1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
""" test the label propagation module """
import warnings
import numpy as np
import pytest
from scipy.sparse import issparse
from sklearn.datasets import make_classification
from sklearn.exceptions import ConvergenceWarning
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from sklearn.semi_supervised import _label_propagation as label_propagation
from sklearn.utils._testing import (
_convert_container,
assert_allclose,
assert_array_equal,
)
CONSTRUCTOR_TYPES = ("array", "sparse_csr", "sparse_csc")
ESTIMATORS = [
(label_propagation.LabelPropagation, {"kernel": "rbf"}),
(label_propagation.LabelPropagation, {"kernel": "knn", "n_neighbors": 2}),
(
label_propagation.LabelPropagation,
{"kernel": lambda x, y: rbf_kernel(x, y, gamma=20)},
),
(label_propagation.LabelSpreading, {"kernel": "rbf"}),
(label_propagation.LabelSpreading, {"kernel": "knn", "n_neighbors": 2}),
(
label_propagation.LabelSpreading,
{"kernel": lambda x, y: rbf_kernel(x, y, gamma=20)},
),
]
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_fit_transduction(global_dtype, Estimator, parameters):
samples = np.asarray([[1.0, 0.0], [0.0, 2.0], [1.0, 3.0]], dtype=global_dtype)
labels = [0, 1, -1]
clf = Estimator(**parameters).fit(samples, labels)
assert clf.transduction_[2] == 1
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_distribution(global_dtype, Estimator, parameters):
if parameters["kernel"] == "knn":
pytest.skip(
"Unstable test for this configuration: changes in k-NN ordering break it."
)
samples = np.asarray([[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]], dtype=global_dtype)
labels = [0, 1, -1]
clf = Estimator(**parameters).fit(samples, labels)
assert_allclose(clf.label_distributions_[2], [0.5, 0.5], atol=1e-2)
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_predict(global_dtype, Estimator, parameters):
samples = np.asarray([[1.0, 0.0], [0.0, 2.0], [1.0, 3.0]], dtype=global_dtype)
labels = [0, 1, -1]
clf = Estimator(**parameters).fit(samples, labels)
assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1]))
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_predict_proba(global_dtype, Estimator, parameters):
samples = np.asarray([[1.0, 0.0], [0.0, 1.0], [1.0, 2.5]], dtype=global_dtype)
labels = [0, 1, -1]
clf = Estimator(**parameters).fit(samples, labels)
assert_allclose(clf.predict_proba([[1.0, 1.0]]), np.array([[0.5, 0.5]]))
@pytest.mark.parametrize("alpha", [0.1, 0.3, 0.5, 0.7, 0.9])
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_label_spreading_closed_form(global_dtype, Estimator, parameters, alpha):
n_classes = 2
X, y = make_classification(n_classes=n_classes, n_samples=200, random_state=0)
X = X.astype(global_dtype, copy=False)
y[::3] = -1
gamma = 0.1
clf = label_propagation.LabelSpreading(gamma=gamma).fit(X, y)
# adopting notation from Zhou et al (2004):
S = clf._build_graph()
Y = np.zeros((len(y), n_classes + 1), dtype=X.dtype)
Y[np.arange(len(y)), y] = 1
Y = Y[:, :-1]
expected = np.dot(np.linalg.inv(np.eye(len(S), dtype=S.dtype) - alpha * S), Y)
expected /= expected.sum(axis=1)[:, np.newaxis]
clf = label_propagation.LabelSpreading(
max_iter=100, alpha=alpha, tol=1e-10, gamma=gamma
)
clf.fit(X, y)
assert_allclose(expected, clf.label_distributions_)
def test_label_propagation_closed_form(global_dtype):
n_classes = 2
X, y = make_classification(n_classes=n_classes, n_samples=200, random_state=0)
X = X.astype(global_dtype, copy=False)
y[::3] = -1
Y = np.zeros((len(y), n_classes + 1))
Y[np.arange(len(y)), y] = 1
unlabelled_idx = Y[:, (-1,)].nonzero()[0]
labelled_idx = (Y[:, (-1,)] == 0).nonzero()[0]
clf = label_propagation.LabelPropagation(max_iter=100, tol=1e-10, gamma=0.1)
clf.fit(X, y)
# adopting notation from Zhu et al 2002
T_bar = clf._build_graph()
Tuu = T_bar[tuple(np.meshgrid(unlabelled_idx, unlabelled_idx, indexing="ij"))]
Tul = T_bar[tuple(np.meshgrid(unlabelled_idx, labelled_idx, indexing="ij"))]
Y = Y[:, :-1]
Y_l = Y[labelled_idx, :]
Y_u = np.dot(np.dot(np.linalg.inv(np.eye(Tuu.shape[0]) - Tuu), Tul), Y_l)
expected = Y.copy()
expected[unlabelled_idx, :] = Y_u
expected /= expected.sum(axis=1)[:, np.newaxis]
assert_allclose(expected, clf.label_distributions_, atol=1e-4)
@pytest.mark.parametrize("accepted_sparse_type", ["sparse_csr", "sparse_csc"])
@pytest.mark.parametrize("index_dtype", [np.int32, np.int64])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("Estimator, parameters", ESTIMATORS)
def test_sparse_input_types(
accepted_sparse_type, index_dtype, dtype, Estimator, parameters
):
# This is non-regression test for #17085
X = _convert_container([[1.0, 0.0], [0.0, 2.0], [1.0, 3.0]], accepted_sparse_type)
X.data = X.data.astype(dtype, copy=False)
X.indices = X.indices.astype(index_dtype, copy=False)
X.indptr = X.indptr.astype(index_dtype, copy=False)
labels = [0, 1, -1]
clf = Estimator(**parameters).fit(X, labels)
assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1]))
@pytest.mark.parametrize("constructor_type", CONSTRUCTOR_TYPES)
def test_convergence_speed(constructor_type):
# This is a non-regression test for #5774
X = _convert_container([[1.0, 0.0], [0.0, 1.0], [1.0, 2.5]], constructor_type)
y = np.array([0, 1, -1])
mdl = label_propagation.LabelSpreading(kernel="rbf", max_iter=5000)
mdl.fit(X, y)
# this should converge quickly:
assert mdl.n_iter_ < 10
assert_array_equal(mdl.predict(X), [0, 1, 1])
def test_convergence_warning():
# This is a non-regression test for #5774
X = np.array([[1.0, 0.0], [0.0, 1.0], [1.0, 2.5]])
y = np.array([0, 1, -1])
mdl = label_propagation.LabelSpreading(kernel="rbf", max_iter=1)
warn_msg = "max_iter=1 was reached without convergence."
with pytest.warns(ConvergenceWarning, match=warn_msg):
mdl.fit(X, y)
assert mdl.n_iter_ == mdl.max_iter
mdl = label_propagation.LabelPropagation(kernel="rbf", max_iter=1)
with pytest.warns(ConvergenceWarning, match=warn_msg):
mdl.fit(X, y)
assert mdl.n_iter_ == mdl.max_iter
mdl = label_propagation.LabelSpreading(kernel="rbf", max_iter=500)
with warnings.catch_warnings():
warnings.simplefilter("error", ConvergenceWarning)
mdl.fit(X, y)
mdl = label_propagation.LabelPropagation(kernel="rbf", max_iter=500)
with warnings.catch_warnings():
warnings.simplefilter("error", ConvergenceWarning)
mdl.fit(X, y)
@pytest.mark.parametrize(
"LabelPropagationCls",
[label_propagation.LabelSpreading, label_propagation.LabelPropagation],
)
def test_label_propagation_non_zero_normalizer(LabelPropagationCls):
# check that we don't divide by zero in case of null normalizer
# non-regression test for
# https://github.com/scikit-learn/scikit-learn/pull/15946
# https://github.com/scikit-learn/scikit-learn/issues/9292
X = np.array([[100.0, 100.0], [100.0, 100.0], [0.0, 0.0], [0.0, 0.0]])
y = np.array([0, 1, -1, -1])
mdl = LabelPropagationCls(kernel="knn", max_iter=100, n_neighbors=1)
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
mdl.fit(X, y)
def test_predict_sparse_callable_kernel(global_dtype):
# This is a non-regression test for #15866
# Custom sparse kernel (top-K RBF)
def topk_rbf(X, Y=None, n_neighbors=10, gamma=1e-5):
nn = NearestNeighbors(n_neighbors=10, metric="euclidean", n_jobs=2)
nn.fit(X)
W = -1 * nn.kneighbors_graph(Y, mode="distance").power(2) * gamma
np.exp(W.data, out=W.data)
assert issparse(W)
return W.T
n_classes = 4
n_samples = 500
n_test = 10
X, y = make_classification(
n_classes=n_classes,
n_samples=n_samples,
n_features=20,
n_informative=20,
n_redundant=0,
n_repeated=0,
random_state=0,
)
X = X.astype(global_dtype)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=n_test, random_state=0
)
model = label_propagation.LabelSpreading(kernel=topk_rbf)
model.fit(X_train, y_train)
assert model.score(X_test, y_test) >= 0.9
model = label_propagation.LabelPropagation(kernel=topk_rbf)
model.fit(X_train, y_train)
assert model.score(X_test, y_test) >= 0.9
|