1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
|
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Lars Buitinck
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Fares Hedayati <fares.hedayati@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
#
# License: BSD 3 clause
cimport numpy as cnp
from ._criterion cimport Criterion
from libc.stdlib cimport qsort
from libc.string cimport memcpy
from libc.math cimport isnan
from cython cimport final
import numpy as np
from scipy.sparse import issparse
from ._utils cimport log
from ._utils cimport rand_int
from ._utils cimport rand_uniform
from ._utils cimport RAND_R_MAX
cnp.import_array()
cdef float64_t INFINITY = np.inf
# Mitigate precision differences between 32 bit and 64 bit
cdef float32_t FEATURE_THRESHOLD = 1e-7
# Constant to switch between algorithm non zero value extract algorithm
# in SparsePartitioner
cdef float32_t EXTRACT_NNZ_SWITCH = 0.1
cdef inline void _init_split(SplitRecord* self, intp_t start_pos) noexcept nogil:
self.impurity_left = INFINITY
self.impurity_right = INFINITY
self.pos = start_pos
self.feature = 0
self.threshold = 0.
self.improvement = -INFINITY
self.missing_go_to_left = False
self.n_missing = 0
cdef class Splitter:
"""Abstract splitter class.
Splitters are called by tree builders to find the best splits on both
sparse and dense data, one split at a time.
"""
def __cinit__(
self,
Criterion criterion,
intp_t max_features,
intp_t min_samples_leaf,
float64_t min_weight_leaf,
object random_state,
const cnp.int8_t[:] monotonic_cst,
):
"""
Parameters
----------
criterion : Criterion
The criterion to measure the quality of a split.
max_features : intp_t
The maximal number of randomly selected features which can be
considered for a split.
min_samples_leaf : intp_t
The minimal number of samples each leaf can have, where splits
which would result in having less samples in a leaf are not
considered.
min_weight_leaf : float64_t
The minimal weight each leaf can have, where the weight is the sum
of the weights of each sample in it.
random_state : object
The user inputted random state to be used for pseudo-randomness
monotonic_cst : const cnp.int8_t[:]
Monotonicity constraints
"""
self.criterion = criterion
self.n_samples = 0
self.n_features = 0
self.max_features = max_features
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.random_state = random_state
self.monotonic_cst = monotonic_cst
self.with_monotonic_cst = monotonic_cst is not None
def __getstate__(self):
return {}
def __setstate__(self, d):
pass
def __reduce__(self):
return (type(self), (self.criterion,
self.max_features,
self.min_samples_leaf,
self.min_weight_leaf,
self.random_state,
self.monotonic_cst), self.__getstate__())
cdef int init(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
const unsigned char[::1] missing_values_in_feature_mask,
) except -1:
"""Initialize the splitter.
Take in the input data X, the target Y, and optional sample weights.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
Parameters
----------
X : object
This contains the inputs. Usually it is a 2d numpy array.
y : ndarray, dtype=float64_t
This is the vector of targets, or true labels, for the samples represented
as a Cython memoryview.
sample_weight : ndarray, dtype=float64_t
The weights of the samples, where higher weighted samples are fit
closer than lower weight samples. If not provided, all samples
are assumed to have uniform weight. This is represented
as a Cython memoryview.
has_missing : bool
At least one missing values is in X.
"""
self.rand_r_state = self.random_state.randint(0, RAND_R_MAX)
cdef intp_t n_samples = X.shape[0]
# Create a new array which will be used to store nonzero
# samples from the feature of interest
self.samples = np.empty(n_samples, dtype=np.intp)
cdef intp_t[::1] samples = self.samples
cdef intp_t i, j
cdef float64_t weighted_n_samples = 0.0
j = 0
for i in range(n_samples):
# Only work with positively weighted samples
if sample_weight is None or sample_weight[i] != 0.0:
samples[j] = i
j += 1
if sample_weight is not None:
weighted_n_samples += sample_weight[i]
else:
weighted_n_samples += 1.0
# Number of samples is number of positively weighted samples
self.n_samples = j
self.weighted_n_samples = weighted_n_samples
cdef intp_t n_features = X.shape[1]
self.features = np.arange(n_features, dtype=np.intp)
self.n_features = n_features
self.feature_values = np.empty(n_samples, dtype=np.float32)
self.constant_features = np.empty(n_features, dtype=np.intp)
self.y = y
self.sample_weight = sample_weight
if missing_values_in_feature_mask is not None:
self.criterion.init_sum_missing()
return 0
cdef int node_reset(self, intp_t start, intp_t end,
float64_t* weighted_n_node_samples) except -1 nogil:
"""Reset splitter on node samples[start:end].
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
Parameters
----------
start : intp_t
The index of the first sample to consider
end : intp_t
The index of the last sample to consider
weighted_n_node_samples : ndarray, dtype=float64_t pointer
The total weight of those samples
"""
self.start = start
self.end = end
self.criterion.init(
self.y,
self.sample_weight,
self.weighted_n_samples,
self.samples,
start,
end
)
weighted_n_node_samples[0] = self.criterion.weighted_n_node_samples
return 0
cdef int node_split(
self,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
float64_t lower_bound,
float64_t upper_bound,
) except -1 nogil:
"""Find the best split on node samples[start:end].
This is a placeholder method. The majority of computation will be done
here.
It should return -1 upon errors.
"""
pass
cdef void node_value(self, float64_t* dest) noexcept nogil:
"""Copy the value of node samples[start:end] into dest."""
self.criterion.node_value(dest)
cdef inline void clip_node_value(self, float64_t* dest, float64_t lower_bound, float64_t upper_bound) noexcept nogil:
"""Clip the value in dest between lower_bound and upper_bound for monotonic constraints."""
self.criterion.clip_node_value(dest, lower_bound, upper_bound)
cdef float64_t node_impurity(self) noexcept nogil:
"""Return the impurity of the current node."""
return self.criterion.node_impurity()
cdef inline void shift_missing_values_to_left_if_required(
SplitRecord* best,
intp_t[::1] samples,
intp_t end,
) noexcept nogil:
"""Shift missing value sample indices to the left of the split if required.
Note: this should always be called at the very end because it will
move samples around, thereby affecting the criterion.
This affects the computation of the children impurity, which affects
the computation of the next node.
"""
cdef intp_t i, p, current_end
# The partitioner partitions the data such that the missing values are in
# samples[-n_missing:] for the criterion to consume. If the missing values
# are going to the right node, then the missing values are already in the
# correct position. If the missing values go left, then we move the missing
# values to samples[best.pos:best.pos+n_missing] and update `best.pos`.
if best.n_missing > 0 and best.missing_go_to_left:
for p in range(best.n_missing):
i = best.pos + p
current_end = end - 1 - p
samples[i], samples[current_end] = samples[current_end], samples[i]
best.pos += best.n_missing
# Introduce a fused-class to make it possible to share the split implementation
# between the dense and sparse cases in the node_split_best and node_split_random
# functions. The alternative would have been to use inheritance-based polymorphism
# but it would have resulted in a ~10% overall tree fitting performance
# degradation caused by the overhead frequent virtual method lookups.
ctypedef fused Partitioner:
DensePartitioner
SparsePartitioner
cdef inline int node_split_best(
Splitter splitter,
Partitioner partitioner,
Criterion criterion,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
bint with_monotonic_cst,
const cnp.int8_t[:] monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) except -1 nogil:
"""Find the best split on node samples[start:end]
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
# Find the best split
cdef intp_t start = splitter.start
cdef intp_t end = splitter.end
cdef intp_t end_non_missing
cdef intp_t n_missing = 0
cdef bint has_missing = 0
cdef intp_t n_searches
cdef intp_t n_left, n_right
cdef bint missing_go_to_left
cdef intp_t[::1] samples = splitter.samples
cdef intp_t[::1] features = splitter.features
cdef intp_t[::1] constant_features = splitter.constant_features
cdef intp_t n_features = splitter.n_features
cdef float32_t[::1] feature_values = splitter.feature_values
cdef intp_t max_features = splitter.max_features
cdef intp_t min_samples_leaf = splitter.min_samples_leaf
cdef float64_t min_weight_leaf = splitter.min_weight_leaf
cdef uint32_t* random_state = &splitter.rand_r_state
cdef SplitRecord best_split, current_split
cdef float64_t current_proxy_improvement = -INFINITY
cdef float64_t best_proxy_improvement = -INFINITY
cdef intp_t f_i = n_features
cdef intp_t f_j
cdef intp_t p
cdef intp_t p_prev
cdef intp_t n_visited_features = 0
# Number of features discovered to be constant during the split search
cdef intp_t n_found_constants = 0
# Number of features known to be constant and drawn without replacement
cdef intp_t n_drawn_constants = 0
cdef intp_t n_known_constants = n_constant_features[0]
# n_total_constants = n_known_constants + n_found_constants
cdef intp_t n_total_constants = n_known_constants
_init_split(&best_split, end)
partitioner.init_node_split(start, end)
# Sample up to max_features without replacement using a
# Fisher-Yates-based algorithm (using the local variables `f_i` and
# `f_j` to compute a permutation of the `features` array).
#
# Skip the CPU intensive evaluation of the impurity criterion for
# features that were already detected as constant (hence not suitable
# for good splitting) by ancestor nodes and save the information on
# newly discovered constant features to spare computation on descendant
# nodes.
while (f_i > n_total_constants and # Stop early if remaining features
# are constant
(n_visited_features < max_features or
# At least one drawn features must be non constant
n_visited_features <= n_found_constants + n_drawn_constants)):
n_visited_features += 1
# Loop invariant: elements of features in
# - [:n_drawn_constant[ holds drawn and known constant features;
# - [n_drawn_constant:n_known_constant[ holds known constant
# features that haven't been drawn yet;
# - [n_known_constant:n_total_constant[ holds newly found constant
# features;
# - [n_total_constant:f_i[ holds features that haven't been drawn
# yet and aren't constant apriori.
# - [f_i:n_features[ holds features that have been drawn
# and aren't constant.
# Draw a feature at random
f_j = rand_int(n_drawn_constants, f_i - n_found_constants,
random_state)
if f_j < n_known_constants:
# f_j in the interval [n_drawn_constants, n_known_constants[
features[n_drawn_constants], features[f_j] = features[f_j], features[n_drawn_constants]
n_drawn_constants += 1
continue
# f_j in the interval [n_known_constants, f_i - n_found_constants[
f_j += n_found_constants
# f_j in the interval [n_total_constants, f_i[
current_split.feature = features[f_j]
partitioner.sort_samples_and_feature_values(current_split.feature)
n_missing = partitioner.n_missing
end_non_missing = end - n_missing
if (
# All values for this feature are missing, or
end_non_missing == start or
# This feature is considered constant (max - min <= FEATURE_THRESHOLD)
feature_values[end_non_missing - 1] <= feature_values[start] + FEATURE_THRESHOLD
):
# We consider this feature constant in this case.
# Since finding a split among constant feature is not valuable,
# we do not consider this feature for splitting.
features[f_j], features[n_total_constants] = features[n_total_constants], features[f_j]
n_found_constants += 1
n_total_constants += 1
continue
f_i -= 1
features[f_i], features[f_j] = features[f_j], features[f_i]
has_missing = n_missing != 0
criterion.init_missing(n_missing) # initialize even when n_missing == 0
# Evaluate all splits
# If there are missing values, then we search twice for the most optimal split.
# The first search will have all the missing values going to the right node.
# The second search will have all the missing values going to the left node.
# If there are no missing values, then we search only once for the most
# optimal split.
n_searches = 2 if has_missing else 1
for i in range(n_searches):
missing_go_to_left = i == 1
criterion.missing_go_to_left = missing_go_to_left
criterion.reset()
p = start
while p < end_non_missing:
partitioner.next_p(&p_prev, &p)
if p >= end_non_missing:
continue
if missing_go_to_left:
n_left = p - start + n_missing
n_right = end_non_missing - p
else:
n_left = p - start
n_right = end_non_missing - p + n_missing
# Reject if min_samples_leaf is not guaranteed
if n_left < min_samples_leaf or n_right < min_samples_leaf:
continue
current_split.pos = p
criterion.update(current_split.pos)
# Reject if monotonicity constraints are not satisfied
if (
with_monotonic_cst and
monotonic_cst[current_split.feature] != 0 and
not criterion.check_monotonicity(
monotonic_cst[current_split.feature],
lower_bound,
upper_bound,
)
):
continue
# Reject if min_weight_leaf is not satisfied
if ((criterion.weighted_n_left < min_weight_leaf) or
(criterion.weighted_n_right < min_weight_leaf)):
continue
current_proxy_improvement = criterion.proxy_impurity_improvement()
if current_proxy_improvement > best_proxy_improvement:
best_proxy_improvement = current_proxy_improvement
# sum of halves is used to avoid infinite value
current_split.threshold = (
feature_values[p_prev] / 2.0 + feature_values[p] / 2.0
)
if (
current_split.threshold == feature_values[p] or
current_split.threshold == INFINITY or
current_split.threshold == -INFINITY
):
current_split.threshold = feature_values[p_prev]
current_split.n_missing = n_missing
if n_missing == 0:
current_split.missing_go_to_left = n_left > n_right
else:
current_split.missing_go_to_left = missing_go_to_left
best_split = current_split # copy
# Evaluate when there are missing values and all missing values goes
# to the right node and non-missing values goes to the left node.
if has_missing:
n_left, n_right = end - start - n_missing, n_missing
p = end - n_missing
missing_go_to_left = 0
if not (n_left < min_samples_leaf or n_right < min_samples_leaf):
criterion.missing_go_to_left = missing_go_to_left
criterion.update(p)
if not ((criterion.weighted_n_left < min_weight_leaf) or
(criterion.weighted_n_right < min_weight_leaf)):
current_proxy_improvement = criterion.proxy_impurity_improvement()
if current_proxy_improvement > best_proxy_improvement:
best_proxy_improvement = current_proxy_improvement
current_split.threshold = INFINITY
current_split.missing_go_to_left = missing_go_to_left
current_split.n_missing = n_missing
current_split.pos = p
best_split = current_split
# Reorganize into samples[start:best_split.pos] + samples[best_split.pos:end]
if best_split.pos < end:
partitioner.partition_samples_final(
best_split.pos,
best_split.threshold,
best_split.feature,
best_split.n_missing
)
criterion.init_missing(best_split.n_missing)
criterion.missing_go_to_left = best_split.missing_go_to_left
criterion.reset()
criterion.update(best_split.pos)
criterion.children_impurity(
&best_split.impurity_left, &best_split.impurity_right
)
best_split.improvement = criterion.impurity_improvement(
impurity,
best_split.impurity_left,
best_split.impurity_right
)
shift_missing_values_to_left_if_required(&best_split, samples, end)
# Respect invariant for constant features: the original order of
# element in features[:n_known_constants] must be preserved for sibling
# and child nodes
memcpy(&features[0], &constant_features[0], sizeof(intp_t) * n_known_constants)
# Copy newly found constant features
memcpy(&constant_features[n_known_constants],
&features[n_known_constants],
sizeof(intp_t) * n_found_constants)
# Return values
split[0] = best_split
n_constant_features[0] = n_total_constants
return 0
# Sort n-element arrays pointed to by feature_values and samples, simultaneously,
# by the values in feature_values. Algorithm: Introsort (Musser, SP&E, 1997).
cdef inline void sort(float32_t* feature_values, intp_t* samples, intp_t n) noexcept nogil:
if n == 0:
return
cdef int maxd = 2 * <int>log(n)
introsort(feature_values, samples, n, maxd)
cdef inline void swap(float32_t* feature_values, intp_t* samples,
intp_t i, intp_t j) noexcept nogil:
# Helper for sort
feature_values[i], feature_values[j] = feature_values[j], feature_values[i]
samples[i], samples[j] = samples[j], samples[i]
cdef inline float32_t median3(float32_t* feature_values, intp_t n) noexcept nogil:
# Median of three pivot selection, after Bentley and McIlroy (1993).
# Engineering a sort function. SP&E. Requires 8/3 comparisons on average.
cdef float32_t a = feature_values[0], b = feature_values[n / 2], c = feature_values[n - 1]
if a < b:
if b < c:
return b
elif a < c:
return c
else:
return a
elif b < c:
if a < c:
return a
else:
return c
else:
return b
# Introsort with median of 3 pivot selection and 3-way partition function
# (robust to repeated elements, e.g. lots of zero features).
cdef void introsort(float32_t* feature_values, intp_t *samples,
intp_t n, int maxd) noexcept nogil:
cdef float32_t pivot
cdef intp_t i, l, r
while n > 1:
if maxd <= 0: # max depth limit exceeded ("gone quadratic")
heapsort(feature_values, samples, n)
return
maxd -= 1
pivot = median3(feature_values, n)
# Three-way partition.
i = l = 0
r = n
while i < r:
if feature_values[i] < pivot:
swap(feature_values, samples, i, l)
i += 1
l += 1
elif feature_values[i] > pivot:
r -= 1
swap(feature_values, samples, i, r)
else:
i += 1
introsort(feature_values, samples, l, maxd)
feature_values += r
samples += r
n -= r
cdef inline void sift_down(float32_t* feature_values, intp_t* samples,
intp_t start, intp_t end) noexcept nogil:
# Restore heap order in feature_values[start:end] by moving the max element to start.
cdef intp_t child, maxind, root
root = start
while True:
child = root * 2 + 1
# find max of root, left child, right child
maxind = root
if child < end and feature_values[maxind] < feature_values[child]:
maxind = child
if child + 1 < end and feature_values[maxind] < feature_values[child + 1]:
maxind = child + 1
if maxind == root:
break
else:
swap(feature_values, samples, root, maxind)
root = maxind
cdef void heapsort(float32_t* feature_values, intp_t* samples, intp_t n) noexcept nogil:
cdef intp_t start, end
# heapify
start = (n - 2) / 2
end = n
while True:
sift_down(feature_values, samples, start, end)
if start == 0:
break
start -= 1
# sort by shrinking the heap, putting the max element immediately after it
end = n - 1
while end > 0:
swap(feature_values, samples, 0, end)
sift_down(feature_values, samples, 0, end)
end = end - 1
cdef inline int node_split_random(
Splitter splitter,
Partitioner partitioner,
Criterion criterion,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
bint with_monotonic_cst,
const cnp.int8_t[:] monotonic_cst,
float64_t lower_bound,
float64_t upper_bound,
) except -1 nogil:
"""Find the best random split on node samples[start:end]
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
# Draw random splits and pick the best
cdef intp_t start = splitter.start
cdef intp_t end = splitter.end
cdef intp_t[::1] features = splitter.features
cdef intp_t[::1] constant_features = splitter.constant_features
cdef intp_t n_features = splitter.n_features
cdef intp_t max_features = splitter.max_features
cdef intp_t min_samples_leaf = splitter.min_samples_leaf
cdef float64_t min_weight_leaf = splitter.min_weight_leaf
cdef uint32_t* random_state = &splitter.rand_r_state
cdef SplitRecord best_split, current_split
cdef float64_t current_proxy_improvement = - INFINITY
cdef float64_t best_proxy_improvement = - INFINITY
cdef intp_t f_i = n_features
cdef intp_t f_j
# Number of features discovered to be constant during the split search
cdef intp_t n_found_constants = 0
# Number of features known to be constant and drawn without replacement
cdef intp_t n_drawn_constants = 0
cdef intp_t n_known_constants = n_constant_features[0]
# n_total_constants = n_known_constants + n_found_constants
cdef intp_t n_total_constants = n_known_constants
cdef intp_t n_visited_features = 0
cdef float32_t min_feature_value
cdef float32_t max_feature_value
_init_split(&best_split, end)
partitioner.init_node_split(start, end)
# Sample up to max_features without replacement using a
# Fisher-Yates-based algorithm (using the local variables `f_i` and
# `f_j` to compute a permutation of the `features` array).
#
# Skip the CPU intensive evaluation of the impurity criterion for
# features that were already detected as constant (hence not suitable
# for good splitting) by ancestor nodes and save the information on
# newly discovered constant features to spare computation on descendant
# nodes.
while (f_i > n_total_constants and # Stop early if remaining features
# are constant
(n_visited_features < max_features or
# At least one drawn features must be non constant
n_visited_features <= n_found_constants + n_drawn_constants)):
n_visited_features += 1
# Loop invariant: elements of features in
# - [:n_drawn_constant[ holds drawn and known constant features;
# - [n_drawn_constant:n_known_constant[ holds known constant
# features that haven't been drawn yet;
# - [n_known_constant:n_total_constant[ holds newly found constant
# features;
# - [n_total_constant:f_i[ holds features that haven't been drawn
# yet and aren't constant apriori.
# - [f_i:n_features[ holds features that have been drawn
# and aren't constant.
# Draw a feature at random
f_j = rand_int(n_drawn_constants, f_i - n_found_constants,
random_state)
if f_j < n_known_constants:
# f_j in the interval [n_drawn_constants, n_known_constants[
features[n_drawn_constants], features[f_j] = features[f_j], features[n_drawn_constants]
n_drawn_constants += 1
continue
# f_j in the interval [n_known_constants, f_i - n_found_constants[
f_j += n_found_constants
# f_j in the interval [n_total_constants, f_i[
current_split.feature = features[f_j]
# Find min, max
partitioner.find_min_max(
current_split.feature, &min_feature_value, &max_feature_value
)
if max_feature_value <= min_feature_value + FEATURE_THRESHOLD:
features[f_j], features[n_total_constants] = features[n_total_constants], current_split.feature
n_found_constants += 1
n_total_constants += 1
continue
f_i -= 1
features[f_i], features[f_j] = features[f_j], features[f_i]
# Draw a random threshold
current_split.threshold = rand_uniform(
min_feature_value,
max_feature_value,
random_state,
)
if current_split.threshold == max_feature_value:
current_split.threshold = min_feature_value
# Partition
current_split.pos = partitioner.partition_samples(current_split.threshold)
# Reject if min_samples_leaf is not guaranteed
if (((current_split.pos - start) < min_samples_leaf) or
((end - current_split.pos) < min_samples_leaf)):
continue
# Evaluate split
# At this point, the criterion has a view into the samples that was partitioned
# by the partitioner. The criterion will use the partition to evaluating the split.
criterion.reset()
criterion.update(current_split.pos)
# Reject if min_weight_leaf is not satisfied
if ((criterion.weighted_n_left < min_weight_leaf) or
(criterion.weighted_n_right < min_weight_leaf)):
continue
# Reject if monotonicity constraints are not satisfied
if (
with_monotonic_cst and
monotonic_cst[current_split.feature] != 0 and
not criterion.check_monotonicity(
monotonic_cst[current_split.feature],
lower_bound,
upper_bound,
)
):
continue
current_proxy_improvement = criterion.proxy_impurity_improvement()
if current_proxy_improvement > best_proxy_improvement:
best_proxy_improvement = current_proxy_improvement
best_split = current_split # copy
# Reorganize into samples[start:best.pos] + samples[best.pos:end]
if best_split.pos < end:
if current_split.feature != best_split.feature:
# TODO: Pass in best.n_missing when random splitter supports missing values.
partitioner.partition_samples_final(
best_split.pos, best_split.threshold, best_split.feature, 0
)
criterion.reset()
criterion.update(best_split.pos)
criterion.children_impurity(
&best_split.impurity_left, &best_split.impurity_right
)
best_split.improvement = criterion.impurity_improvement(
impurity, best_split.impurity_left, best_split.impurity_right
)
# Respect invariant for constant features: the original order of
# element in features[:n_known_constants] must be preserved for sibling
# and child nodes
memcpy(&features[0], &constant_features[0], sizeof(intp_t) * n_known_constants)
# Copy newly found constant features
memcpy(&constant_features[n_known_constants],
&features[n_known_constants],
sizeof(intp_t) * n_found_constants)
# Return values
split[0] = best_split
n_constant_features[0] = n_total_constants
return 0
@final
cdef class DensePartitioner:
"""Partitioner specialized for dense data.
Note that this partitioner is agnostic to the splitting strategy (best vs. random).
"""
cdef:
const float32_t[:, :] X
cdef intp_t[::1] samples
cdef float32_t[::1] feature_values
cdef intp_t start
cdef intp_t end
cdef intp_t n_missing
cdef const unsigned char[::1] missing_values_in_feature_mask
def __init__(
self,
const float32_t[:, :] X,
intp_t[::1] samples,
float32_t[::1] feature_values,
const unsigned char[::1] missing_values_in_feature_mask,
):
self.X = X
self.samples = samples
self.feature_values = feature_values
self.missing_values_in_feature_mask = missing_values_in_feature_mask
cdef inline void init_node_split(self, intp_t start, intp_t end) noexcept nogil:
"""Initialize splitter at the beginning of node_split."""
self.start = start
self.end = end
self.n_missing = 0
cdef inline void sort_samples_and_feature_values(
self, intp_t current_feature
) noexcept nogil:
"""Simultaneously sort based on the feature_values.
Missing values are stored at the end of feature_values.
The number of missing values observed in feature_values is stored
in self.n_missing.
"""
cdef:
intp_t i, current_end
float32_t[::1] feature_values = self.feature_values
const float32_t[:, :] X = self.X
intp_t[::1] samples = self.samples
intp_t n_missing = 0
const unsigned char[::1] missing_values_in_feature_mask = self.missing_values_in_feature_mask
# Sort samples along that feature; by
# copying the values into an array and
# sorting the array in a manner which utilizes the cache more
# effectively.
if missing_values_in_feature_mask is not None and missing_values_in_feature_mask[current_feature]:
i, current_end = self.start, self.end - 1
# Missing values are placed at the end and do not participate in the sorting.
while i <= current_end:
# Finds the right-most value that is not missing so that
# it can be swapped with missing values at its left.
if isnan(X[samples[current_end], current_feature]):
n_missing += 1
current_end -= 1
continue
# X[samples[current_end], current_feature] is a non-missing value
if isnan(X[samples[i], current_feature]):
samples[i], samples[current_end] = samples[current_end], samples[i]
n_missing += 1
current_end -= 1
feature_values[i] = X[samples[i], current_feature]
i += 1
else:
# When there are no missing values, we only need to copy the data into
# feature_values
for i in range(self.start, self.end):
feature_values[i] = X[samples[i], current_feature]
sort(&feature_values[self.start], &samples[self.start], self.end - self.start - n_missing)
self.n_missing = n_missing
cdef inline void find_min_max(
self,
intp_t current_feature,
float32_t* min_feature_value_out,
float32_t* max_feature_value_out,
) noexcept nogil:
"""Find the minimum and maximum value for current_feature."""
cdef:
intp_t p
float32_t current_feature_value
const float32_t[:, :] X = self.X
intp_t[::1] samples = self.samples
float32_t min_feature_value = X[samples[self.start], current_feature]
float32_t max_feature_value = min_feature_value
float32_t[::1] feature_values = self.feature_values
feature_values[self.start] = min_feature_value
for p in range(self.start + 1, self.end):
current_feature_value = X[samples[p], current_feature]
feature_values[p] = current_feature_value
if current_feature_value < min_feature_value:
min_feature_value = current_feature_value
elif current_feature_value > max_feature_value:
max_feature_value = current_feature_value
min_feature_value_out[0] = min_feature_value
max_feature_value_out[0] = max_feature_value
cdef inline void next_p(self, intp_t* p_prev, intp_t* p) noexcept nogil:
"""Compute the next p_prev and p for iteratiing over feature values.
The missing values are not included when iterating through the feature values.
"""
cdef:
float32_t[::1] feature_values = self.feature_values
intp_t end_non_missing = self.end - self.n_missing
while (
p[0] + 1 < end_non_missing and
feature_values[p[0] + 1] <= feature_values[p[0]] + FEATURE_THRESHOLD
):
p[0] += 1
p_prev[0] = p[0]
# By adding 1, we have
# (feature_values[p] >= end) or (feature_values[p] > feature_values[p - 1])
p[0] += 1
cdef inline intp_t partition_samples(self, float64_t current_threshold) noexcept nogil:
"""Partition samples for feature_values at the current_threshold."""
cdef:
intp_t p = self.start
intp_t partition_end = self.end
intp_t[::1] samples = self.samples
float32_t[::1] feature_values = self.feature_values
while p < partition_end:
if feature_values[p] <= current_threshold:
p += 1
else:
partition_end -= 1
feature_values[p], feature_values[partition_end] = (
feature_values[partition_end], feature_values[p]
)
samples[p], samples[partition_end] = samples[partition_end], samples[p]
return partition_end
cdef inline void partition_samples_final(
self,
intp_t best_pos,
float64_t best_threshold,
intp_t best_feature,
intp_t best_n_missing,
) noexcept nogil:
"""Partition samples for X at the best_threshold and best_feature.
If missing values are present, this method partitions `samples`
so that the `best_n_missing` missing values' indices are in the
right-most end of `samples`, that is `samples[end_non_missing:end]`.
"""
cdef:
# Local invariance: start <= p <= partition_end <= end
intp_t start = self.start
intp_t p = start
intp_t end = self.end - 1
intp_t partition_end = end - best_n_missing
intp_t[::1] samples = self.samples
const float32_t[:, :] X = self.X
float32_t current_value
if best_n_missing != 0:
# Move samples with missing values to the end while partitioning the
# non-missing samples
while p < partition_end:
# Keep samples with missing values at the end
if isnan(X[samples[end], best_feature]):
end -= 1
continue
# Swap sample with missing values with the sample at the end
current_value = X[samples[p], best_feature]
if isnan(current_value):
samples[p], samples[end] = samples[end], samples[p]
end -= 1
# The swapped sample at the end is always a non-missing value, so
# we can continue the algorithm without checking for missingness.
current_value = X[samples[p], best_feature]
# Partition the non-missing samples
if current_value <= best_threshold:
p += 1
else:
samples[p], samples[partition_end] = samples[partition_end], samples[p]
partition_end -= 1
else:
# Partitioning routine when there are no missing values
while p < partition_end:
if X[samples[p], best_feature] <= best_threshold:
p += 1
else:
samples[p], samples[partition_end] = samples[partition_end], samples[p]
partition_end -= 1
@final
cdef class SparsePartitioner:
"""Partitioner specialized for sparse CSC data.
Note that this partitioner is agnostic to the splitting strategy (best vs. random).
"""
cdef intp_t[::1] samples
cdef float32_t[::1] feature_values
cdef intp_t start
cdef intp_t end
cdef intp_t n_missing
cdef const unsigned char[::1] missing_values_in_feature_mask
cdef const float32_t[::1] X_data
cdef const int32_t[::1] X_indices
cdef const int32_t[::1] X_indptr
cdef intp_t n_total_samples
cdef intp_t[::1] index_to_samples
cdef intp_t[::1] sorted_samples
cdef intp_t start_positive
cdef intp_t end_negative
cdef bint is_samples_sorted
def __init__(
self,
object X,
intp_t[::1] samples,
intp_t n_samples,
float32_t[::1] feature_values,
const unsigned char[::1] missing_values_in_feature_mask,
):
if not (issparse(X) and X.format == "csc"):
raise ValueError("X should be in csc format")
self.samples = samples
self.feature_values = feature_values
# Initialize X
cdef intp_t n_total_samples = X.shape[0]
self.X_data = X.data
self.X_indices = X.indices
self.X_indptr = X.indptr
self.n_total_samples = n_total_samples
# Initialize auxiliary array used to perform split
self.index_to_samples = np.full(n_total_samples, fill_value=-1, dtype=np.intp)
self.sorted_samples = np.empty(n_samples, dtype=np.intp)
cdef intp_t p
for p in range(n_samples):
self.index_to_samples[samples[p]] = p
self.missing_values_in_feature_mask = missing_values_in_feature_mask
cdef inline void init_node_split(self, intp_t start, intp_t end) noexcept nogil:
"""Initialize splitter at the beginning of node_split."""
self.start = start
self.end = end
self.is_samples_sorted = 0
self.n_missing = 0
cdef inline void sort_samples_and_feature_values(
self, intp_t current_feature
) noexcept nogil:
"""Simultaneously sort based on the feature_values."""
cdef:
float32_t[::1] feature_values = self.feature_values
intp_t[::1] index_to_samples = self.index_to_samples
intp_t[::1] samples = self.samples
self.extract_nnz(current_feature)
# Sort the positive and negative parts of `feature_values`
sort(&feature_values[self.start], &samples[self.start], self.end_negative - self.start)
if self.start_positive < self.end:
sort(
&feature_values[self.start_positive],
&samples[self.start_positive],
self.end - self.start_positive
)
# Update index_to_samples to take into account the sort
for p in range(self.start, self.end_negative):
index_to_samples[samples[p]] = p
for p in range(self.start_positive, self.end):
index_to_samples[samples[p]] = p
# Add one or two zeros in feature_values, if there is any
if self.end_negative < self.start_positive:
self.start_positive -= 1
feature_values[self.start_positive] = 0.
if self.end_negative != self.start_positive:
feature_values[self.end_negative] = 0.
self.end_negative += 1
# XXX: When sparse supports missing values, this should be set to the
# number of missing values for current_feature
self.n_missing = 0
cdef inline void find_min_max(
self,
intp_t current_feature,
float32_t* min_feature_value_out,
float32_t* max_feature_value_out,
) noexcept nogil:
"""Find the minimum and maximum value for current_feature."""
cdef:
intp_t p
float32_t current_feature_value, min_feature_value, max_feature_value
float32_t[::1] feature_values = self.feature_values
self.extract_nnz(current_feature)
if self.end_negative != self.start_positive:
# There is a zero
min_feature_value = 0
max_feature_value = 0
else:
min_feature_value = feature_values[self.start]
max_feature_value = min_feature_value
# Find min, max in feature_values[start:end_negative]
for p in range(self.start, self.end_negative):
current_feature_value = feature_values[p]
if current_feature_value < min_feature_value:
min_feature_value = current_feature_value
elif current_feature_value > max_feature_value:
max_feature_value = current_feature_value
# Update min, max given feature_values[start_positive:end]
for p in range(self.start_positive, self.end):
current_feature_value = feature_values[p]
if current_feature_value < min_feature_value:
min_feature_value = current_feature_value
elif current_feature_value > max_feature_value:
max_feature_value = current_feature_value
min_feature_value_out[0] = min_feature_value
max_feature_value_out[0] = max_feature_value
cdef inline void next_p(self, intp_t* p_prev, intp_t* p) noexcept nogil:
"""Compute the next p_prev and p for iteratiing over feature values."""
cdef:
intp_t p_next
float32_t[::1] feature_values = self.feature_values
if p[0] + 1 != self.end_negative:
p_next = p[0] + 1
else:
p_next = self.start_positive
while (p_next < self.end and
feature_values[p_next] <= feature_values[p[0]] + FEATURE_THRESHOLD):
p[0] = p_next
if p[0] + 1 != self.end_negative:
p_next = p[0] + 1
else:
p_next = self.start_positive
p_prev[0] = p[0]
p[0] = p_next
cdef inline intp_t partition_samples(self, float64_t current_threshold) noexcept nogil:
"""Partition samples for feature_values at the current_threshold."""
return self._partition(current_threshold, self.start_positive)
cdef inline void partition_samples_final(
self,
intp_t best_pos,
float64_t best_threshold,
intp_t best_feature,
intp_t n_missing,
) noexcept nogil:
"""Partition samples for X at the best_threshold and best_feature."""
self.extract_nnz(best_feature)
self._partition(best_threshold, best_pos)
cdef inline intp_t _partition(self, float64_t threshold, intp_t zero_pos) noexcept nogil:
"""Partition samples[start:end] based on threshold."""
cdef:
intp_t p, partition_end
intp_t[::1] index_to_samples = self.index_to_samples
float32_t[::1] feature_values = self.feature_values
intp_t[::1] samples = self.samples
if threshold < 0.:
p = self.start
partition_end = self.end_negative
elif threshold > 0.:
p = self.start_positive
partition_end = self.end
else:
# Data are already split
return zero_pos
while p < partition_end:
if feature_values[p] <= threshold:
p += 1
else:
partition_end -= 1
feature_values[p], feature_values[partition_end] = (
feature_values[partition_end], feature_values[p]
)
sparse_swap(index_to_samples, samples, p, partition_end)
return partition_end
cdef inline void extract_nnz(self, intp_t feature) noexcept nogil:
"""Extract and partition values for a given feature.
The extracted values are partitioned between negative values
feature_values[start:end_negative[0]] and positive values
feature_values[start_positive[0]:end].
The samples and index_to_samples are modified according to this
partition.
The extraction corresponds to the intersection between the arrays
X_indices[indptr_start:indptr_end] and samples[start:end].
This is done efficiently using either an index_to_samples based approach
or binary search based approach.
Parameters
----------
feature : intp_t,
Index of the feature we want to extract non zero value.
"""
cdef intp_t[::1] samples = self.samples
cdef float32_t[::1] feature_values = self.feature_values
cdef intp_t indptr_start = self.X_indptr[feature],
cdef intp_t indptr_end = self.X_indptr[feature + 1]
cdef intp_t n_indices = <intp_t>(indptr_end - indptr_start)
cdef intp_t n_samples = self.end - self.start
cdef intp_t[::1] index_to_samples = self.index_to_samples
cdef intp_t[::1] sorted_samples = self.sorted_samples
cdef const int32_t[::1] X_indices = self.X_indices
cdef const float32_t[::1] X_data = self.X_data
# Use binary search if n_samples * log(n_indices) <
# n_indices and index_to_samples approach otherwise.
# O(n_samples * log(n_indices)) is the running time of binary
# search and O(n_indices) is the running time of index_to_samples
# approach.
if ((1 - self.is_samples_sorted) * n_samples * log(n_samples) +
n_samples * log(n_indices) < EXTRACT_NNZ_SWITCH * n_indices):
extract_nnz_binary_search(X_indices, X_data,
indptr_start, indptr_end,
samples, self.start, self.end,
index_to_samples,
feature_values,
&self.end_negative, &self.start_positive,
sorted_samples, &self.is_samples_sorted)
# Using an index to samples technique to extract non zero values
# index_to_samples is a mapping from X_indices to samples
else:
extract_nnz_index_to_samples(X_indices, X_data,
indptr_start, indptr_end,
samples, self.start, self.end,
index_to_samples,
feature_values,
&self.end_negative, &self.start_positive)
cdef int compare_SIZE_t(const void* a, const void* b) noexcept nogil:
"""Comparison function for sort."""
return <int>((<intp_t*>a)[0] - (<intp_t*>b)[0])
cdef inline void binary_search(const int32_t[::1] sorted_array,
int32_t start, int32_t end,
intp_t value, intp_t* index,
int32_t* new_start) noexcept nogil:
"""Return the index of value in the sorted array.
If not found, return -1. new_start is the last pivot + 1
"""
cdef int32_t pivot
index[0] = -1
while start < end:
pivot = start + (end - start) / 2
if sorted_array[pivot] == value:
index[0] = pivot
start = pivot + 1
break
if sorted_array[pivot] < value:
start = pivot + 1
else:
end = pivot
new_start[0] = start
cdef inline void extract_nnz_index_to_samples(const int32_t[::1] X_indices,
const float32_t[::1] X_data,
int32_t indptr_start,
int32_t indptr_end,
intp_t[::1] samples,
intp_t start,
intp_t end,
intp_t[::1] index_to_samples,
float32_t[::1] feature_values,
intp_t* end_negative,
intp_t* start_positive) noexcept nogil:
"""Extract and partition values for a feature using index_to_samples.
Complexity is O(indptr_end - indptr_start).
"""
cdef int32_t k
cdef intp_t index
cdef intp_t end_negative_ = start
cdef intp_t start_positive_ = end
for k in range(indptr_start, indptr_end):
if start <= index_to_samples[X_indices[k]] < end:
if X_data[k] > 0:
start_positive_ -= 1
feature_values[start_positive_] = X_data[k]
index = index_to_samples[X_indices[k]]
sparse_swap(index_to_samples, samples, index, start_positive_)
elif X_data[k] < 0:
feature_values[end_negative_] = X_data[k]
index = index_to_samples[X_indices[k]]
sparse_swap(index_to_samples, samples, index, end_negative_)
end_negative_ += 1
# Returned values
end_negative[0] = end_negative_
start_positive[0] = start_positive_
cdef inline void extract_nnz_binary_search(const int32_t[::1] X_indices,
const float32_t[::1] X_data,
int32_t indptr_start,
int32_t indptr_end,
intp_t[::1] samples,
intp_t start,
intp_t end,
intp_t[::1] index_to_samples,
float32_t[::1] feature_values,
intp_t* end_negative,
intp_t* start_positive,
intp_t[::1] sorted_samples,
bint* is_samples_sorted) noexcept nogil:
"""Extract and partition values for a given feature using binary search.
If n_samples = end - start and n_indices = indptr_end - indptr_start,
the complexity is
O((1 - is_samples_sorted[0]) * n_samples * log(n_samples) +
n_samples * log(n_indices)).
"""
cdef intp_t n_samples
if not is_samples_sorted[0]:
n_samples = end - start
memcpy(&sorted_samples[start], &samples[start],
n_samples * sizeof(intp_t))
qsort(&sorted_samples[start], n_samples, sizeof(intp_t),
compare_SIZE_t)
is_samples_sorted[0] = 1
while (indptr_start < indptr_end and
sorted_samples[start] > X_indices[indptr_start]):
indptr_start += 1
while (indptr_start < indptr_end and
sorted_samples[end - 1] < X_indices[indptr_end - 1]):
indptr_end -= 1
cdef intp_t p = start
cdef intp_t index
cdef intp_t k
cdef intp_t end_negative_ = start
cdef intp_t start_positive_ = end
while (p < end and indptr_start < indptr_end):
# Find index of sorted_samples[p] in X_indices
binary_search(X_indices, indptr_start, indptr_end,
sorted_samples[p], &k, &indptr_start)
if k != -1:
# If k != -1, we have found a non zero value
if X_data[k] > 0:
start_positive_ -= 1
feature_values[start_positive_] = X_data[k]
index = index_to_samples[X_indices[k]]
sparse_swap(index_to_samples, samples, index, start_positive_)
elif X_data[k] < 0:
feature_values[end_negative_] = X_data[k]
index = index_to_samples[X_indices[k]]
sparse_swap(index_to_samples, samples, index, end_negative_)
end_negative_ += 1
p += 1
# Returned values
end_negative[0] = end_negative_
start_positive[0] = start_positive_
cdef inline void sparse_swap(intp_t[::1] index_to_samples, intp_t[::1] samples,
intp_t pos_1, intp_t pos_2) noexcept nogil:
"""Swap sample pos_1 and pos_2 preserving sparse invariant."""
samples[pos_1], samples[pos_2] = samples[pos_2], samples[pos_1]
index_to_samples[samples[pos_1]] = pos_1
index_to_samples[samples[pos_2]] = pos_2
cdef class BestSplitter(Splitter):
"""Splitter for finding the best split on dense data."""
cdef DensePartitioner partitioner
cdef int init(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
const unsigned char[::1] missing_values_in_feature_mask,
) except -1:
Splitter.init(self, X, y, sample_weight, missing_values_in_feature_mask)
self.partitioner = DensePartitioner(
X, self.samples, self.feature_values, missing_values_in_feature_mask
)
cdef int node_split(
self,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
float64_t lower_bound,
float64_t upper_bound
) except -1 nogil:
return node_split_best(
self,
self.partitioner,
self.criterion,
impurity,
split,
n_constant_features,
self.with_monotonic_cst,
self.monotonic_cst,
lower_bound,
upper_bound
)
cdef class BestSparseSplitter(Splitter):
"""Splitter for finding the best split, using the sparse data."""
cdef SparsePartitioner partitioner
cdef int init(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
const unsigned char[::1] missing_values_in_feature_mask,
) except -1:
Splitter.init(self, X, y, sample_weight, missing_values_in_feature_mask)
self.partitioner = SparsePartitioner(
X, self.samples, self.n_samples, self.feature_values, missing_values_in_feature_mask
)
cdef int node_split(
self,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
float64_t lower_bound,
float64_t upper_bound
) except -1 nogil:
return node_split_best(
self,
self.partitioner,
self.criterion,
impurity,
split,
n_constant_features,
self.with_monotonic_cst,
self.monotonic_cst,
lower_bound,
upper_bound
)
cdef class RandomSplitter(Splitter):
"""Splitter for finding the best random split on dense data."""
cdef DensePartitioner partitioner
cdef int init(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
const unsigned char[::1] missing_values_in_feature_mask,
) except -1:
Splitter.init(self, X, y, sample_weight, missing_values_in_feature_mask)
self.partitioner = DensePartitioner(
X, self.samples, self.feature_values, missing_values_in_feature_mask
)
cdef int node_split(
self,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
float64_t lower_bound,
float64_t upper_bound
) except -1 nogil:
return node_split_random(
self,
self.partitioner,
self.criterion,
impurity,
split,
n_constant_features,
self.with_monotonic_cst,
self.monotonic_cst,
lower_bound,
upper_bound
)
cdef class RandomSparseSplitter(Splitter):
"""Splitter for finding the best random split, using the sparse data."""
cdef SparsePartitioner partitioner
cdef int init(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
const unsigned char[::1] missing_values_in_feature_mask,
) except -1:
Splitter.init(self, X, y, sample_weight, missing_values_in_feature_mask)
self.partitioner = SparsePartitioner(
X, self.samples, self.n_samples, self.feature_values, missing_values_in_feature_mask
)
cdef int node_split(
self,
float64_t impurity,
SplitRecord* split,
intp_t* n_constant_features,
float64_t lower_bound,
float64_t upper_bound
) except -1 nogil:
return node_split_random(
self,
self.partitioner,
self.criterion,
impurity,
split,
n_constant_features,
self.with_monotonic_cst,
self.monotonic_cst,
lower_bound,
upper_bound
)
|