1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
|
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Lars Buitinck
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Fares Hedayati <fares.hedayati@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
# Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause
from libc.string cimport memcpy
from libc.string cimport memset
from libc.math cimport fabs, INFINITY
import numpy as np
cimport numpy as cnp
cnp.import_array()
from scipy.special.cython_special cimport xlogy
from ._utils cimport log
from ._utils cimport WeightedMedianCalculator
# EPSILON is used in the Poisson criterion
cdef float64_t EPSILON = 10 * np.finfo('double').eps
cdef class Criterion:
"""Interface for impurity criteria.
This object stores methods on how to calculate how good a split is using
different metrics.
"""
def __getstate__(self):
return {}
def __setstate__(self, d):
pass
cdef int init(
self,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
float64_t weighted_n_samples,
const intp_t[:] sample_indices,
intp_t start,
intp_t end,
) except -1 nogil:
"""Placeholder for a method which will initialize the criterion.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
Parameters
----------
y : ndarray, dtype=float64_t
y is a buffer that can store values for n_outputs target variables
stored as a Cython memoryview.
sample_weight : ndarray, dtype=float64_t
The weight of each sample stored as a Cython memoryview.
weighted_n_samples : float64_t
The total weight of the samples being considered
sample_indices : ndarray, dtype=intp_t
A mask on the samples. Indices of the samples in X and y we want to use,
where sample_indices[start:end] correspond to the samples in this node.
start : intp_t
The first sample to be used on this node
end : intp_t
The last sample used on this node
"""
pass
cdef void init_missing(self, intp_t n_missing) noexcept nogil:
"""Initialize sum_missing if there are missing values.
This method assumes that caller placed the missing samples in
self.sample_indices[-n_missing:]
Parameters
----------
n_missing: intp_t
Number of missing values for specific feature.
"""
pass
cdef int reset(self) except -1 nogil:
"""Reset the criterion at pos=start.
This method must be implemented by the subclass.
"""
pass
cdef int reverse_reset(self) except -1 nogil:
"""Reset the criterion at pos=end.
This method must be implemented by the subclass.
"""
pass
cdef int update(self, intp_t new_pos) except -1 nogil:
"""Updated statistics by moving sample_indices[pos:new_pos] to the left child.
This updates the collected statistics by moving sample_indices[pos:new_pos]
from the right child to the left child. It must be implemented by
the subclass.
Parameters
----------
new_pos : intp_t
New starting index position of the sample_indices in the right child
"""
pass
cdef float64_t node_impurity(self) noexcept nogil:
"""Placeholder for calculating the impurity of the node.
Placeholder for a method which will evaluate the impurity of
the current node, i.e. the impurity of sample_indices[start:end]. This is the
primary function of the criterion class. The smaller the impurity the
better.
"""
pass
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
"""Placeholder for calculating the impurity of children.
Placeholder for a method which evaluates the impurity in
children nodes, i.e. the impurity of sample_indices[start:pos] + the impurity
of sample_indices[pos:end].
Parameters
----------
impurity_left : float64_t pointer
The memory address where the impurity of the left child should be
stored.
impurity_right : float64_t pointer
The memory address where the impurity of the right child should be
stored
"""
pass
cdef void node_value(self, float64_t* dest) noexcept nogil:
"""Placeholder for storing the node value.
Placeholder for a method which will compute the node value
of sample_indices[start:end] and save the value into dest.
Parameters
----------
dest : float64_t pointer
The memory address where the node value should be stored.
"""
pass
cdef void clip_node_value(self, float64_t* dest, float64_t lower_bound, float64_t upper_bound) noexcept nogil:
pass
cdef float64_t middle_value(self) noexcept nogil:
"""Compute the middle value of a split for monotonicity constraints
This method is implemented in ClassificationCriterion and RegressionCriterion.
"""
pass
cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
"""Compute a proxy of the impurity reduction.
This method is used to speed up the search for the best split.
It is a proxy quantity such that the split that maximizes this value
also maximizes the impurity improvement. It neglects all constant terms
of the impurity decrease for a given split.
The absolute impurity improvement is only computed by the
impurity_improvement method once the best split has been found.
"""
cdef float64_t impurity_left
cdef float64_t impurity_right
self.children_impurity(&impurity_left, &impurity_right)
return (- self.weighted_n_right * impurity_right
- self.weighted_n_left * impurity_left)
cdef float64_t impurity_improvement(self, float64_t impurity_parent,
float64_t impurity_left,
float64_t impurity_right) noexcept nogil:
"""Compute the improvement in impurity.
This method computes the improvement in impurity when a split occurs.
The weighted impurity improvement equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where N is the total number of samples, N_t is the number of samples
at the current node, N_t_L is the number of samples in the left child,
and N_t_R is the number of samples in the right child,
Parameters
----------
impurity_parent : float64_t
The initial impurity of the parent node before the split
impurity_left : float64_t
The impurity of the left child
impurity_right : float64_t
The impurity of the right child
Return
------
float64_t : improvement in impurity after the split occurs
"""
return ((self.weighted_n_node_samples / self.weighted_n_samples) *
(impurity_parent - (self.weighted_n_right /
self.weighted_n_node_samples * impurity_right)
- (self.weighted_n_left /
self.weighted_n_node_samples * impurity_left)))
cdef bint check_monotonicity(
self,
cnp.int8_t monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) noexcept nogil:
pass
cdef inline bint _check_monotonicity(
self,
cnp.int8_t monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
float64_t value_left,
float64_t value_right,
) noexcept nogil:
cdef:
bint check_lower_bound = (
(value_left >= lower_bound) &
(value_right >= lower_bound)
)
bint check_upper_bound = (
(value_left <= upper_bound) &
(value_right <= upper_bound)
)
bint check_monotonic_cst = (
(value_left - value_right) * monotonic_cst <= 0
)
return check_lower_bound & check_upper_bound & check_monotonic_cst
cdef void init_sum_missing(self):
"""Init sum_missing to hold sums for missing values."""
cdef inline void _move_sums_classification(
ClassificationCriterion criterion,
float64_t[:, ::1] sum_1,
float64_t[:, ::1] sum_2,
float64_t* weighted_n_1,
float64_t* weighted_n_2,
bint put_missing_in_1,
) noexcept nogil:
"""Distribute sum_total and sum_missing into sum_1 and sum_2.
If there are missing values and:
- put_missing_in_1 is True, then missing values to go sum_1. Specifically:
sum_1 = sum_missing
sum_2 = sum_total - sum_missing
- put_missing_in_1 is False, then missing values go to sum_2. Specifically:
sum_1 = 0
sum_2 = sum_total
"""
cdef intp_t k, c, n_bytes
if criterion.n_missing != 0 and put_missing_in_1:
for k in range(criterion.n_outputs):
n_bytes = criterion.n_classes[k] * sizeof(float64_t)
memcpy(&sum_1[k, 0], &criterion.sum_missing[k, 0], n_bytes)
for k in range(criterion.n_outputs):
for c in range(criterion.n_classes[k]):
sum_2[k, c] = criterion.sum_total[k, c] - criterion.sum_missing[k, c]
weighted_n_1[0] = criterion.weighted_n_missing
weighted_n_2[0] = criterion.weighted_n_node_samples - criterion.weighted_n_missing
else:
# Assigning sum_2 = sum_total for all outputs.
for k in range(criterion.n_outputs):
n_bytes = criterion.n_classes[k] * sizeof(float64_t)
memset(&sum_1[k, 0], 0, n_bytes)
memcpy(&sum_2[k, 0], &criterion.sum_total[k, 0], n_bytes)
weighted_n_1[0] = 0.0
weighted_n_2[0] = criterion.weighted_n_node_samples
cdef class ClassificationCriterion(Criterion):
"""Abstract criterion for classification."""
def __cinit__(self, intp_t n_outputs,
cnp.ndarray[intp_t, ndim=1] n_classes):
"""Initialize attributes for this criterion.
Parameters
----------
n_outputs : intp_t
The number of targets, the dimensionality of the prediction
n_classes : numpy.ndarray, dtype=intp_t
The number of unique classes in each target
"""
self.start = 0
self.pos = 0
self.end = 0
self.missing_go_to_left = 0
self.n_outputs = n_outputs
self.n_samples = 0
self.n_node_samples = 0
self.weighted_n_node_samples = 0.0
self.weighted_n_left = 0.0
self.weighted_n_right = 0.0
self.weighted_n_missing = 0.0
self.n_classes = np.empty(n_outputs, dtype=np.intp)
cdef intp_t k = 0
cdef intp_t max_n_classes = 0
# For each target, set the number of unique classes in that target,
# and also compute the maximal stride of all targets
for k in range(n_outputs):
self.n_classes[k] = n_classes[k]
if n_classes[k] > max_n_classes:
max_n_classes = n_classes[k]
self.max_n_classes = max_n_classes
# Count labels for each output
self.sum_total = np.zeros((n_outputs, max_n_classes), dtype=np.float64)
self.sum_left = np.zeros((n_outputs, max_n_classes), dtype=np.float64)
self.sum_right = np.zeros((n_outputs, max_n_classes), dtype=np.float64)
def __reduce__(self):
return (type(self),
(self.n_outputs, np.asarray(self.n_classes)), self.__getstate__())
cdef int init(
self,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
float64_t weighted_n_samples,
const intp_t[:] sample_indices,
intp_t start,
intp_t end
) except -1 nogil:
"""Initialize the criterion.
This initializes the criterion at node sample_indices[start:end] and children
sample_indices[start:start] and sample_indices[start:end].
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
Parameters
----------
y : ndarray, dtype=float64_t
The target stored as a buffer for memory efficiency.
sample_weight : ndarray, dtype=float64_t
The weight of each sample stored as a Cython memoryview.
weighted_n_samples : float64_t
The total weight of all samples
sample_indices : ndarray, dtype=intp_t
A mask on the samples. Indices of the samples in X and y we want to use,
where sample_indices[start:end] correspond to the samples in this node.
start : intp_t
The first sample to use in the mask
end : intp_t
The last sample to use in the mask
"""
self.y = y
self.sample_weight = sample_weight
self.sample_indices = sample_indices
self.start = start
self.end = end
self.n_node_samples = end - start
self.weighted_n_samples = weighted_n_samples
self.weighted_n_node_samples = 0.0
cdef intp_t i
cdef intp_t p
cdef intp_t k
cdef intp_t c
cdef float64_t w = 1.0
for k in range(self.n_outputs):
memset(&self.sum_total[k, 0], 0, self.n_classes[k] * sizeof(float64_t))
for p in range(start, end):
i = sample_indices[p]
# w is originally set to be 1.0, meaning that if no sample weights
# are given, the default weight of each sample is 1.0.
if sample_weight is not None:
w = sample_weight[i]
# Count weighted class frequency for each target
for k in range(self.n_outputs):
c = <intp_t> self.y[i, k]
self.sum_total[k, c] += w
self.weighted_n_node_samples += w
# Reset to pos=start
self.reset()
return 0
cdef void init_sum_missing(self):
"""Init sum_missing to hold sums for missing values."""
self.sum_missing = np.zeros((self.n_outputs, self.max_n_classes), dtype=np.float64)
cdef void init_missing(self, intp_t n_missing) noexcept nogil:
"""Initialize sum_missing if there are missing values.
This method assumes that caller placed the missing samples in
self.sample_indices[-n_missing:]
"""
cdef intp_t i, p, k, c
cdef float64_t w = 1.0
self.n_missing = n_missing
if n_missing == 0:
return
memset(&self.sum_missing[0, 0], 0, self.max_n_classes * self.n_outputs * sizeof(float64_t))
self.weighted_n_missing = 0.0
# The missing samples are assumed to be in self.sample_indices[-n_missing:]
for p in range(self.end - n_missing, self.end):
i = self.sample_indices[p]
if self.sample_weight is not None:
w = self.sample_weight[i]
for k in range(self.n_outputs):
c = <intp_t> self.y[i, k]
self.sum_missing[k, c] += w
self.weighted_n_missing += w
cdef int reset(self) except -1 nogil:
"""Reset the criterion at pos=start.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
self.pos = self.start
_move_sums_classification(
self,
self.sum_left,
self.sum_right,
&self.weighted_n_left,
&self.weighted_n_right,
self.missing_go_to_left,
)
return 0
cdef int reverse_reset(self) except -1 nogil:
"""Reset the criterion at pos=end.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
self.pos = self.end
_move_sums_classification(
self,
self.sum_right,
self.sum_left,
&self.weighted_n_right,
&self.weighted_n_left,
not self.missing_go_to_left
)
return 0
cdef int update(self, intp_t new_pos) except -1 nogil:
"""Updated statistics by moving sample_indices[pos:new_pos] to the left child.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
Parameters
----------
new_pos : intp_t
The new ending position for which to move sample_indices from the right
child to the left child.
"""
cdef intp_t pos = self.pos
# The missing samples are assumed to be in
# self.sample_indices[-self.n_missing:] that is
# self.sample_indices[end_non_missing:self.end].
cdef intp_t end_non_missing = self.end - self.n_missing
cdef const intp_t[:] sample_indices = self.sample_indices
cdef const float64_t[:] sample_weight = self.sample_weight
cdef intp_t i
cdef intp_t p
cdef intp_t k
cdef intp_t c
cdef float64_t w = 1.0
# Update statistics up to new_pos
#
# Given that
# sum_left[x] + sum_right[x] = sum_total[x]
# and that sum_total is known, we are going to update
# sum_left from the direction that require the least amount
# of computations, i.e. from pos to new_pos or from end to new_po.
if (new_pos - pos) <= (end_non_missing - new_pos):
for p in range(pos, new_pos):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
self.sum_left[k, <intp_t> self.y[i, k]] += w
self.weighted_n_left += w
else:
self.reverse_reset()
for p in range(end_non_missing - 1, new_pos - 1, -1):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
self.sum_left[k, <intp_t> self.y[i, k]] -= w
self.weighted_n_left -= w
# Update right part statistics
self.weighted_n_right = self.weighted_n_node_samples - self.weighted_n_left
for k in range(self.n_outputs):
for c in range(self.n_classes[k]):
self.sum_right[k, c] = self.sum_total[k, c] - self.sum_left[k, c]
self.pos = new_pos
return 0
cdef float64_t node_impurity(self) noexcept nogil:
pass
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
pass
cdef void node_value(self, float64_t* dest) noexcept nogil:
"""Compute the node value of sample_indices[start:end] and save it into dest.
Parameters
----------
dest : float64_t pointer
The memory address which we will save the node value into.
"""
cdef intp_t k, c
for k in range(self.n_outputs):
for c in range(self.n_classes[k]):
dest[c] = self.sum_total[k, c] / self.weighted_n_node_samples
dest += self.max_n_classes
cdef inline void clip_node_value(
self, float64_t * dest, float64_t lower_bound, float64_t upper_bound
) noexcept nogil:
"""Clip the values in dest such that predicted probabilities stay between
`lower_bound` and `upper_bound` when monotonic constraints are enforced.
Note that monotonicity constraints are only supported for:
- single-output trees and
- binary classifications.
"""
if dest[0] < lower_bound:
dest[0] = lower_bound
elif dest[0] > upper_bound:
dest[0] = upper_bound
# Values for binary classification must sum to 1.
dest[1] = 1 - dest[0]
cdef inline float64_t middle_value(self) noexcept nogil:
"""Compute the middle value of a split for monotonicity constraints as the simple average
of the left and right children values.
Note that monotonicity constraints are only supported for:
- single-output trees and
- binary classifications.
"""
return (
(self.sum_left[0, 0] / (2 * self.weighted_n_left)) +
(self.sum_right[0, 0] / (2 * self.weighted_n_right))
)
cdef inline bint check_monotonicity(
self,
cnp.int8_t monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) noexcept nogil:
"""Check monotonicity constraint is satisfied at the current classification split"""
cdef:
float64_t value_left = self.sum_left[0][0] / self.weighted_n_left
float64_t value_right = self.sum_right[0][0] / self.weighted_n_right
return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)
cdef class Entropy(ClassificationCriterion):
r"""Cross Entropy impurity criterion.
This handles cases where the target is a classification taking values
0, 1, ... K-2, K-1. If node m represents a region Rm with Nm observations,
then let
count_k = 1 / Nm \sum_{x_i in Rm} I(yi = k)
be the proportion of class k observations in node m.
The cross-entropy is then defined as
cross-entropy = -\sum_{k=0}^{K-1} count_k log(count_k)
"""
cdef float64_t node_impurity(self) noexcept nogil:
"""Evaluate the impurity of the current node.
Evaluate the cross-entropy criterion as impurity of the current node,
i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
better.
"""
cdef float64_t entropy = 0.0
cdef float64_t count_k
cdef intp_t k
cdef intp_t c
for k in range(self.n_outputs):
for c in range(self.n_classes[k]):
count_k = self.sum_total[k, c]
if count_k > 0.0:
count_k /= self.weighted_n_node_samples
entropy -= count_k * log(count_k)
return entropy / self.n_outputs
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
"""Evaluate the impurity in children nodes.
i.e. the impurity of the left child (sample_indices[start:pos]) and the
impurity the right child (sample_indices[pos:end]).
Parameters
----------
impurity_left : float64_t pointer
The memory address to save the impurity of the left node
impurity_right : float64_t pointer
The memory address to save the impurity of the right node
"""
cdef float64_t entropy_left = 0.0
cdef float64_t entropy_right = 0.0
cdef float64_t count_k
cdef intp_t k
cdef intp_t c
for k in range(self.n_outputs):
for c in range(self.n_classes[k]):
count_k = self.sum_left[k, c]
if count_k > 0.0:
count_k /= self.weighted_n_left
entropy_left -= count_k * log(count_k)
count_k = self.sum_right[k, c]
if count_k > 0.0:
count_k /= self.weighted_n_right
entropy_right -= count_k * log(count_k)
impurity_left[0] = entropy_left / self.n_outputs
impurity_right[0] = entropy_right / self.n_outputs
cdef class Gini(ClassificationCriterion):
r"""Gini Index impurity criterion.
This handles cases where the target is a classification taking values
0, 1, ... K-2, K-1. If node m represents a region Rm with Nm observations,
then let
count_k = 1/ Nm \sum_{x_i in Rm} I(yi = k)
be the proportion of class k observations in node m.
The Gini Index is then defined as:
index = \sum_{k=0}^{K-1} count_k (1 - count_k)
= 1 - \sum_{k=0}^{K-1} count_k ** 2
"""
cdef float64_t node_impurity(self) noexcept nogil:
"""Evaluate the impurity of the current node.
Evaluate the Gini criterion as impurity of the current node,
i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
better.
"""
cdef float64_t gini = 0.0
cdef float64_t sq_count
cdef float64_t count_k
cdef intp_t k
cdef intp_t c
for k in range(self.n_outputs):
sq_count = 0.0
for c in range(self.n_classes[k]):
count_k = self.sum_total[k, c]
sq_count += count_k * count_k
gini += 1.0 - sq_count / (self.weighted_n_node_samples *
self.weighted_n_node_samples)
return gini / self.n_outputs
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
"""Evaluate the impurity in children nodes.
i.e. the impurity of the left child (sample_indices[start:pos]) and the
impurity the right child (sample_indices[pos:end]) using the Gini index.
Parameters
----------
impurity_left : float64_t pointer
The memory address to save the impurity of the left node to
impurity_right : float64_t pointer
The memory address to save the impurity of the right node to
"""
cdef float64_t gini_left = 0.0
cdef float64_t gini_right = 0.0
cdef float64_t sq_count_left
cdef float64_t sq_count_right
cdef float64_t count_k
cdef intp_t k
cdef intp_t c
for k in range(self.n_outputs):
sq_count_left = 0.0
sq_count_right = 0.0
for c in range(self.n_classes[k]):
count_k = self.sum_left[k, c]
sq_count_left += count_k * count_k
count_k = self.sum_right[k, c]
sq_count_right += count_k * count_k
gini_left += 1.0 - sq_count_left / (self.weighted_n_left *
self.weighted_n_left)
gini_right += 1.0 - sq_count_right / (self.weighted_n_right *
self.weighted_n_right)
impurity_left[0] = gini_left / self.n_outputs
impurity_right[0] = gini_right / self.n_outputs
cdef inline void _move_sums_regression(
RegressionCriterion criterion,
float64_t[::1] sum_1,
float64_t[::1] sum_2,
float64_t* weighted_n_1,
float64_t* weighted_n_2,
bint put_missing_in_1,
) noexcept nogil:
"""Distribute sum_total and sum_missing into sum_1 and sum_2.
If there are missing values and:
- put_missing_in_1 is True, then missing values to go sum_1. Specifically:
sum_1 = sum_missing
sum_2 = sum_total - sum_missing
- put_missing_in_1 is False, then missing values go to sum_2. Specifically:
sum_1 = 0
sum_2 = sum_total
"""
cdef:
intp_t i
intp_t n_bytes = criterion.n_outputs * sizeof(float64_t)
bint has_missing = criterion.n_missing != 0
if has_missing and put_missing_in_1:
memcpy(&sum_1[0], &criterion.sum_missing[0], n_bytes)
for i in range(criterion.n_outputs):
sum_2[i] = criterion.sum_total[i] - criterion.sum_missing[i]
weighted_n_1[0] = criterion.weighted_n_missing
weighted_n_2[0] = criterion.weighted_n_node_samples - criterion.weighted_n_missing
else:
memset(&sum_1[0], 0, n_bytes)
# Assigning sum_2 = sum_total for all outputs.
memcpy(&sum_2[0], &criterion.sum_total[0], n_bytes)
weighted_n_1[0] = 0.0
weighted_n_2[0] = criterion.weighted_n_node_samples
cdef class RegressionCriterion(Criterion):
r"""Abstract regression criterion.
This handles cases where the target is a continuous value, and is
evaluated by computing the variance of the target values left and right
of the split point. The computation takes linear time with `n_samples`
by using ::
var = \sum_i^n (y_i - y_bar) ** 2
= (\sum_i^n y_i ** 2) - n_samples * y_bar ** 2
"""
def __cinit__(self, intp_t n_outputs, intp_t n_samples):
"""Initialize parameters for this criterion.
Parameters
----------
n_outputs : intp_t
The number of targets to be predicted
n_samples : intp_t
The total number of samples to fit on
"""
# Default values
self.start = 0
self.pos = 0
self.end = 0
self.n_outputs = n_outputs
self.n_samples = n_samples
self.n_node_samples = 0
self.weighted_n_node_samples = 0.0
self.weighted_n_left = 0.0
self.weighted_n_right = 0.0
self.weighted_n_missing = 0.0
self.sq_sum_total = 0.0
self.sum_total = np.zeros(n_outputs, dtype=np.float64)
self.sum_left = np.zeros(n_outputs, dtype=np.float64)
self.sum_right = np.zeros(n_outputs, dtype=np.float64)
def __reduce__(self):
return (type(self), (self.n_outputs, self.n_samples), self.__getstate__())
cdef int init(
self,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
float64_t weighted_n_samples,
const intp_t[:] sample_indices,
intp_t start,
intp_t end,
) except -1 nogil:
"""Initialize the criterion.
This initializes the criterion at node sample_indices[start:end] and children
sample_indices[start:start] and sample_indices[start:end].
"""
# Initialize fields
self.y = y
self.sample_weight = sample_weight
self.sample_indices = sample_indices
self.start = start
self.end = end
self.n_node_samples = end - start
self.weighted_n_samples = weighted_n_samples
self.weighted_n_node_samples = 0.
cdef intp_t i
cdef intp_t p
cdef intp_t k
cdef float64_t y_ik
cdef float64_t w_y_ik
cdef float64_t w = 1.0
self.sq_sum_total = 0.0
memset(&self.sum_total[0], 0, self.n_outputs * sizeof(float64_t))
for p in range(start, end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
y_ik = self.y[i, k]
w_y_ik = w * y_ik
self.sum_total[k] += w_y_ik
self.sq_sum_total += w_y_ik * y_ik
self.weighted_n_node_samples += w
# Reset to pos=start
self.reset()
return 0
cdef void init_sum_missing(self):
"""Init sum_missing to hold sums for missing values."""
self.sum_missing = np.zeros(self.n_outputs, dtype=np.float64)
cdef void init_missing(self, intp_t n_missing) noexcept nogil:
"""Initialize sum_missing if there are missing values.
This method assumes that caller placed the missing samples in
self.sample_indices[-n_missing:]
"""
cdef intp_t i, p, k
cdef float64_t y_ik
cdef float64_t w_y_ik
cdef float64_t w = 1.0
self.n_missing = n_missing
if n_missing == 0:
return
memset(&self.sum_missing[0], 0, self.n_outputs * sizeof(float64_t))
self.weighted_n_missing = 0.0
# The missing samples are assumed to be in self.sample_indices[-n_missing:]
for p in range(self.end - n_missing, self.end):
i = self.sample_indices[p]
if self.sample_weight is not None:
w = self.sample_weight[i]
for k in range(self.n_outputs):
y_ik = self.y[i, k]
w_y_ik = w * y_ik
self.sum_missing[k] += w_y_ik
self.weighted_n_missing += w
cdef int reset(self) except -1 nogil:
"""Reset the criterion at pos=start."""
self.pos = self.start
_move_sums_regression(
self,
self.sum_left,
self.sum_right,
&self.weighted_n_left,
&self.weighted_n_right,
self.missing_go_to_left
)
return 0
cdef int reverse_reset(self) except -1 nogil:
"""Reset the criterion at pos=end."""
self.pos = self.end
_move_sums_regression(
self,
self.sum_right,
self.sum_left,
&self.weighted_n_right,
&self.weighted_n_left,
not self.missing_go_to_left
)
return 0
cdef int update(self, intp_t new_pos) except -1 nogil:
"""Updated statistics by moving sample_indices[pos:new_pos] to the left."""
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef intp_t pos = self.pos
# The missing samples are assumed to be in
# self.sample_indices[-self.n_missing:] that is
# self.sample_indices[end_non_missing:self.end].
cdef intp_t end_non_missing = self.end - self.n_missing
cdef intp_t i
cdef intp_t p
cdef intp_t k
cdef float64_t w = 1.0
# Update statistics up to new_pos
#
# Given that
# sum_left[x] + sum_right[x] = sum_total[x]
# and that sum_total is known, we are going to update
# sum_left from the direction that require the least amount
# of computations, i.e. from pos to new_pos or from end to new_pos.
if (new_pos - pos) <= (end_non_missing - new_pos):
for p in range(pos, new_pos):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
self.sum_left[k] += w * self.y[i, k]
self.weighted_n_left += w
else:
self.reverse_reset()
for p in range(end_non_missing - 1, new_pos - 1, -1):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
self.sum_left[k] -= w * self.y[i, k]
self.weighted_n_left -= w
self.weighted_n_right = (self.weighted_n_node_samples -
self.weighted_n_left)
for k in range(self.n_outputs):
self.sum_right[k] = self.sum_total[k] - self.sum_left[k]
self.pos = new_pos
return 0
cdef float64_t node_impurity(self) noexcept nogil:
pass
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
pass
cdef void node_value(self, float64_t* dest) noexcept nogil:
"""Compute the node value of sample_indices[start:end] into dest."""
cdef intp_t k
for k in range(self.n_outputs):
dest[k] = self.sum_total[k] / self.weighted_n_node_samples
cdef inline void clip_node_value(self, float64_t* dest, float64_t lower_bound, float64_t upper_bound) noexcept nogil:
"""Clip the value in dest between lower_bound and upper_bound for monotonic constraints."""
if dest[0] < lower_bound:
dest[0] = lower_bound
elif dest[0] > upper_bound:
dest[0] = upper_bound
cdef float64_t middle_value(self) noexcept nogil:
"""Compute the middle value of a split for monotonicity constraints as the simple average
of the left and right children values.
Monotonicity constraints are only supported for single-output trees we can safely assume
n_outputs == 1.
"""
return (
(self.sum_left[0] / (2 * self.weighted_n_left)) +
(self.sum_right[0] / (2 * self.weighted_n_right))
)
cdef bint check_monotonicity(
self,
cnp.int8_t monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) noexcept nogil:
"""Check monotonicity constraint is satisfied at the current regression split"""
cdef:
float64_t value_left = self.sum_left[0] / self.weighted_n_left
float64_t value_right = self.sum_right[0] / self.weighted_n_right
return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)
cdef class MSE(RegressionCriterion):
"""Mean squared error impurity criterion.
MSE = var_left + var_right
"""
cdef float64_t node_impurity(self) noexcept nogil:
"""Evaluate the impurity of the current node.
Evaluate the MSE criterion as impurity of the current node,
i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
better.
"""
cdef float64_t impurity
cdef intp_t k
impurity = self.sq_sum_total / self.weighted_n_node_samples
for k in range(self.n_outputs):
impurity -= (self.sum_total[k] / self.weighted_n_node_samples)**2.0
return impurity / self.n_outputs
cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
"""Compute a proxy of the impurity reduction.
This method is used to speed up the search for the best split.
It is a proxy quantity such that the split that maximizes this value
also maximizes the impurity improvement. It neglects all constant terms
of the impurity decrease for a given split.
The absolute impurity improvement is only computed by the
impurity_improvement method once the best split has been found.
The MSE proxy is derived from
sum_{i left}(y_i - y_pred_L)^2 + sum_{i right}(y_i - y_pred_R)^2
= sum(y_i^2) - n_L * mean_{i left}(y_i)^2 - n_R * mean_{i right}(y_i)^2
Neglecting constant terms, this gives:
- 1/n_L * sum_{i left}(y_i)^2 - 1/n_R * sum_{i right}(y_i)^2
"""
cdef intp_t k
cdef float64_t proxy_impurity_left = 0.0
cdef float64_t proxy_impurity_right = 0.0
for k in range(self.n_outputs):
proxy_impurity_left += self.sum_left[k] * self.sum_left[k]
proxy_impurity_right += self.sum_right[k] * self.sum_right[k]
return (proxy_impurity_left / self.weighted_n_left +
proxy_impurity_right / self.weighted_n_right)
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
"""Evaluate the impurity in children nodes.
i.e. the impurity of the left child (sample_indices[start:pos]) and the
impurity the right child (sample_indices[pos:end]).
"""
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef intp_t pos = self.pos
cdef intp_t start = self.start
cdef float64_t y_ik
cdef float64_t sq_sum_left = 0.0
cdef float64_t sq_sum_right
cdef intp_t i
cdef intp_t p
cdef intp_t k
cdef float64_t w = 1.0
cdef intp_t end_non_missing
for p in range(start, pos):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
y_ik = self.y[i, k]
sq_sum_left += w * y_ik * y_ik
if self.missing_go_to_left:
# add up the impact of these missing values on the left child
# statistics.
# Note: this only impacts the square sum as the sum
# is modified elsewhere.
end_non_missing = self.end - self.n_missing
for p in range(end_non_missing, self.end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
y_ik = self.y[i, k]
sq_sum_left += w * y_ik * y_ik
sq_sum_right = self.sq_sum_total - sq_sum_left
impurity_left[0] = sq_sum_left / self.weighted_n_left
impurity_right[0] = sq_sum_right / self.weighted_n_right
for k in range(self.n_outputs):
impurity_left[0] -= (self.sum_left[k] / self.weighted_n_left) ** 2.0
impurity_right[0] -= (self.sum_right[k] / self.weighted_n_right) ** 2.0
impurity_left[0] /= self.n_outputs
impurity_right[0] /= self.n_outputs
cdef class MAE(RegressionCriterion):
r"""Mean absolute error impurity criterion.
MAE = (1 / n)*(\sum_i |y_i - f_i|), where y_i is the true
value and f_i is the predicted value."""
cdef cnp.ndarray left_child
cdef cnp.ndarray right_child
cdef void** left_child_ptr
cdef void** right_child_ptr
cdef float64_t[::1] node_medians
def __cinit__(self, intp_t n_outputs, intp_t n_samples):
"""Initialize parameters for this criterion.
Parameters
----------
n_outputs : intp_t
The number of targets to be predicted
n_samples : intp_t
The total number of samples to fit on
"""
# Default values
self.start = 0
self.pos = 0
self.end = 0
self.n_outputs = n_outputs
self.n_samples = n_samples
self.n_node_samples = 0
self.weighted_n_node_samples = 0.0
self.weighted_n_left = 0.0
self.weighted_n_right = 0.0
self.node_medians = np.zeros(n_outputs, dtype=np.float64)
self.left_child = np.empty(n_outputs, dtype='object')
self.right_child = np.empty(n_outputs, dtype='object')
# initialize WeightedMedianCalculators
for k in range(n_outputs):
self.left_child[k] = WeightedMedianCalculator(n_samples)
self.right_child[k] = WeightedMedianCalculator(n_samples)
self.left_child_ptr = <void**> cnp.PyArray_DATA(self.left_child)
self.right_child_ptr = <void**> cnp.PyArray_DATA(self.right_child)
cdef int init(
self,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
float64_t weighted_n_samples,
const intp_t[:] sample_indices,
intp_t start,
intp_t end,
) except -1 nogil:
"""Initialize the criterion.
This initializes the criterion at node sample_indices[start:end] and children
sample_indices[start:start] and sample_indices[start:end].
"""
cdef intp_t i, p, k
cdef float64_t w = 1.0
# Initialize fields
self.y = y
self.sample_weight = sample_weight
self.sample_indices = sample_indices
self.start = start
self.end = end
self.n_node_samples = end - start
self.weighted_n_samples = weighted_n_samples
self.weighted_n_node_samples = 0.
cdef void** left_child = self.left_child_ptr
cdef void** right_child = self.right_child_ptr
for k in range(self.n_outputs):
(<WeightedMedianCalculator> left_child[k]).reset()
(<WeightedMedianCalculator> right_child[k]).reset()
for p in range(start, end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
# push method ends up calling safe_realloc, hence `except -1`
# push all values to the right side,
# since pos = start initially anyway
(<WeightedMedianCalculator> right_child[k]).push(self.y[i, k], w)
self.weighted_n_node_samples += w
# calculate the node medians
for k in range(self.n_outputs):
self.node_medians[k] = (<WeightedMedianCalculator> right_child[k]).get_median()
# Reset to pos=start
self.reset()
return 0
cdef void init_missing(self, intp_t n_missing) noexcept nogil:
"""Raise error if n_missing != 0."""
if n_missing == 0:
return
with gil:
raise ValueError("missing values is not supported for MAE.")
cdef int reset(self) except -1 nogil:
"""Reset the criterion at pos=start.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
cdef intp_t i, k
cdef float64_t value
cdef float64_t weight
cdef void** left_child = self.left_child_ptr
cdef void** right_child = self.right_child_ptr
self.weighted_n_left = 0.0
self.weighted_n_right = self.weighted_n_node_samples
self.pos = self.start
# reset the WeightedMedianCalculators, left should have no
# elements and right should have all elements.
for k in range(self.n_outputs):
# if left has no elements, it's already reset
for i in range((<WeightedMedianCalculator> left_child[k]).size()):
# remove everything from left and put it into right
(<WeightedMedianCalculator> left_child[k]).pop(&value,
&weight)
# push method ends up calling safe_realloc, hence `except -1`
(<WeightedMedianCalculator> right_child[k]).push(value,
weight)
return 0
cdef int reverse_reset(self) except -1 nogil:
"""Reset the criterion at pos=end.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
self.weighted_n_right = 0.0
self.weighted_n_left = self.weighted_n_node_samples
self.pos = self.end
cdef float64_t value
cdef float64_t weight
cdef void** left_child = self.left_child_ptr
cdef void** right_child = self.right_child_ptr
# reverse reset the WeightedMedianCalculators, right should have no
# elements and left should have all elements.
for k in range(self.n_outputs):
# if right has no elements, it's already reset
for i in range((<WeightedMedianCalculator> right_child[k]).size()):
# remove everything from right and put it into left
(<WeightedMedianCalculator> right_child[k]).pop(&value,
&weight)
# push method ends up calling safe_realloc, hence `except -1`
(<WeightedMedianCalculator> left_child[k]).push(value,
weight)
return 0
cdef int update(self, intp_t new_pos) except -1 nogil:
"""Updated statistics by moving sample_indices[pos:new_pos] to the left.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef void** left_child = self.left_child_ptr
cdef void** right_child = self.right_child_ptr
cdef intp_t pos = self.pos
cdef intp_t end = self.end
cdef intp_t i, p, k
cdef float64_t w = 1.0
# Update statistics up to new_pos
#
# We are going to update right_child and left_child
# from the direction that require the least amount of
# computations, i.e. from pos to new_pos or from end to new_pos.
if (new_pos - pos) <= (end - new_pos):
for p in range(pos, new_pos):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
# remove y_ik and its weight w from right and add to left
(<WeightedMedianCalculator> right_child[k]).remove(self.y[i, k], w)
# push method ends up calling safe_realloc, hence except -1
(<WeightedMedianCalculator> left_child[k]).push(self.y[i, k], w)
self.weighted_n_left += w
else:
self.reverse_reset()
for p in range(end - 1, new_pos - 1, -1):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
for k in range(self.n_outputs):
# remove y_ik and its weight w from left and add to right
(<WeightedMedianCalculator> left_child[k]).remove(self.y[i, k], w)
(<WeightedMedianCalculator> right_child[k]).push(self.y[i, k], w)
self.weighted_n_left -= w
self.weighted_n_right = (self.weighted_n_node_samples -
self.weighted_n_left)
self.pos = new_pos
return 0
cdef void node_value(self, float64_t* dest) noexcept nogil:
"""Computes the node value of sample_indices[start:end] into dest."""
cdef intp_t k
for k in range(self.n_outputs):
dest[k] = <float64_t> self.node_medians[k]
cdef inline float64_t middle_value(self) noexcept nogil:
"""Compute the middle value of a split for monotonicity constraints as the simple average
of the left and right children values.
Monotonicity constraints are only supported for single-output trees we can safely assume
n_outputs == 1.
"""
return (
(<WeightedMedianCalculator> self.left_child_ptr[0]).get_median() +
(<WeightedMedianCalculator> self.right_child_ptr[0]).get_median()
) / 2
cdef inline bint check_monotonicity(
self,
cnp.int8_t monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) noexcept nogil:
"""Check monotonicity constraint is satisfied at the current regression split"""
cdef:
float64_t value_left = (<WeightedMedianCalculator> self.left_child_ptr[0]).get_median()
float64_t value_right = (<WeightedMedianCalculator> self.right_child_ptr[0]).get_median()
return self._check_monotonicity(monotonic_cst, lower_bound, upper_bound, value_left, value_right)
cdef float64_t node_impurity(self) noexcept nogil:
"""Evaluate the impurity of the current node.
Evaluate the MAE criterion as impurity of the current node,
i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
better.
"""
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef intp_t i, p, k
cdef float64_t w = 1.0
cdef float64_t impurity = 0.0
for k in range(self.n_outputs):
for p in range(self.start, self.end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
impurity += fabs(self.y[i, k] - self.node_medians[k]) * w
return impurity / (self.weighted_n_node_samples * self.n_outputs)
cdef void children_impurity(self, float64_t* p_impurity_left,
float64_t* p_impurity_right) noexcept nogil:
"""Evaluate the impurity in children nodes.
i.e. the impurity of the left child (sample_indices[start:pos]) and the
impurity the right child (sample_indices[pos:end]).
"""
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef intp_t start = self.start
cdef intp_t pos = self.pos
cdef intp_t end = self.end
cdef intp_t i, p, k
cdef float64_t median
cdef float64_t w = 1.0
cdef float64_t impurity_left = 0.0
cdef float64_t impurity_right = 0.0
cdef void** left_child = self.left_child_ptr
cdef void** right_child = self.right_child_ptr
for k in range(self.n_outputs):
median = (<WeightedMedianCalculator> left_child[k]).get_median()
for p in range(start, pos):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
impurity_left += fabs(self.y[i, k] - median) * w
p_impurity_left[0] = impurity_left / (self.weighted_n_left *
self.n_outputs)
for k in range(self.n_outputs):
median = (<WeightedMedianCalculator> right_child[k]).get_median()
for p in range(pos, end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
impurity_right += fabs(self.y[i, k] - median) * w
p_impurity_right[0] = impurity_right / (self.weighted_n_right *
self.n_outputs)
cdef class FriedmanMSE(MSE):
"""Mean squared error impurity criterion with improvement score by Friedman.
Uses the formula (35) in Friedman's original Gradient Boosting paper:
diff = mean_left - mean_right
improvement = n_left * n_right * diff^2 / (n_left + n_right)
"""
cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
"""Compute a proxy of the impurity reduction.
This method is used to speed up the search for the best split.
It is a proxy quantity such that the split that maximizes this value
also maximizes the impurity improvement. It neglects all constant terms
of the impurity decrease for a given split.
The absolute impurity improvement is only computed by the
impurity_improvement method once the best split has been found.
"""
cdef float64_t total_sum_left = 0.0
cdef float64_t total_sum_right = 0.0
cdef intp_t k
cdef float64_t diff = 0.0
for k in range(self.n_outputs):
total_sum_left += self.sum_left[k]
total_sum_right += self.sum_right[k]
diff = (self.weighted_n_right * total_sum_left -
self.weighted_n_left * total_sum_right)
return diff * diff / (self.weighted_n_left * self.weighted_n_right)
cdef float64_t impurity_improvement(self, float64_t impurity_parent, float64_t
impurity_left, float64_t impurity_right) noexcept nogil:
# Note: none of the arguments are used here
cdef float64_t total_sum_left = 0.0
cdef float64_t total_sum_right = 0.0
cdef intp_t k
cdef float64_t diff = 0.0
for k in range(self.n_outputs):
total_sum_left += self.sum_left[k]
total_sum_right += self.sum_right[k]
diff = (self.weighted_n_right * total_sum_left -
self.weighted_n_left * total_sum_right) / self.n_outputs
return (diff * diff / (self.weighted_n_left * self.weighted_n_right *
self.weighted_n_node_samples))
cdef class Poisson(RegressionCriterion):
"""Half Poisson deviance as impurity criterion.
Poisson deviance = 2/n * sum(y_true * log(y_true/y_pred) + y_pred - y_true)
Note that the deviance is >= 0, and since we have `y_pred = mean(y_true)`
at the leaves, one always has `sum(y_pred - y_true) = 0`. It remains the
implemented impurity (factor 2 is skipped):
1/n * sum(y_true * log(y_true/y_pred)
"""
# FIXME in 1.0:
# min_impurity_split with default = 0 forces us to use a non-negative
# impurity like the Poisson deviance. Without this restriction, one could
# throw away the 'constant' term sum(y_true * log(y_true)) and just use
# Poisson loss = - 1/n * sum(y_true * log(y_pred))
# = - 1/n * sum(y_true * log(mean(y_true))
# = - mean(y_true) * log(mean(y_true))
# With this trick (used in proxy_impurity_improvement()), as for MSE,
# children_impurity would only need to go over left xor right split, not
# both. This could be faster.
cdef float64_t node_impurity(self) noexcept nogil:
"""Evaluate the impurity of the current node.
Evaluate the Poisson criterion as impurity of the current node,
i.e. the impurity of sample_indices[start:end]. The smaller the impurity the
better.
"""
return self.poisson_loss(self.start, self.end, self.sum_total,
self.weighted_n_node_samples)
cdef float64_t proxy_impurity_improvement(self) noexcept nogil:
"""Compute a proxy of the impurity reduction.
This method is used to speed up the search for the best split.
It is a proxy quantity such that the split that maximizes this value
also maximizes the impurity improvement. It neglects all constant terms
of the impurity decrease for a given split.
The absolute impurity improvement is only computed by the
impurity_improvement method once the best split has been found.
The Poisson proxy is derived from:
sum_{i left }(y_i * log(y_i / y_pred_L))
+ sum_{i right}(y_i * log(y_i / y_pred_R))
= sum(y_i * log(y_i) - n_L * mean_{i left}(y_i) * log(mean_{i left}(y_i))
- n_R * mean_{i right}(y_i) * log(mean_{i right}(y_i))
Neglecting constant terms, this gives
- sum{i left }(y_i) * log(mean{i left}(y_i))
- sum{i right}(y_i) * log(mean{i right}(y_i))
"""
cdef intp_t k
cdef float64_t proxy_impurity_left = 0.0
cdef float64_t proxy_impurity_right = 0.0
cdef float64_t y_mean_left = 0.
cdef float64_t y_mean_right = 0.
for k in range(self.n_outputs):
if (self.sum_left[k] <= EPSILON) or (self.sum_right[k] <= EPSILON):
# Poisson loss does not allow non-positive predictions. We
# therefore forbid splits that have child nodes with
# sum(y_i) <= 0.
# Since sum_right = sum_total - sum_left, it can lead to
# floating point rounding error and will not give zero. Thus,
# we relax the above comparison to sum(y_i) <= EPSILON.
return -INFINITY
else:
y_mean_left = self.sum_left[k] / self.weighted_n_left
y_mean_right = self.sum_right[k] / self.weighted_n_right
proxy_impurity_left -= self.sum_left[k] * log(y_mean_left)
proxy_impurity_right -= self.sum_right[k] * log(y_mean_right)
return - proxy_impurity_left - proxy_impurity_right
cdef void children_impurity(self, float64_t* impurity_left,
float64_t* impurity_right) noexcept nogil:
"""Evaluate the impurity in children nodes.
i.e. the impurity of the left child (sample_indices[start:pos]) and the
impurity of the right child (sample_indices[pos:end]) for Poisson.
"""
cdef intp_t start = self.start
cdef intp_t pos = self.pos
cdef intp_t end = self.end
impurity_left[0] = self.poisson_loss(start, pos, self.sum_left,
self.weighted_n_left)
impurity_right[0] = self.poisson_loss(pos, end, self.sum_right,
self.weighted_n_right)
cdef inline float64_t poisson_loss(
self,
intp_t start,
intp_t end,
const float64_t[::1] y_sum,
float64_t weight_sum
) noexcept nogil:
"""Helper function to compute Poisson loss (~deviance) of a given node.
"""
cdef const float64_t[:, ::1] y = self.y
cdef const float64_t[:] sample_weight = self.sample_weight
cdef const intp_t[:] sample_indices = self.sample_indices
cdef float64_t y_mean = 0.
cdef float64_t poisson_loss = 0.
cdef float64_t w = 1.0
cdef intp_t i, k, p
cdef intp_t n_outputs = self.n_outputs
for k in range(n_outputs):
if y_sum[k] <= EPSILON:
# y_sum could be computed from the subtraction
# sum_right = sum_total - sum_left leading to a potential
# floating point rounding error.
# Thus, we relax the comparison y_sum <= 0 to
# y_sum <= EPSILON.
return INFINITY
y_mean = y_sum[k] / weight_sum
for p in range(start, end):
i = sample_indices[p]
if sample_weight is not None:
w = sample_weight[i]
poisson_loss += w * xlogy(y[i, k], y[i, k] / y_mean)
return poisson_loss / (weight_sum * n_outputs)
|