1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
from math import ceil
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from sklearn.datasets import load_iris, make_blobs
from sklearn.ensemble import StackingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
# Author: Oliver Rausch <rauscho@ethz.ch>
# License: BSD 3 clause
# load the iris dataset and randomly permute it
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, random_state=0
)
n_labeled_samples = 50
y_train_missing_labels = y_train.copy()
y_train_missing_labels[n_labeled_samples:] = -1
mapping = {0: "A", 1: "B", 2: "C", -1: "-1"}
y_train_missing_strings = np.vectorize(mapping.get)(y_train_missing_labels).astype(
object
)
y_train_missing_strings[y_train_missing_labels == -1] = -1
def test_warns_k_best():
st = SelfTrainingClassifier(KNeighborsClassifier(), criterion="k_best", k_best=1000)
with pytest.warns(UserWarning, match="k_best is larger than"):
st.fit(X_train, y_train_missing_labels)
assert st.termination_condition_ == "all_labeled"
@pytest.mark.parametrize(
"base_estimator",
[KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
)
@pytest.mark.parametrize("selection_crit", ["threshold", "k_best"])
def test_classification(base_estimator, selection_crit):
# Check classification for various parameter settings.
# Also assert that predictions for strings and numerical labels are equal.
# Also test for multioutput classification
threshold = 0.75
max_iter = 10
st = SelfTrainingClassifier(
base_estimator, max_iter=max_iter, threshold=threshold, criterion=selection_crit
)
st.fit(X_train, y_train_missing_labels)
pred = st.predict(X_test)
proba = st.predict_proba(X_test)
st_string = SelfTrainingClassifier(
base_estimator, max_iter=max_iter, criterion=selection_crit, threshold=threshold
)
st_string.fit(X_train, y_train_missing_strings)
pred_string = st_string.predict(X_test)
proba_string = st_string.predict_proba(X_test)
assert_array_equal(np.vectorize(mapping.get)(pred), pred_string)
assert_array_equal(proba, proba_string)
assert st.termination_condition_ == st_string.termination_condition_
# Check consistency between labeled_iter, n_iter and max_iter
labeled = y_train_missing_labels != -1
# assert that labeled samples have labeled_iter = 0
assert_array_equal(st.labeled_iter_ == 0, labeled)
# assert that labeled samples do not change label during training
assert_array_equal(y_train_missing_labels[labeled], st.transduction_[labeled])
# assert that the max of the iterations is less than the total amount of
# iterations
assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
assert np.max(st_string.labeled_iter_) <= st_string.n_iter_ <= max_iter
# check shapes
assert st.labeled_iter_.shape == st.transduction_.shape
assert st_string.labeled_iter_.shape == st_string.transduction_.shape
def test_k_best():
st = SelfTrainingClassifier(
KNeighborsClassifier(n_neighbors=1),
criterion="k_best",
k_best=10,
max_iter=None,
)
y_train_only_one_label = np.copy(y_train)
y_train_only_one_label[1:] = -1
n_samples = y_train.shape[0]
n_expected_iter = ceil((n_samples - 1) / 10)
st.fit(X_train, y_train_only_one_label)
assert st.n_iter_ == n_expected_iter
# Check labeled_iter_
assert np.sum(st.labeled_iter_ == 0) == 1
for i in range(1, n_expected_iter):
assert np.sum(st.labeled_iter_ == i) == 10
assert np.sum(st.labeled_iter_ == n_expected_iter) == (n_samples - 1) % 10
assert st.termination_condition_ == "all_labeled"
def test_sanity_classification():
base_estimator = SVC(gamma="scale", probability=True)
base_estimator.fit(X_train[n_labeled_samples:], y_train[n_labeled_samples:])
st = SelfTrainingClassifier(base_estimator)
st.fit(X_train, y_train_missing_labels)
pred1, pred2 = base_estimator.predict(X_test), st.predict(X_test)
assert not np.array_equal(pred1, pred2)
score_supervised = accuracy_score(base_estimator.predict(X_test), y_test)
score_self_training = accuracy_score(st.predict(X_test), y_test)
assert score_self_training > score_supervised
def test_none_iter():
# Check that the all samples were labeled after a 'reasonable' number of
# iterations.
st = SelfTrainingClassifier(KNeighborsClassifier(), threshold=0.55, max_iter=None)
st.fit(X_train, y_train_missing_labels)
assert st.n_iter_ < 10
assert st.termination_condition_ == "all_labeled"
@pytest.mark.parametrize(
"base_estimator",
[KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
)
@pytest.mark.parametrize("y", [y_train_missing_labels, y_train_missing_strings])
def test_zero_iterations(base_estimator, y):
# Check classification for zero iterations.
# Fitting a SelfTrainingClassifier with zero iterations should give the
# same results as fitting a supervised classifier.
# This also asserts that string arrays work as expected.
clf1 = SelfTrainingClassifier(base_estimator, max_iter=0)
clf1.fit(X_train, y)
clf2 = base_estimator.fit(X_train[:n_labeled_samples], y[:n_labeled_samples])
assert_array_equal(clf1.predict(X_test), clf2.predict(X_test))
assert clf1.termination_condition_ == "max_iter"
def test_prefitted_throws_error():
# Test that passing a pre-fitted classifier and calling predict throws an
# error
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
st = SelfTrainingClassifier(knn)
with pytest.raises(
NotFittedError,
match="This SelfTrainingClassifier instance is not fitted yet",
):
st.predict(X_train)
@pytest.mark.parametrize("max_iter", range(1, 5))
def test_labeled_iter(max_iter):
# Check that the amount of datapoints labeled in iteration 0 is equal to
# the amount of labeled datapoints we passed.
st = SelfTrainingClassifier(KNeighborsClassifier(), max_iter=max_iter)
st.fit(X_train, y_train_missing_labels)
amount_iter_0 = len(st.labeled_iter_[st.labeled_iter_ == 0])
assert amount_iter_0 == n_labeled_samples
# Check that the max of the iterations is less than the total amount of
# iterations
assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
def test_no_unlabeled():
# Test that training on a fully labeled dataset produces the same results
# as training the classifier by itself.
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
st = SelfTrainingClassifier(knn)
with pytest.warns(UserWarning, match="y contains no unlabeled samples"):
st.fit(X_train, y_train)
assert_array_equal(knn.predict(X_test), st.predict(X_test))
# Assert that all samples were labeled in iteration 0 (since there were no
# unlabeled samples).
assert np.all(st.labeled_iter_ == 0)
assert st.termination_condition_ == "all_labeled"
def test_early_stopping():
svc = SVC(gamma="scale", probability=True)
st = SelfTrainingClassifier(svc)
X_train_easy = [[1], [0], [1], [0.5]]
y_train_easy = [1, 0, -1, -1]
# X = [[0.5]] cannot be predicted on with a high confidence, so training
# stops early
st.fit(X_train_easy, y_train_easy)
assert st.n_iter_ == 1
assert st.termination_condition_ == "no_change"
def test_strings_dtype():
clf = SelfTrainingClassifier(KNeighborsClassifier())
X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1)
labels_multiclass = ["one", "two", "three"]
y_strings = np.take(labels_multiclass, y)
with pytest.raises(ValueError, match="dtype"):
clf.fit(X, y_strings)
@pytest.mark.parametrize("verbose", [True, False])
def test_verbose(capsys, verbose):
clf = SelfTrainingClassifier(KNeighborsClassifier(), verbose=verbose)
clf.fit(X_train, y_train_missing_labels)
captured = capsys.readouterr()
if verbose:
assert "iteration" in captured.out
else:
assert "iteration" not in captured.out
def test_verbose_k_best(capsys):
st = SelfTrainingClassifier(
KNeighborsClassifier(n_neighbors=1),
criterion="k_best",
k_best=10,
verbose=True,
max_iter=None,
)
y_train_only_one_label = np.copy(y_train)
y_train_only_one_label[1:] = -1
n_samples = y_train.shape[0]
n_expected_iter = ceil((n_samples - 1) / 10)
st.fit(X_train, y_train_only_one_label)
captured = capsys.readouterr()
msg = "End of iteration {}, added {} new labels."
for i in range(1, n_expected_iter):
assert msg.format(i, 10) in captured.out
assert msg.format(n_expected_iter, (n_samples - 1) % 10) in captured.out
def test_k_best_selects_best():
# Tests that the labels added by st really are the 10 best labels.
svc = SVC(gamma="scale", probability=True, random_state=0)
st = SelfTrainingClassifier(svc, criterion="k_best", max_iter=1, k_best=10)
has_label = y_train_missing_labels != -1
st.fit(X_train, y_train_missing_labels)
got_label = ~has_label & (st.transduction_ != -1)
svc.fit(X_train[has_label], y_train_missing_labels[has_label])
pred = svc.predict_proba(X_train[~has_label])
max_proba = np.max(pred, axis=1)
most_confident_svc = X_train[~has_label][np.argsort(max_proba)[-10:]]
added_by_st = X_train[np.where(got_label)].tolist()
for row in most_confident_svc.tolist():
assert row in added_by_st
def test_base_estimator_meta_estimator():
# Check that a meta-estimator relying on an estimator implementing
# `predict_proba` will work even if it does not expose this method before being
# fitted.
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/19119
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=True)),
("svc_2", SVC(probability=True)),
],
final_estimator=SVC(probability=True),
cv=2,
)
assert hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
clf.fit(X_train, y_train_missing_labels)
clf.predict_proba(X_test)
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=False)),
("svc_2", SVC(probability=False)),
],
final_estimator=SVC(probability=False),
cv=2,
)
assert not hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
with pytest.raises(AttributeError):
clf.fit(X_train, y_train_missing_labels)
def test_self_training_estimator_attribute_error():
"""Check that we raise the proper AttributeErrors when the `base_estimator`
does not implement the `predict_proba` method, which is called from within
`fit`, or `decision_function`, which is decorated with `available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
"""
# `SVC` with `probability=False` does not implement 'predict_proba' that
# is required internally in `fit` of `SelfTrainingClassifier`. We expect
# an AttributeError to be raised.
base_estimator = SVC(probability=False, gamma="scale")
self_training = SelfTrainingClassifier(base_estimator)
with pytest.raises(AttributeError, match="has no attribute 'predict_proba'"):
self_training.fit(X_train, y_train_missing_labels)
# `DecisionTreeClassifier` does not implement 'decision_function' and
# should raise an AttributeError
self_training = SelfTrainingClassifier(base_estimator=DecisionTreeClassifier())
outer_msg = "This 'SelfTrainingClassifier' has no attribute 'decision_function'"
inner_msg = "'DecisionTreeClassifier' object has no attribute 'decision_function'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
self_training.fit(X_train, y_train_missing_labels).decision_function(X_train)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
|