File: _criterion.pyx

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1708 lines) | stat: -rw-r--r-- 62,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Brian Holt <bdholt1@gmail.com>
#          Noel Dawe <noel@dawe.me>
#          Satrajit Gosh <satrajit.ghosh@gmail.com>
#          Lars Buitinck
#          Arnaud Joly <arnaud.v.joly@gmail.com>
#          Joel Nothman <joel.nothman@gmail.com>
#          Fares Hedayati <fares.hedayati@gmail.com>
#          Jacob Schreiber <jmschreiber91@gmail.com>
#          Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause

from libc.string cimport memcpy
from libc.string cimport memset
from libc.math cimport fabs, INFINITY

import numpy as np
cimport numpy as cnp
cnp.import_array()

from scipy.special.cython_special cimport xlogy

from ._utils cimport log
from ._utils cimport WeightedMedianCalculator

# EPSILON is used in the Poisson criterion
cdef float64_t EPSILON = 10 * np.finfo('double').eps

cdef class Criterion:
    """Interface for impurity criteria.

    This object stores methods on how to calculate how good a split is using
    different metrics.
    """
    def __getstate__(self):
        return {}

    def __setstate__(self, d):
        pass

    cdef int init(
        self,
        const float64_t[:, ::1] y,
        const float64_t[:] sample_weight,
        float64_t weighted_n_samples,
        const intp_t[:] sample_indices,
        intp_t start,
        intp_t end,
    ) except -1 nogil:
        """Placeholder for a method which will initialize the criterion.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.

        Parameters
        ----------
        y : ndarray, dtype=float64_t
            y is a buffer that can store values for n_outputs target variables
            stored as a Cython memoryview.
        sample_weight : ndarray, dtype=float64_t
            The weight of each sample stored as a Cython memoryview.
        weighted_n_samples : float64_t
            The total weight of the samples being considered
        sample_indices : ndarray, dtype=intp_t
            A mask on the samples. Indices of the samples in X and y we want to use,
            where sample_indices[start:end] correspond to the samples in this node.
        start : intp_t
            The first sample to be used on this node
        end : intp_t
            The last sample used on this node

        """
        pass

    cdef void init_missing(self, intp_t n_missing) noexcept nogil:
        """Initialize sum_missing if there are missing values.

        This method assumes that caller placed the missing samples in
        self.sample_indices[-n_missing:]

        Parameters
        ----------
        n_missing: intp_t
            Number of missing values for specific feature.
        """
        pass

    cdef int reset(self) except -1 nogil:
        """Reset the criterion at pos=start.

        This method must be implemented by the subclass.
        """
        pass

    cdef int reverse_reset(self) except -1 nogil:
        """Reset the criterion at pos=end.

        This method must be implemented by the subclass.
        """
        pass

    cdef int update(self, intp_t new_pos) except -1 nogil:
        """Updated statistics by moving sample_indices[pos:new_pos] to the left child.

        This updates the collected statistics by moving sample_indices[pos:new_pos]
        from the right child to the left child. It must be implemented by
        the subclass.

        Parameters
        ----------
        new_pos : intp_t
            New starting index position of the sample_indices in the right child
        """
        pass

    cdef float64_t node_impurity(self) noexcept nogil:
        """Placeholder for calculating the impurity of the node.

        Placeholder for a method which will evaluate the impurity of
        the current node, i.e. the impurity of sample_indices[start:end]. This is the
        primary function of the criterion class. The smaller the impurity the
        better.
        """
        pass

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        """Placeholder for calculating the impurity of children.

        Placeholder for a method which evaluates the impurity in
        children nodes, i.e. the impurity of sample_indices[start:pos] + the impurity
        of sample_indices[pos:end].

        Parameters
        ----------
        impurity_left : float64_t pointer
            The memory address where the impurity of the left child should be
            stored.
        impurity_right : float64_t pointer
            The memory address where the impurity of the right child should be
            stored
        """
        pass

    cdef void node_value(self, float64_t* dest) noexcept nogil:
        """Placeholder for storing the node value.

        Placeholder for a method which will compute the node value
        of sample_indices[start:end] and save the value into dest.

        Parameters
        ----------
        dest : float64_t pointer
            The memory address where the node value should be stored.
        """
        pass

    cdef void clip_node_value(self, float64_t* dest, float64_t lower_bound, float64_t upper_bound) noexcept nogil:
        pass

    cdef float64_t middle_value(self) noexcept nogil:
        """Compute the middle value of a split for monotonicity constraints

        This method is implemented in ClassificationCriterion and RegressionCriterion.
        """
        pass

    cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
        """Compute a proxy of the impurity reduction.

        This method is used to speed up the search for the best split.
        It is a proxy quantity such that the split that maximizes this value
        also maximizes the impurity improvement. It neglects all constant terms
        of the impurity decrease for a given split.

        The absolute impurity improvement is only computed by the
        impurity_improvement method once the best split has been found.
        """
        cdef float64_t impurity_left
        cdef float64_t impurity_right
        self.children_impurity(&impurity_left, &impurity_right)

        return (- self.weighted_n_right * impurity_right
                - self.weighted_n_left * impurity_left)

    cdef float64_t impurity_improvement(self, float64_t impurity_parent,
                                        float64_t impurity_left,
                                        float64_t impurity_right) noexcept nogil:
        """Compute the improvement in impurity.

        This method computes the improvement in impurity when a split occurs.
        The weighted impurity improvement equation is the following:

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where N is the total number of samples, N_t is the number of samples
        at the current node, N_t_L is the number of samples in the left child,
        and N_t_R is the number of samples in the right child,

        Parameters
        ----------
        impurity_parent : float64_t
            The initial impurity of the parent node before the split

        impurity_left : float64_t
            The impurity of the left child

        impurity_right : float64_t
            The impurity of the right child

        Return
        ------
        float64_t : improvement in impurity after the split occurs
        """
        return ((self.weighted_n_node_samples / self.weighted_n_samples) *
                (impurity_parent - (self.weighted_n_right /
                                    self.weighted_n_node_samples * impurity_right)
                                 - (self.weighted_n_left /
                                    self.weighted_n_node_samples * impurity_left)))

    cdef bint check_monotonicity(
        self,
        cnp.int8_t monotonic_cst,
        float64_t lower_bound,
        float64_t upper_bound,
    ) noexcept nogil:
        pass

    cdef inline bint _check_monotonicity(
        self,
        cnp.int8_t monotonic_cst,
        float64_t lower_bound,
        float64_t upper_bound,
        float64_t value_left,
        float64_t value_right,
    ) noexcept nogil:
        cdef:
            bint check_lower_bound = (
                (value_left >= lower_bound) &
                (value_right >= lower_bound)
            )
            bint check_upper_bound = (
                (value_left <= upper_bound) &
                (value_right <= upper_bound)
            )
            bint check_monotonic_cst = (
                (value_left - value_right) * monotonic_cst <= 0
            )
        return check_lower_bound & check_upper_bound & check_monotonic_cst

    cdef void init_sum_missing(self):
        """Init sum_missing to hold sums for missing values."""

cdef inline void _move_sums_classification(
    ClassificationCriterion criterion,
    float64_t[:, ::1] sum_1,
    float64_t[:, ::1] sum_2,
    float64_t* weighted_n_1,
    float64_t* weighted_n_2,
    bint put_missing_in_1,
) noexcept nogil:
    """Distribute sum_total and sum_missing into sum_1 and sum_2.

    If there are missing values and:
    - put_missing_in_1 is True, then missing values to go sum_1. Specifically:
        sum_1 = sum_missing
        sum_2 = sum_total - sum_missing

    - put_missing_in_1 is False, then missing values go to sum_2. Specifically:
        sum_1 = 0
        sum_2 = sum_total
    """
    cdef intp_t k, c, n_bytes
    if criterion.n_missing != 0 and put_missing_in_1:
        for k in range(criterion.n_outputs):
            n_bytes = criterion.n_classes[k] * sizeof(float64_t)
            memcpy(&sum_1[k, 0], &criterion.sum_missing[k, 0], n_bytes)

        for k in range(criterion.n_outputs):
            for c in range(criterion.n_classes[k]):
                sum_2[k, c] = criterion.sum_total[k, c] - criterion.sum_missing[k, c]

        weighted_n_1[0] = criterion.weighted_n_missing
        weighted_n_2[0] = criterion.weighted_n_node_samples - criterion.weighted_n_missing
    else:
        # Assigning sum_2 = sum_total for all outputs.
        for k in range(criterion.n_outputs):
            n_bytes = criterion.n_classes[k] * sizeof(float64_t)
            memset(&sum_1[k, 0], 0, n_bytes)
            memcpy(&sum_2[k, 0], &criterion.sum_total[k, 0], n_bytes)

        weighted_n_1[0] = 0.0
        weighted_n_2[0] = criterion.weighted_n_node_samples


cdef class ClassificationCriterion(Criterion):
    """Abstract criterion for classification."""

    def __cinit__(self, intp_t n_outputs,
                  cnp.ndarray[intp_t, ndim=1] n_classes):
        """Initialize attributes for this criterion.

        Parameters
        ----------
        n_outputs : intp_t
            The number of targets, the dimensionality of the prediction
        n_classes : numpy.ndarray, dtype=intp_t
            The number of unique classes in each target
        """
        self.start = 0
        self.pos = 0
        self.end = 0
        self.missing_go_to_left = 0

        self.n_outputs = n_outputs
        self.n_samples = 0
        self.n_node_samples = 0
        self.weighted_n_node_samples = 0.0
        self.weighted_n_left = 0.0
        self.weighted_n_right = 0.0
        self.weighted_n_missing = 0.0

        self.n_classes = np.empty(n_outputs, dtype=np.intp)

        cdef intp_t k = 0
        cdef intp_t max_n_classes = 0

        # For each target, set the number of unique classes in that target,
        # and also compute the maximal stride of all targets
        for k in range(n_outputs):
            self.n_classes[k] = n_classes[k]

            if n_classes[k] > max_n_classes:
                max_n_classes = n_classes[k]

        self.max_n_classes = max_n_classes

        # Count labels for each output
        self.sum_total = np.zeros((n_outputs, max_n_classes), dtype=np.float64)
        self.sum_left = np.zeros((n_outputs, max_n_classes), dtype=np.float64)
        self.sum_right = np.zeros((n_outputs, max_n_classes), dtype=np.float64)

    def __reduce__(self):
        return (type(self),
                (self.n_outputs, np.asarray(self.n_classes)), self.__getstate__())

    cdef int init(
        self,
        const float64_t[:, ::1] y,
        const float64_t[:] sample_weight,
        float64_t weighted_n_samples,
        const intp_t[:] sample_indices,
        intp_t start,
        intp_t end
    ) except -1 nogil:
        """Initialize the criterion.

        This initializes the criterion at node sample_indices[start:end] and children
        sample_indices[start:start] and sample_indices[start:end].

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.

        Parameters
        ----------
        y : ndarray, dtype=float64_t
            The target stored as a buffer for memory efficiency.
        sample_weight : ndarray, dtype=float64_t
            The weight of each sample stored as a Cython memoryview.
        weighted_n_samples : float64_t
            The total weight of all samples
        sample_indices : ndarray, dtype=intp_t
            A mask on the samples. Indices of the samples in X and y we want to use,
            where sample_indices[start:end] correspond to the samples in this node.
        start : intp_t
            The first sample to use in the mask
        end : intp_t
            The last sample to use in the mask
        """
        self.y = y
        self.sample_weight = sample_weight
        self.sample_indices = sample_indices
        self.start = start
        self.end = end
        self.n_node_samples = end - start
        self.weighted_n_samples = weighted_n_samples
        self.weighted_n_node_samples = 0.0

        cdef intp_t i
        cdef intp_t p
        cdef intp_t k
        cdef intp_t c
        cdef float64_t w = 1.0

        for k in range(self.n_outputs):
            memset(&self.sum_total[k, 0], 0, self.n_classes[k] * sizeof(float64_t))

        for p in range(start, end):
            i = sample_indices[p]

            # w is originally set to be 1.0, meaning that if no sample weights
            # are given, the default weight of each sample is 1.0.
            if sample_weight is not None:
                w = sample_weight[i]

            # Count weighted class frequency for each target
            for k in range(self.n_outputs):
                c = <intp_t> self.y[i, k]
                self.sum_total[k, c] += w

            self.weighted_n_node_samples += w

        # Reset to pos=start
        self.reset()
        return 0

    cdef void init_sum_missing(self):
        """Init sum_missing to hold sums for missing values."""
        self.sum_missing = np.zeros((self.n_outputs, self.max_n_classes), dtype=np.float64)

    cdef void init_missing(self, intp_t n_missing) noexcept nogil:
        """Initialize sum_missing if there are missing values.

        This method assumes that caller placed the missing samples in
        self.sample_indices[-n_missing:]
        """
        cdef intp_t i, p, k, c
        cdef float64_t w = 1.0

        self.n_missing = n_missing
        if n_missing == 0:
            return

        memset(&self.sum_missing[0, 0], 0, self.max_n_classes * self.n_outputs * sizeof(float64_t))

        self.weighted_n_missing = 0.0

        # The missing samples are assumed to be in self.sample_indices[-n_missing:]
        for p in range(self.end - n_missing, self.end):
            i = self.sample_indices[p]
            if self.sample_weight is not None:
                w = self.sample_weight[i]

            for k in range(self.n_outputs):
                c = <intp_t> self.y[i, k]
                self.sum_missing[k, c] += w

            self.weighted_n_missing += w

    cdef int reset(self) except -1 nogil:
        """Reset the criterion at pos=start.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        self.pos = self.start
        _move_sums_classification(
            self,
            self.sum_left,
            self.sum_right,
            &self.weighted_n_left,
            &self.weighted_n_right,
            self.missing_go_to_left,
        )
        return 0

    cdef int reverse_reset(self) except -1 nogil:
        """Reset the criterion at pos=end.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        self.pos = self.end
        _move_sums_classification(
            self,
            self.sum_right,
            self.sum_left,
            &self.weighted_n_right,
            &self.weighted_n_left,
            not self.missing_go_to_left
        )
        return 0

    cdef int update(self, intp_t new_pos) except -1 nogil:
        """Updated statistics by moving sample_indices[pos:new_pos] to the left child.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.

        Parameters
        ----------
        new_pos : intp_t
            The new ending position for which to move sample_indices from the right
            child to the left child.
        """
        cdef intp_t pos = self.pos
        # The missing samples are assumed to be in
        # self.sample_indices[-self.n_missing:] that is
        # self.sample_indices[end_non_missing:self.end].
        cdef intp_t end_non_missing = self.end - self.n_missing

        cdef const intp_t[:] sample_indices = self.sample_indices
        cdef const float64_t[:] sample_weight = self.sample_weight

        cdef intp_t i
        cdef intp_t p
        cdef intp_t k
        cdef intp_t c
        cdef float64_t w = 1.0

        # Update statistics up to new_pos
        #
        # Given that
        #   sum_left[x] +  sum_right[x] = sum_total[x]
        # and that sum_total is known, we are going to update
        # sum_left from the direction that require the least amount
        # of computations, i.e. from pos to new_pos or from end to new_po.
        if (new_pos - pos) <= (end_non_missing - new_pos):
            for p in range(pos, new_pos):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    self.sum_left[k, <intp_t> self.y[i, k]] += w

                self.weighted_n_left += w

        else:
            self.reverse_reset()

            for p in range(end_non_missing - 1, new_pos - 1, -1):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    self.sum_left[k, <intp_t> self.y[i, k]] -= w

                self.weighted_n_left -= w

        # Update right part statistics
        self.weighted_n_right = self.weighted_n_node_samples - self.weighted_n_left
        for k in range(self.n_outputs):
            for c in range(self.n_classes[k]):
                self.sum_right[k, c] = self.sum_total[k, c] - self.sum_left[k, c]

        self.pos = new_pos
        return 0

    cdef float64_t node_impurity(self) noexcept nogil:
        pass

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        pass

    cdef void node_value(self, float64_t* dest) noexcept nogil:
        """Compute the node value of sample_indices[start:end] and save it into dest.

        Parameters
        ----------
        dest : float64_t pointer
            The memory address which we will save the node value into.
        """
        cdef intp_t k, c

        for k in range(self.n_outputs):
            for c in range(self.n_classes[k]):
                dest[c] = self.sum_total[k, c] / self.weighted_n_node_samples
            dest += self.max_n_classes

    cdef inline void clip_node_value(
        self, float64_t * dest, float64_t lower_bound, float64_t upper_bound
    ) noexcept nogil:
        """Clip the values in dest such that predicted probabilities stay between
        `lower_bound` and `upper_bound` when monotonic constraints are enforced.
        Note that monotonicity constraints are only supported for:
        - single-output trees and
        - binary classifications.
        """
        if dest[0] < lower_bound:
            dest[0] = lower_bound
        elif dest[0] > upper_bound:
            dest[0] = upper_bound

        # Values for binary classification must sum to 1.
        dest[1] = 1 - dest[0]

    cdef inline float64_t middle_value(self) noexcept nogil:
        """Compute the middle value of a split for monotonicity constraints as the simple average
        of the left and right children values.

        Note that monotonicity constraints are only supported for:
        - single-output trees and
        - binary classifications.
        """
        return (
            (self.sum_left[0, 0] / (2 * self.weighted_n_left)) +
            (self.sum_right[0, 0] / (2 * self.weighted_n_right))
        )

    cdef inline bint check_monotonicity(
        self,
        cnp.int8_t monotonic_cst,
        float64_t lower_bound,
        float64_t upper_bound,
    ) noexcept nogil:
        """Check monotonicity constraint is satisfied at the current classification split"""
        cdef:
            float64_t value_left = self.sum_left[0][0] / self.weighted_n_left
            float64_t value_right = self.sum_right[0][0] / self.weighted_n_right

        return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)


cdef class Entropy(ClassificationCriterion):
    r"""Cross Entropy impurity criterion.

    This handles cases where the target is a classification taking values
    0, 1, ... K-2, K-1. If node m represents a region Rm with Nm observations,
    then let

        count_k = 1 / Nm \sum_{x_i in Rm} I(yi = k)

    be the proportion of class k observations in node m.

    The cross-entropy is then defined as

        cross-entropy = -\sum_{k=0}^{K-1} count_k log(count_k)
    """

    cdef float64_t node_impurity(self) noexcept nogil:
        """Evaluate the impurity of the current node.

        Evaluate the cross-entropy criterion as impurity of the current node,
        i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
        better.
        """
        cdef float64_t entropy = 0.0
        cdef float64_t count_k
        cdef intp_t k
        cdef intp_t c

        for k in range(self.n_outputs):
            for c in range(self.n_classes[k]):
                count_k = self.sum_total[k, c]
                if count_k > 0.0:
                    count_k /= self.weighted_n_node_samples
                    entropy -= count_k * log(count_k)

        return entropy / self.n_outputs

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        """Evaluate the impurity in children nodes.

        i.e. the impurity of the left child (sample_indices[start:pos]) and the
        impurity the right child (sample_indices[pos:end]).

        Parameters
        ----------
        impurity_left : float64_t pointer
            The memory address to save the impurity of the left node
        impurity_right : float64_t pointer
            The memory address to save the impurity of the right node
        """
        cdef float64_t entropy_left = 0.0
        cdef float64_t entropy_right = 0.0
        cdef float64_t count_k
        cdef intp_t k
        cdef intp_t c

        for k in range(self.n_outputs):
            for c in range(self.n_classes[k]):
                count_k = self.sum_left[k, c]
                if count_k > 0.0:
                    count_k /= self.weighted_n_left
                    entropy_left -= count_k * log(count_k)

                count_k = self.sum_right[k, c]
                if count_k > 0.0:
                    count_k /= self.weighted_n_right
                    entropy_right -= count_k * log(count_k)

        impurity_left[0] = entropy_left / self.n_outputs
        impurity_right[0] = entropy_right / self.n_outputs


cdef class Gini(ClassificationCriterion):
    r"""Gini Index impurity criterion.

    This handles cases where the target is a classification taking values
    0, 1, ... K-2, K-1. If node m represents a region Rm with Nm observations,
    then let

        count_k = 1/ Nm \sum_{x_i in Rm} I(yi = k)

    be the proportion of class k observations in node m.

    The Gini Index is then defined as:

        index = \sum_{k=0}^{K-1} count_k (1 - count_k)
              = 1 - \sum_{k=0}^{K-1} count_k ** 2
    """

    cdef float64_t node_impurity(self) noexcept nogil:
        """Evaluate the impurity of the current node.

        Evaluate the Gini criterion as impurity of the current node,
        i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
        better.
        """
        cdef float64_t gini = 0.0
        cdef float64_t sq_count
        cdef float64_t count_k
        cdef intp_t k
        cdef intp_t c

        for k in range(self.n_outputs):
            sq_count = 0.0

            for c in range(self.n_classes[k]):
                count_k = self.sum_total[k, c]
                sq_count += count_k * count_k

            gini += 1.0 - sq_count / (self.weighted_n_node_samples *
                                      self.weighted_n_node_samples)

        return gini / self.n_outputs

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        """Evaluate the impurity in children nodes.

        i.e. the impurity of the left child (sample_indices[start:pos]) and the
        impurity the right child (sample_indices[pos:end]) using the Gini index.

        Parameters
        ----------
        impurity_left : float64_t pointer
            The memory address to save the impurity of the left node to
        impurity_right : float64_t pointer
            The memory address to save the impurity of the right node to
        """
        cdef float64_t gini_left = 0.0
        cdef float64_t gini_right = 0.0
        cdef float64_t sq_count_left
        cdef float64_t sq_count_right
        cdef float64_t count_k
        cdef intp_t k
        cdef intp_t c

        for k in range(self.n_outputs):
            sq_count_left = 0.0
            sq_count_right = 0.0

            for c in range(self.n_classes[k]):
                count_k = self.sum_left[k, c]
                sq_count_left += count_k * count_k

                count_k = self.sum_right[k, c]
                sq_count_right += count_k * count_k

            gini_left += 1.0 - sq_count_left / (self.weighted_n_left *
                                                self.weighted_n_left)

            gini_right += 1.0 - sq_count_right / (self.weighted_n_right *
                                                  self.weighted_n_right)

        impurity_left[0] = gini_left / self.n_outputs
        impurity_right[0] = gini_right / self.n_outputs


cdef inline void _move_sums_regression(
    RegressionCriterion criterion,
    float64_t[::1] sum_1,
    float64_t[::1] sum_2,
    float64_t* weighted_n_1,
    float64_t* weighted_n_2,
    bint put_missing_in_1,
) noexcept nogil:
    """Distribute sum_total and sum_missing into sum_1 and sum_2.

    If there are missing values and:
    - put_missing_in_1 is True, then missing values to go sum_1. Specifically:
        sum_1 = sum_missing
        sum_2 = sum_total - sum_missing

    - put_missing_in_1 is False, then missing values go to sum_2. Specifically:
        sum_1 = 0
        sum_2 = sum_total
    """
    cdef:
        intp_t i
        intp_t n_bytes = criterion.n_outputs * sizeof(float64_t)
        bint has_missing = criterion.n_missing != 0

    if has_missing and put_missing_in_1:
        memcpy(&sum_1[0], &criterion.sum_missing[0], n_bytes)
        for i in range(criterion.n_outputs):
            sum_2[i] = criterion.sum_total[i] - criterion.sum_missing[i]
        weighted_n_1[0] = criterion.weighted_n_missing
        weighted_n_2[0] = criterion.weighted_n_node_samples - criterion.weighted_n_missing
    else:
        memset(&sum_1[0], 0, n_bytes)
        # Assigning sum_2 = sum_total for all outputs.
        memcpy(&sum_2[0], &criterion.sum_total[0], n_bytes)
        weighted_n_1[0] = 0.0
        weighted_n_2[0] = criterion.weighted_n_node_samples


cdef class RegressionCriterion(Criterion):
    r"""Abstract regression criterion.

    This handles cases where the target is a continuous value, and is
    evaluated by computing the variance of the target values left and right
    of the split point. The computation takes linear time with `n_samples`
    by using ::

        var = \sum_i^n (y_i - y_bar) ** 2
            = (\sum_i^n y_i ** 2) - n_samples * y_bar ** 2
    """

    def __cinit__(self, intp_t n_outputs, intp_t n_samples):
        """Initialize parameters for this criterion.

        Parameters
        ----------
        n_outputs : intp_t
            The number of targets to be predicted

        n_samples : intp_t
            The total number of samples to fit on
        """
        # Default values
        self.start = 0
        self.pos = 0
        self.end = 0

        self.n_outputs = n_outputs
        self.n_samples = n_samples
        self.n_node_samples = 0
        self.weighted_n_node_samples = 0.0
        self.weighted_n_left = 0.0
        self.weighted_n_right = 0.0
        self.weighted_n_missing = 0.0

        self.sq_sum_total = 0.0

        self.sum_total = np.zeros(n_outputs, dtype=np.float64)
        self.sum_left = np.zeros(n_outputs, dtype=np.float64)
        self.sum_right = np.zeros(n_outputs, dtype=np.float64)

    def __reduce__(self):
        return (type(self), (self.n_outputs, self.n_samples), self.__getstate__())

    cdef int init(
        self,
        const float64_t[:, ::1] y,
        const float64_t[:] sample_weight,
        float64_t weighted_n_samples,
        const intp_t[:] sample_indices,
        intp_t start,
        intp_t end,
    ) except -1 nogil:
        """Initialize the criterion.

        This initializes the criterion at node sample_indices[start:end] and children
        sample_indices[start:start] and sample_indices[start:end].
        """
        # Initialize fields
        self.y = y
        self.sample_weight = sample_weight
        self.sample_indices = sample_indices
        self.start = start
        self.end = end
        self.n_node_samples = end - start
        self.weighted_n_samples = weighted_n_samples
        self.weighted_n_node_samples = 0.

        cdef intp_t i
        cdef intp_t p
        cdef intp_t k
        cdef float64_t y_ik
        cdef float64_t w_y_ik
        cdef float64_t w = 1.0
        self.sq_sum_total = 0.0
        memset(&self.sum_total[0], 0, self.n_outputs * sizeof(float64_t))

        for p in range(start, end):
            i = sample_indices[p]

            if sample_weight is not None:
                w = sample_weight[i]

            for k in range(self.n_outputs):
                y_ik = self.y[i, k]
                w_y_ik = w * y_ik
                self.sum_total[k] += w_y_ik
                self.sq_sum_total += w_y_ik * y_ik

            self.weighted_n_node_samples += w

        # Reset to pos=start
        self.reset()
        return 0

    cdef void init_sum_missing(self):
        """Init sum_missing to hold sums for missing values."""
        self.sum_missing = np.zeros(self.n_outputs, dtype=np.float64)

    cdef void init_missing(self, intp_t n_missing) noexcept nogil:
        """Initialize sum_missing if there are missing values.

        This method assumes that caller placed the missing samples in
        self.sample_indices[-n_missing:]
        """
        cdef intp_t i, p, k
        cdef float64_t y_ik
        cdef float64_t w_y_ik
        cdef float64_t w = 1.0

        self.n_missing = n_missing
        if n_missing == 0:
            return

        memset(&self.sum_missing[0], 0, self.n_outputs * sizeof(float64_t))

        self.weighted_n_missing = 0.0

        # The missing samples are assumed to be in self.sample_indices[-n_missing:]
        for p in range(self.end - n_missing, self.end):
            i = self.sample_indices[p]
            if self.sample_weight is not None:
                w = self.sample_weight[i]

            for k in range(self.n_outputs):
                y_ik = self.y[i, k]
                w_y_ik = w * y_ik
                self.sum_missing[k] += w_y_ik

            self.weighted_n_missing += w

    cdef int reset(self) except -1 nogil:
        """Reset the criterion at pos=start."""
        self.pos = self.start
        _move_sums_regression(
            self,
            self.sum_left,
            self.sum_right,
            &self.weighted_n_left,
            &self.weighted_n_right,
            self.missing_go_to_left
        )
        return 0

    cdef int reverse_reset(self) except -1 nogil:
        """Reset the criterion at pos=end."""
        self.pos = self.end
        _move_sums_regression(
            self,
            self.sum_right,
            self.sum_left,
            &self.weighted_n_right,
            &self.weighted_n_left,
            not self.missing_go_to_left
        )
        return 0

    cdef int update(self, intp_t new_pos) except -1 nogil:
        """Updated statistics by moving sample_indices[pos:new_pos] to the left."""
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices

        cdef intp_t pos = self.pos

        # The missing samples are assumed to be in
        # self.sample_indices[-self.n_missing:] that is
        # self.sample_indices[end_non_missing:self.end].
        cdef intp_t end_non_missing = self.end - self.n_missing
        cdef intp_t i
        cdef intp_t p
        cdef intp_t k
        cdef float64_t w = 1.0

        # Update statistics up to new_pos
        #
        # Given that
        #           sum_left[x] +  sum_right[x] = sum_total[x]
        # and that sum_total is known, we are going to update
        # sum_left from the direction that require the least amount
        # of computations, i.e. from pos to new_pos or from end to new_pos.
        if (new_pos - pos) <= (end_non_missing - new_pos):
            for p in range(pos, new_pos):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    self.sum_left[k] += w * self.y[i, k]

                self.weighted_n_left += w
        else:
            self.reverse_reset()

            for p in range(end_non_missing - 1, new_pos - 1, -1):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    self.sum_left[k] -= w * self.y[i, k]

                self.weighted_n_left -= w

        self.weighted_n_right = (self.weighted_n_node_samples -
                                 self.weighted_n_left)
        for k in range(self.n_outputs):
            self.sum_right[k] = self.sum_total[k] - self.sum_left[k]

        self.pos = new_pos
        return 0

    cdef float64_t node_impurity(self) noexcept nogil:
        pass

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        pass

    cdef void node_value(self, float64_t* dest) noexcept nogil:
        """Compute the node value of sample_indices[start:end] into dest."""
        cdef intp_t k

        for k in range(self.n_outputs):
            dest[k] = self.sum_total[k] / self.weighted_n_node_samples

    cdef inline void clip_node_value(self, float64_t* dest, float64_t lower_bound, float64_t upper_bound) noexcept nogil:
        """Clip the value in dest between lower_bound and upper_bound for monotonic constraints."""
        if dest[0] < lower_bound:
            dest[0] = lower_bound
        elif dest[0] > upper_bound:
            dest[0] = upper_bound

    cdef float64_t middle_value(self) noexcept nogil:
        """Compute the middle value of a split for monotonicity constraints as the simple average
        of the left and right children values.

        Monotonicity constraints are only supported for single-output trees we can safely assume
        n_outputs == 1.
        """
        return (
            (self.sum_left[0] / (2 * self.weighted_n_left)) +
            (self.sum_right[0] / (2 * self.weighted_n_right))
        )

    cdef bint check_monotonicity(
        self,
        cnp.int8_t monotonic_cst,
        float64_t lower_bound,
        float64_t upper_bound,
    ) noexcept nogil:
        """Check monotonicity constraint is satisfied at the current regression split"""
        cdef:
            float64_t value_left = self.sum_left[0] / self.weighted_n_left
            float64_t value_right = self.sum_right[0] / self.weighted_n_right

        return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)

cdef class MSE(RegressionCriterion):
    """Mean squared error impurity criterion.

        MSE = var_left + var_right
    """

    cdef float64_t node_impurity(self) noexcept nogil:
        """Evaluate the impurity of the current node.

        Evaluate the MSE criterion as impurity of the current node,
        i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
        better.
        """
        cdef float64_t impurity
        cdef intp_t k

        impurity = self.sq_sum_total / self.weighted_n_node_samples
        for k in range(self.n_outputs):
            impurity -= (self.sum_total[k] / self.weighted_n_node_samples)**2.0

        return impurity / self.n_outputs

    cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
        """Compute a proxy of the impurity reduction.

        This method is used to speed up the search for the best split.
        It is a proxy quantity such that the split that maximizes this value
        also maximizes the impurity improvement. It neglects all constant terms
        of the impurity decrease for a given split.

        The absolute impurity improvement is only computed by the
        impurity_improvement method once the best split has been found.

        The MSE proxy is derived from

            sum_{i left}(y_i - y_pred_L)^2 + sum_{i right}(y_i - y_pred_R)^2
            = sum(y_i^2) - n_L * mean_{i left}(y_i)^2 - n_R * mean_{i right}(y_i)^2

        Neglecting constant terms, this gives:

            - 1/n_L * sum_{i left}(y_i)^2 - 1/n_R * sum_{i right}(y_i)^2
        """
        cdef intp_t k
        cdef float64_t proxy_impurity_left = 0.0
        cdef float64_t proxy_impurity_right = 0.0

        for k in range(self.n_outputs):
            proxy_impurity_left += self.sum_left[k] * self.sum_left[k]
            proxy_impurity_right += self.sum_right[k] * self.sum_right[k]

        return (proxy_impurity_left / self.weighted_n_left +
                proxy_impurity_right / self.weighted_n_right)

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        """Evaluate the impurity in children nodes.

        i.e. the impurity of the left child (sample_indices[start:pos]) and the
        impurity the right child (sample_indices[pos:end]).
        """
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices
        cdef intp_t pos = self.pos
        cdef intp_t start = self.start

        cdef float64_t y_ik

        cdef float64_t sq_sum_left = 0.0
        cdef float64_t sq_sum_right

        cdef intp_t i
        cdef intp_t p
        cdef intp_t k
        cdef float64_t w = 1.0

        cdef intp_t end_non_missing

        for p in range(start, pos):
            i = sample_indices[p]

            if sample_weight is not None:
                w = sample_weight[i]

            for k in range(self.n_outputs):
                y_ik = self.y[i, k]
                sq_sum_left += w * y_ik * y_ik

        if self.missing_go_to_left:
            # add up the impact of these missing values on the left child
            # statistics.
            # Note: this only impacts the square sum as the sum
            # is modified elsewhere.
            end_non_missing = self.end - self.n_missing

            for p in range(end_non_missing, self.end):
                i = sample_indices[p]
                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    y_ik = self.y[i, k]
                    sq_sum_left += w * y_ik * y_ik

        sq_sum_right = self.sq_sum_total - sq_sum_left

        impurity_left[0] = sq_sum_left / self.weighted_n_left
        impurity_right[0] = sq_sum_right / self.weighted_n_right

        for k in range(self.n_outputs):
            impurity_left[0] -= (self.sum_left[k] / self.weighted_n_left) ** 2.0
            impurity_right[0] -= (self.sum_right[k] / self.weighted_n_right) ** 2.0

        impurity_left[0] /= self.n_outputs
        impurity_right[0] /= self.n_outputs


cdef class MAE(RegressionCriterion):
    r"""Mean absolute error impurity criterion.

       MAE = (1 / n)*(\sum_i |y_i - f_i|), where y_i is the true
       value and f_i is the predicted value."""

    cdef cnp.ndarray left_child
    cdef cnp.ndarray right_child
    cdef void** left_child_ptr
    cdef void** right_child_ptr
    cdef float64_t[::1] node_medians

    def __cinit__(self, intp_t n_outputs, intp_t n_samples):
        """Initialize parameters for this criterion.

        Parameters
        ----------
        n_outputs : intp_t
            The number of targets to be predicted

        n_samples : intp_t
            The total number of samples to fit on
        """
        # Default values
        self.start = 0
        self.pos = 0
        self.end = 0

        self.n_outputs = n_outputs
        self.n_samples = n_samples
        self.n_node_samples = 0
        self.weighted_n_node_samples = 0.0
        self.weighted_n_left = 0.0
        self.weighted_n_right = 0.0

        self.node_medians = np.zeros(n_outputs, dtype=np.float64)

        self.left_child = np.empty(n_outputs, dtype='object')
        self.right_child = np.empty(n_outputs, dtype='object')
        # initialize WeightedMedianCalculators
        for k in range(n_outputs):
            self.left_child[k] = WeightedMedianCalculator(n_samples)
            self.right_child[k] = WeightedMedianCalculator(n_samples)

        self.left_child_ptr = <void**> cnp.PyArray_DATA(self.left_child)
        self.right_child_ptr = <void**> cnp.PyArray_DATA(self.right_child)

    cdef int init(
        self,
        const float64_t[:, ::1] y,
        const float64_t[:] sample_weight,
        float64_t weighted_n_samples,
        const intp_t[:] sample_indices,
        intp_t start,
        intp_t end,
    ) except -1 nogil:
        """Initialize the criterion.

        This initializes the criterion at node sample_indices[start:end] and children
        sample_indices[start:start] and sample_indices[start:end].
        """
        cdef intp_t i, p, k
        cdef float64_t w = 1.0

        # Initialize fields
        self.y = y
        self.sample_weight = sample_weight
        self.sample_indices = sample_indices
        self.start = start
        self.end = end
        self.n_node_samples = end - start
        self.weighted_n_samples = weighted_n_samples
        self.weighted_n_node_samples = 0.

        cdef void** left_child = self.left_child_ptr
        cdef void** right_child = self.right_child_ptr

        for k in range(self.n_outputs):
            (<WeightedMedianCalculator> left_child[k]).reset()
            (<WeightedMedianCalculator> right_child[k]).reset()

        for p in range(start, end):
            i = sample_indices[p]

            if sample_weight is not None:
                w = sample_weight[i]

            for k in range(self.n_outputs):
                # push method ends up calling safe_realloc, hence `except -1`
                # push all values to the right side,
                # since pos = start initially anyway
                (<WeightedMedianCalculator> right_child[k]).push(self.y[i, k], w)

            self.weighted_n_node_samples += w
        # calculate the node medians
        for k in range(self.n_outputs):
            self.node_medians[k] = (<WeightedMedianCalculator> right_child[k]).get_median()

        # Reset to pos=start
        self.reset()
        return 0

    cdef void init_missing(self, intp_t n_missing) noexcept nogil:
        """Raise error if n_missing != 0."""
        if n_missing == 0:
            return
        with gil:
            raise ValueError("missing values is not supported for MAE.")

    cdef int reset(self) except -1 nogil:
        """Reset the criterion at pos=start.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        cdef intp_t i, k
        cdef float64_t value
        cdef float64_t weight

        cdef void** left_child = self.left_child_ptr
        cdef void** right_child = self.right_child_ptr

        self.weighted_n_left = 0.0
        self.weighted_n_right = self.weighted_n_node_samples
        self.pos = self.start

        # reset the WeightedMedianCalculators, left should have no
        # elements and right should have all elements.

        for k in range(self.n_outputs):
            # if left has no elements, it's already reset
            for i in range((<WeightedMedianCalculator> left_child[k]).size()):
                # remove everything from left and put it into right
                (<WeightedMedianCalculator> left_child[k]).pop(&value,
                                                               &weight)
                # push method ends up calling safe_realloc, hence `except -1`
                (<WeightedMedianCalculator> right_child[k]).push(value,
                                                                 weight)
        return 0

    cdef int reverse_reset(self) except -1 nogil:
        """Reset the criterion at pos=end.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        self.weighted_n_right = 0.0
        self.weighted_n_left = self.weighted_n_node_samples
        self.pos = self.end

        cdef float64_t value
        cdef float64_t weight
        cdef void** left_child = self.left_child_ptr
        cdef void** right_child = self.right_child_ptr

        # reverse reset the WeightedMedianCalculators, right should have no
        # elements and left should have all elements.
        for k in range(self.n_outputs):
            # if right has no elements, it's already reset
            for i in range((<WeightedMedianCalculator> right_child[k]).size()):
                # remove everything from right and put it into left
                (<WeightedMedianCalculator> right_child[k]).pop(&value,
                                                                &weight)
                # push method ends up calling safe_realloc, hence `except -1`
                (<WeightedMedianCalculator> left_child[k]).push(value,
                                                                weight)
        return 0

    cdef int update(self, intp_t new_pos) except -1 nogil:
        """Updated statistics by moving sample_indices[pos:new_pos] to the left.

        Returns -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices

        cdef void** left_child = self.left_child_ptr
        cdef void** right_child = self.right_child_ptr

        cdef intp_t pos = self.pos
        cdef intp_t end = self.end
        cdef intp_t i, p, k
        cdef float64_t w = 1.0

        # Update statistics up to new_pos
        #
        # We are going to update right_child and left_child
        # from the direction that require the least amount of
        # computations, i.e. from pos to new_pos or from end to new_pos.
        if (new_pos - pos) <= (end - new_pos):
            for p in range(pos, new_pos):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    # remove y_ik and its weight w from right and add to left
                    (<WeightedMedianCalculator> right_child[k]).remove(self.y[i, k], w)
                    # push method ends up calling safe_realloc, hence except -1
                    (<WeightedMedianCalculator> left_child[k]).push(self.y[i, k], w)

                self.weighted_n_left += w
        else:
            self.reverse_reset()

            for p in range(end - 1, new_pos - 1, -1):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                for k in range(self.n_outputs):
                    # remove y_ik and its weight w from left and add to right
                    (<WeightedMedianCalculator> left_child[k]).remove(self.y[i, k], w)
                    (<WeightedMedianCalculator> right_child[k]).push(self.y[i, k], w)

                self.weighted_n_left -= w

        self.weighted_n_right = (self.weighted_n_node_samples -
                                 self.weighted_n_left)
        self.pos = new_pos
        return 0

    cdef void node_value(self, float64_t* dest) noexcept nogil:
        """Computes the node value of sample_indices[start:end] into dest."""
        cdef intp_t k
        for k in range(self.n_outputs):
            dest[k] = <float64_t> self.node_medians[k]

    cdef inline float64_t middle_value(self) noexcept nogil:
        """Compute the middle value of a split for monotonicity constraints as the simple average
        of the left and right children values.

        Monotonicity constraints are only supported for single-output trees we can safely assume
        n_outputs == 1.
        """
        return (
                (<WeightedMedianCalculator> self.left_child_ptr[0]).get_median() +
                (<WeightedMedianCalculator> self.right_child_ptr[0]).get_median()
        ) / 2

    cdef inline bint check_monotonicity(
        self,
        cnp.int8_t monotonic_cst,
        float64_t lower_bound,
        float64_t upper_bound,
    ) noexcept nogil:
        """Check monotonicity constraint is satisfied at the current regression split"""
        cdef:
            float64_t value_left = (<WeightedMedianCalculator> self.left_child_ptr[0]).get_median()
            float64_t value_right = (<WeightedMedianCalculator> self.right_child_ptr[0]).get_median()

        return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)

    cdef float64_t node_impurity(self) noexcept nogil:
        """Evaluate the impurity of the current node.

        Evaluate the MAE criterion as impurity of the current node,
        i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
        better.
        """
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices
        cdef intp_t i, p, k
        cdef float64_t w = 1.0
        cdef float64_t impurity = 0.0

        for k in range(self.n_outputs):
            for p in range(self.start, self.end):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                impurity += fabs(self.y[i, k] - self.node_medians[k]) * w

        return impurity / (self.weighted_n_node_samples * self.n_outputs)

    cdef void children_impurity(self, float64_t* p_impurity_left,
                                float64_t* p_impurity_right) noexcept nogil:
        """Evaluate the impurity in children nodes.

        i.e. the impurity of the left child (sample_indices[start:pos]) and the
        impurity the right child (sample_indices[pos:end]).
        """
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices

        cdef intp_t start = self.start
        cdef intp_t pos = self.pos
        cdef intp_t end = self.end

        cdef intp_t i, p, k
        cdef float64_t median
        cdef float64_t w = 1.0
        cdef float64_t impurity_left = 0.0
        cdef float64_t impurity_right = 0.0

        cdef void** left_child = self.left_child_ptr
        cdef void** right_child = self.right_child_ptr

        for k in range(self.n_outputs):
            median = (<WeightedMedianCalculator> left_child[k]).get_median()
            for p in range(start, pos):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                impurity_left += fabs(self.y[i, k] - median) * w
        p_impurity_left[0] = impurity_left / (self.weighted_n_left *
                                              self.n_outputs)

        for k in range(self.n_outputs):
            median = (<WeightedMedianCalculator> right_child[k]).get_median()
            for p in range(pos, end):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                impurity_right += fabs(self.y[i, k] - median) * w
        p_impurity_right[0] = impurity_right / (self.weighted_n_right *
                                                self.n_outputs)


cdef class FriedmanMSE(MSE):
    """Mean squared error impurity criterion with improvement score by Friedman.

    Uses the formula (35) in Friedman's original Gradient Boosting paper:

        diff = mean_left - mean_right
        improvement = n_left * n_right * diff^2 / (n_left + n_right)
    """

    cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
        """Compute a proxy of the impurity reduction.

        This method is used to speed up the search for the best split.
        It is a proxy quantity such that the split that maximizes this value
        also maximizes the impurity improvement. It neglects all constant terms
        of the impurity decrease for a given split.

        The absolute impurity improvement is only computed by the
        impurity_improvement method once the best split has been found.
        """
        cdef float64_t total_sum_left = 0.0
        cdef float64_t total_sum_right = 0.0

        cdef intp_t k
        cdef float64_t diff = 0.0

        for k in range(self.n_outputs):
            total_sum_left += self.sum_left[k]
            total_sum_right += self.sum_right[k]

        diff = (self.weighted_n_right * total_sum_left -
                self.weighted_n_left * total_sum_right)

        return diff * diff / (self.weighted_n_left * self.weighted_n_right)

    cdef float64_t impurity_improvement(self, float64_t impurity_parent, float64_t
                                        impurity_left, float64_t impurity_right) noexcept nogil:
        # Note: none of the arguments are used here
        cdef float64_t total_sum_left = 0.0
        cdef float64_t total_sum_right = 0.0

        cdef intp_t k
        cdef float64_t diff = 0.0

        for k in range(self.n_outputs):
            total_sum_left += self.sum_left[k]
            total_sum_right += self.sum_right[k]

        diff = (self.weighted_n_right * total_sum_left -
                self.weighted_n_left * total_sum_right) / self.n_outputs

        return (diff * diff / (self.weighted_n_left * self.weighted_n_right *
                               self.weighted_n_node_samples))


cdef class Poisson(RegressionCriterion):
    """Half Poisson deviance as impurity criterion.

    Poisson deviance = 2/n * sum(y_true * log(y_true/y_pred) + y_pred - y_true)

    Note that the deviance is >= 0, and since we have `y_pred = mean(y_true)`
    at the leaves, one always has `sum(y_pred - y_true) = 0`. It remains the
    implemented impurity (factor 2 is skipped):
        1/n * sum(y_true * log(y_true/y_pred)
    """
    # FIXME in 1.0:
    # min_impurity_split with default = 0 forces us to use a non-negative
    # impurity like the Poisson deviance. Without this restriction, one could
    # throw away the 'constant' term sum(y_true * log(y_true)) and just use
    # Poisson loss = - 1/n * sum(y_true * log(y_pred))
    #              = - 1/n * sum(y_true * log(mean(y_true))
    #              = - mean(y_true) * log(mean(y_true))
    # With this trick (used in proxy_impurity_improvement()), as for MSE,
    # children_impurity would only need to go over left xor right split, not
    # both. This could be faster.

    cdef float64_t node_impurity(self) noexcept nogil:
        """Evaluate the impurity of the current node.

        Evaluate the Poisson criterion as impurity of the current node,
        i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
        better.
        """
        return self.poisson_loss(self.start, self.end, self.sum_total,
                                 self.weighted_n_node_samples)

    cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
        """Compute a proxy of the impurity reduction.

        This method is used to speed up the search for the best split.
        It is a proxy quantity such that the split that maximizes this value
        also maximizes the impurity improvement. It neglects all constant terms
        of the impurity decrease for a given split.

        The absolute impurity improvement is only computed by the
        impurity_improvement method once the best split has been found.

        The Poisson proxy is derived from:

              sum_{i left }(y_i * log(y_i / y_pred_L))
            + sum_{i right}(y_i * log(y_i / y_pred_R))
            = sum(y_i * log(y_i) - n_L * mean_{i left}(y_i) * log(mean_{i left}(y_i))
                                 - n_R * mean_{i right}(y_i) * log(mean_{i right}(y_i))

        Neglecting constant terms, this gives

            - sum{i left }(y_i) * log(mean{i left}(y_i))
            - sum{i right}(y_i) * log(mean{i right}(y_i))
        """
        cdef intp_t k
        cdef float64_t proxy_impurity_left = 0.0
        cdef float64_t proxy_impurity_right = 0.0
        cdef float64_t y_mean_left = 0.
        cdef float64_t y_mean_right = 0.

        for k in range(self.n_outputs):
            if (self.sum_left[k] <= EPSILON) or (self.sum_right[k] <= EPSILON):
                # Poisson loss does not allow non-positive predictions. We
                # therefore forbid splits that have child nodes with
                # sum(y_i) <= 0.
                # Since sum_right = sum_total - sum_left, it can lead to
                # floating point rounding error and will not give zero. Thus,
                # we relax the above comparison to sum(y_i) <= EPSILON.
                return -INFINITY
            else:
                y_mean_left = self.sum_left[k] / self.weighted_n_left
                y_mean_right = self.sum_right[k] / self.weighted_n_right
                proxy_impurity_left -= self.sum_left[k] * log(y_mean_left)
                proxy_impurity_right -= self.sum_right[k] * log(y_mean_right)

        return - proxy_impurity_left - proxy_impurity_right

    cdef void children_impurity(self, float64_t* impurity_left,
                                float64_t* impurity_right) noexcept nogil:
        """Evaluate the impurity in children nodes.

        i.e. the impurity of the left child (sample_indices[start:pos]) and the
        impurity of the right child (sample_indices[pos:end]) for Poisson.
        """
        cdef intp_t start = self.start
        cdef intp_t pos = self.pos
        cdef intp_t end = self.end

        impurity_left[0] = self.poisson_loss(start, pos, self.sum_left,
                                             self.weighted_n_left)

        impurity_right[0] = self.poisson_loss(pos, end, self.sum_right,
                                              self.weighted_n_right)

    cdef inline float64_t poisson_loss(
        self,
        intp_t start,
        intp_t end,
        const float64_t[::1] y_sum,
        float64_t weight_sum
    ) noexcept nogil:
        """Helper function to compute Poisson loss (~deviance) of a given node.
        """
        cdef const float64_t[:, ::1] y = self.y
        cdef const float64_t[:] sample_weight = self.sample_weight
        cdef const intp_t[:] sample_indices = self.sample_indices

        cdef float64_t y_mean = 0.
        cdef float64_t poisson_loss = 0.
        cdef float64_t w = 1.0
        cdef intp_t i, k, p
        cdef intp_t n_outputs = self.n_outputs

        for k in range(n_outputs):
            if y_sum[k] <= EPSILON:
                # y_sum could be computed from the subtraction
                # sum_right = sum_total - sum_left leading to a potential
                # floating point rounding error.
                # Thus, we relax the comparison y_sum <= 0 to
                # y_sum <= EPSILON.
                return INFINITY

            y_mean = y_sum[k] / weight_sum

            for p in range(start, end):
                i = sample_indices[p]

                if sample_weight is not None:
                    w = sample_weight[i]

                poisson_loss += w * xlogy(y[i, k], y[i, k] / y_mean)
        return poisson_loss / (weight_sum * n_outputs)