File: _liblinear.pyx

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (149 lines) | stat: -rw-r--r-- 4,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
Wrapper for liblinear

Author: fabian.pedregosa@inria.fr
"""

import  numpy as np
cimport numpy as cnp

from ..utils._cython_blas cimport _dot, _axpy, _scal, _nrm2

include "_liblinear.pxi"

cnp.import_array()


def train_wrap(
    object X,
    const cnp.float64_t[::1] Y,
    bint is_sparse,
    int solver_type,
    double eps,
    double bias,
    double C,
    const cnp.float64_t[:] class_weight,
    int max_iter,
    unsigned random_seed,
    double epsilon,
    const cnp.float64_t[::1] sample_weight
):
    cdef parameter *param
    cdef problem *problem
    cdef model *model
    cdef char_const_ptr error_msg
    cdef int len_w
    cdef bint X_has_type_float64 = X.dtype == np.float64
    cdef char * X_data_bytes_ptr
    cdef const cnp.float64_t[::1] X_data_64
    cdef const cnp.float32_t[::1] X_data_32
    cdef const cnp.int32_t[::1] X_indices
    cdef const cnp.int32_t[::1] X_indptr

    if is_sparse:
        X_indices = X.indices
        X_indptr = X.indptr
        if X_has_type_float64:
            X_data_64 = X.data
            X_data_bytes_ptr = <char *> &X_data_64[0]
        else:
            X_data_32 = X.data
            X_data_bytes_ptr = <char *> &X_data_32[0]

        problem = csr_set_problem(
            X_data_bytes_ptr,
            X_has_type_float64,
            <char *> &X_indices[0],
            <char *> &X_indptr[0],
            (<cnp.int32_t>X.shape[0]),
            (<cnp.int32_t>X.shape[1]),
            (<cnp.int32_t>X.nnz),
            bias,
            <char *> &sample_weight[0],
            <char *> &Y[0]
        )
    else:
        X_as_1d_array = X.reshape(-1)
        if X_has_type_float64:
            X_data_64 = X_as_1d_array
            X_data_bytes_ptr = <char *> &X_data_64[0]
        else:
            X_data_32 = X_as_1d_array
            X_data_bytes_ptr = <char *> &X_data_32[0]

        problem = set_problem(
            X_data_bytes_ptr,
            X_has_type_float64,
            (<cnp.int32_t>X.shape[0]),
            (<cnp.int32_t>X.shape[1]),
            (<cnp.int32_t>np.count_nonzero(X)),
            bias,
            <char *> &sample_weight[0],
            <char *> &Y[0]
        )

    cdef cnp.int32_t[::1] class_weight_label = np.arange(class_weight.shape[0], dtype=np.intc)
    param = set_parameter(
        solver_type,
        eps,
        C,
        class_weight.shape[0],
        <char *> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
        <char *> &class_weight[0] if class_weight.size > 0 else NULL,
        max_iter,
        random_seed,
        epsilon
    )

    error_msg = check_parameter(problem, param)
    if error_msg:
        free_problem(problem)
        free_parameter(param)
        raise ValueError(error_msg)

    cdef BlasFunctions blas_functions
    blas_functions.dot = _dot[double]
    blas_functions.axpy = _axpy[double]
    blas_functions.scal = _scal[double]
    blas_functions.nrm2 = _nrm2[double]

    # early return
    with nogil:
        model = train(problem, param, &blas_functions)

    # FREE
    free_problem(problem)
    free_parameter(param)
    # destroy_param(param)  don't call this or it will destroy class_weight_label and class_weight

    # coef matrix holder created as fortran since that's what's used in liblinear
    cdef cnp.float64_t[::1, :] w
    cdef int nr_class = get_nr_class(model)

    cdef int labels_ = nr_class
    if nr_class == 2:
        labels_ = 1
    cdef cnp.int32_t[::1] n_iter = np.zeros(labels_, dtype=np.intc)
    get_n_iter(model, <int *> &n_iter[0])

    cdef int nr_feature = get_nr_feature(model)
    if bias > 0:
        nr_feature = nr_feature + 1
    if nr_class == 2 and solver_type != 4:  # solver is not Crammer-Singer
        w = np.empty((1, nr_feature), order='F')
        copy_w(&w[0, 0], model, nr_feature)
    else:
        len_w = (nr_class) * nr_feature
        w = np.empty((nr_class, nr_feature), order='F')
        copy_w(&w[0, 0], model, len_w)

    free_and_destroy_model(&model)

    return w.base, n_iter.base


def set_verbosity_wrap(int verbosity):
    """
    Control verbosity of libsvm library
    """
    set_verbosity(verbosity)