross_val_score(regressor, X_encoded_train_shuffled, y_train, cv=cv).mean()
        < 0.1
    )

    # Without the inner CV shuffling, a lot of information about y_train goes into the
    # the per-fold y_train.mean() priors: shrinkage is no longer effective in this
    # case and would no longer be able to prevent downstream over-fitting.
    assert (
        cross_val_score(regressor, X_encoded_train_no_shuffled, y_train, cv=cv).mean()
        > 0.5
    )


def test_smooth_zero():
    """Check edge case with zero smoothing and cv does not contain category."""
    X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T
    y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0])

    enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2)
    X_trans = enc.fit_transform(X, y)

    # With cv = 2, category 0 does not exist in the second half, thus
    # it will be encoded as the mean of the second half
    assert_allclose(X_trans[0], np.mean(y[5:]))

    # category 1 does not exist in the first half, thus it will be encoded as
    # the mean of the first half
    assert_allclose(X_trans[-1], np.mean(y[:5]))


@pytest.mark.parametrize("smooth", [0.0, 1e3, "auto"])
def test_invariance_of_encoding_under_label_permutation(smooth, global_random_seed):
    # Check that the encoding does not depend on the integer of the value of
    # the integer labels. This is quite a trivial property but it is helpful
    # to understand the following test.
    rng = np.random.RandomState(global_random_seed)

    # Random y and informative categorical X to make the test non-trivial when
    # using smoothing.
    y = rng.normal(size=1000)
    n_categories = 30
    X = KBinsDiscretizer(n_bins=n_categories, encode="ordinal").fit_transform(
        y.reshape(-1, 1)
    )

    X_train, X_test, y_train, y_test = train_test_split(
        X, y, random_state=global_random_seed
    )

    # Shuffle the labels to make sure that the encoding is invariant to the
    # permutation of the labels
    permutated_labels = rng.permutation(n_categories)
    X_train_permuted = permutated_labels[X_train.astype(np.int32)]
    X_test_permuted = permutated_labels[X_test.astype(np.int32)]

    target_encoder = TargetEncoder(smooth=smooth, random_state=global_random_seed)
    X_train_encoded = target_encoder.fit_transform(X_train, y_train)
    X_test_encoded = target_encoder.transform(X_test)

    X_train_permuted_encoded = target_encoder.fit_transform(X_train_permuted, y_train)
    X_test_permuted_encoded = target_encoder.transform(X_test_permuted)

    assert_allclose(X_train_encoded, X_train_permuted_encoded)
    assert_allclose(X_test_encoded, X_test_permuted_encoded)


# TODO(1.5) remove warning filter when kbd's subsample default is changed
@pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
@pytest.mark.parametrize("smooth", [0.0, "auto"])
def test_target_encoding_for_linear_regression(smooth, global_random_seed):
    # Check some expected statistical properties when fitting a linear
    # regression model on target encoded features depending on their relation
    # with that target.

    # In this test, we use the Ridge class with the "lsqr" solver and a little
    # bit of regularization to implement a linear regression model that
    # converges quickly for large `n_samples` and robustly in case of
    # correlated features. Since we will fit this model on a mean centered
    # target, we do not need to fit an intercept and this will help simplify
    # the analysis with respect to the expected coefficients.
    linear_regression = Ridge(alpha=1e-6, solver="lsqr", fit_intercept=False)

    # Construct a random target variable. We need a large number of samples for
    # this test to be stable across all values of the random seed.
    n_samples = 50_000
    rng = np.random.RandomState(global_random_seed)
    y = rng.randn(n_samples)

    # Generate a single informative ordinal feature with medium cardinality.
    # Inject some irreducible noise to make it harder for a multivariate model
    # to identify the informative feature from other pure noise features.
    noise = 0.8 * rng.randn(n_samples)
    n_categories = 100
    X_informative = KBinsDiscretizer(
        n_bins=n_categories,
        encode="ordinal",
        strategy="uniform",
        random_state=rng,
    ).fit_transform((y + noise).reshape(-1, 1))

    # Let's permute the labels to hide the fact that this feature is
    # informative to naive linear regression model trained on the raw ordinal
    # values. As highlighted in the previous test, the target encoding should be
    # invariant to such a permutation.
    permutated_labels = rng.permutation(n_categories)
    X_informative = permutated_labels[X_informative.astype(np.int32)]

    # Generate a shuffled copy of the informative feature to destroy the
    # relationship with the target.
    X_shuffled = rng.permutation(X_informative)

    # Also include a very high cardinality categorical feature that is by
    # itself independent of the target variable: target encoding such a feature
    # without internal cross-validation should cause catastrophic overfitting
    # for the downstream regressor, even with shrinkage. This kind of features
    # typically represents near unique identifiers of samples. In general they
    # should be removed from a machine learning datasets but here we want to
    # study the ability of the default behavior of TargetEncoder to mitigate
    # them automatically.
    X_near_unique_categories = rng.choice(
        int(0.9 * n_samples), size=n_samples, replace=True
    ).reshape(-1, 1)

    # Assemble the dataset and do a train-test split:
    X = np.concatenate(
        [X_informative, X_shuffled, X_near_unique_categories],
        axis=1,
    )
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # Let's first check that a linear regression model trained on the raw
    # features underfits because of the meaning-less ordinal encoding of the
    # labels.
    raw_model = linear_regression.fit(X_train, y_train)
    assert raw_model.score(X_train, y_train) < 0.1
    assert raw_model.score(X_test, y_test) < 0.1

    # Now do the same with target encoding using the internal CV mechanism
    # implemented when using fit_transform.
    model_with_cv = make_pipeline(
        TargetEncoder(smooth=smooth, random_state=rng), linear_regression
    ).fit(X_train, y_train)

    # This model should be able to fit the data well and also generalise to the
    # test data (assuming that the binning is fine-grained enough). The R2
    # scores are not perfect because of the noise injected during the
    # generation of the unique informative feature.
    coef = model_with_cv[-1].coef_
    assert model_with_cv.score(X_train, y_train) > 0.5, coef
    assert model_with_cv.score(X_test, y_test) > 0.5, coef

    # The target encoder recovers the linear relationship with slope 1 between
    # the target encoded unique informative predictor and the target. Since the
    # target encoding of the 2 other features is not informative thanks to the
    # use of internal cross-validation, the multivariate linear regressor
    # assigns a coef of 1 to the first feature and 0 to the other 2.
    assert coef[0] == pytest.approx(1, abs=1e-2)
    assert (np.abs(coef[1:]) < 0.2).all()

    # Let's now disable the internal cross-validation by calling fit and then
    # transform separately on the training set:
    target_encoder = TargetEncoder(smooth=smooth, random_state=rng).fit(
        X_train, y_train
    )
    X_enc_no_cv_train = target_encoder.transform(X_train)
    X_enc_no_cv_test = target_encoder.transform(X_test)
    model_no_cv = linear_regression.fit(X_enc_no_cv_train, y_train)

    # The linear regression model should always overfit because it assigns
    # too much weight to the extremely high cardinality feature relatively to
    # the informative feature. Note that this is the case even when using
    # the empirical Bayes smoothing which is not enough to prevent such
    # overfitting alone.
    coef = model_no_cv.coef_
    assert model_no_cv.score(X_enc_no_cv_train, y_train) > 0.7, coef
    assert model_no_cv.score(X_enc_no_cv_test, y_test) < 0.5, coef

    # The model overfits because it assigns too much weight to the high
    # cardinality yet non-informative feature instead of the lower
    # cardinality yet informative feature:
    assert abs(coef[0]) < abs(coef[2])


def test_pandas_copy_on_write():
    """
    Test target-encoder cython code when y is read-only.

    The numpy array underlying df["y"] is read-only when copy-on-write is enabled.
    Non-regression test for gh-27879.
    """
    pd = pytest.importorskip("pandas", minversion="2.0")
    with pd.option_context("mode.copy_on_write", True):
        df = pd.DataFrame({"x": ["a", "b", "b"], "y": [4.0, 5.0, 6.0]})
        TargetEncoder(target_type="continuous").fit(df[["x"]], df["y"])