File: _utils.pyx

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (466 lines) | stat: -rw-r--r-- 16,808 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Arnaud Joly <arnaud.v.joly@gmail.com>
#          Jacob Schreiber <jmschreiber91@gmail.com>
#          Nelson Liu <nelson@nelsonliu.me>
#
#
# License: BSD 3 clause

from libc.stdlib cimport free
from libc.stdlib cimport realloc
from libc.math cimport log as ln
from libc.math cimport isnan

import numpy as np
cimport numpy as cnp
cnp.import_array()

from ..utils._random cimport our_rand_r

# =============================================================================
# Helper functions
# =============================================================================

cdef int safe_realloc(realloc_ptr* p, size_t nelems) except -1 nogil:
    # sizeof(realloc_ptr[0]) would be more like idiomatic C, but causes Cython
    # 0.20.1 to crash.
    cdef size_t nbytes = nelems * sizeof(p[0][0])
    if nbytes / sizeof(p[0][0]) != nelems:
        # Overflow in the multiplication
        raise MemoryError(f"could not allocate ({nelems} * {sizeof(p[0][0])}) bytes")

    cdef realloc_ptr tmp = <realloc_ptr>realloc(p[0], nbytes)
    if tmp == NULL:
        raise MemoryError(f"could not allocate {nbytes} bytes")

    p[0] = tmp
    return 0


def _realloc_test():
    # Helper for tests. Tries to allocate <size_t>(-1) / 2 * sizeof(size_t)
    # bytes, which will always overflow.
    cdef intp_t* p = NULL
    safe_realloc(&p, <size_t>(-1) / 2)
    if p != NULL:
        free(p)
        assert False


cdef inline cnp.ndarray sizet_ptr_to_ndarray(intp_t* data, intp_t size):
    """Return copied data as 1D numpy array of intp's."""
    cdef cnp.npy_intp shape[1]
    shape[0] = <cnp.npy_intp> size
    return cnp.PyArray_SimpleNewFromData(1, shape, cnp.NPY_INTP, data).copy()


cdef inline intp_t rand_int(intp_t low, intp_t high,
                            uint32_t* random_state) noexcept nogil:
    """Generate a random integer in [low; end)."""
    return low + our_rand_r(random_state) % (high - low)


cdef inline float64_t rand_uniform(float64_t low, float64_t high,
                                   uint32_t* random_state) noexcept nogil:
    """Generate a random float64_t in [low; high)."""
    return ((high - low) * <float64_t> our_rand_r(random_state) /
            <float64_t> RAND_R_MAX) + low


cdef inline float64_t log(float64_t x) noexcept nogil:
    return ln(x) / ln(2.0)

# =============================================================================
# WeightedPQueue data structure
# =============================================================================

cdef class WeightedPQueue:
    """A priority queue class, always sorted in increasing order.

    Attributes
    ----------
    capacity : intp_t
        The capacity of the priority queue.

    array_ptr : intp_t
        The water mark of the priority queue; the priority queue grows from
        left to right in the array ``array_``. ``array_ptr`` is always
        less than ``capacity``.

    array_ : WeightedPQueueRecord*
        The array of priority queue records. The minimum element is on the
        left at index 0, and the maximum element is on the right at index
        ``array_ptr-1``.
    """

    def __cinit__(self, intp_t capacity):
        self.capacity = capacity
        self.array_ptr = 0
        safe_realloc(&self.array_, capacity)

    def __dealloc__(self):
        free(self.array_)

    cdef int reset(self) except -1 nogil:
        """Reset the WeightedPQueue to its state at construction

        Return -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        self.array_ptr = 0
        # Since safe_realloc can raise MemoryError, use `except -1`
        safe_realloc(&self.array_, self.capacity)
        return 0

    cdef bint is_empty(self) noexcept nogil:
        return self.array_ptr <= 0

    cdef intp_t size(self) noexcept nogil:
        return self.array_ptr

    cdef int push(self, float64_t data, float64_t weight) except -1 nogil:
        """Push record on the array.

        Return -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        cdef intp_t array_ptr = self.array_ptr
        cdef WeightedPQueueRecord* array = NULL
        cdef intp_t i

        # Resize if capacity not sufficient
        if array_ptr >= self.capacity:
            self.capacity *= 2
            # Since safe_realloc can raise MemoryError, use `except -1`
            safe_realloc(&self.array_, self.capacity)

        # Put element as last element of array
        array = self.array_
        array[array_ptr].data = data
        array[array_ptr].weight = weight

        # bubble last element up according until it is sorted
        # in ascending order
        i = array_ptr
        while(i != 0 and array[i].data < array[i-1].data):
            array[i], array[i-1] = array[i-1], array[i]
            i -= 1

        # Increase element count
        self.array_ptr = array_ptr + 1
        return 0

    cdef int remove(self, float64_t data, float64_t weight) noexcept nogil:
        """Remove a specific value/weight record from the array.
        Returns 0 if successful, -1 if record not found."""
        cdef intp_t array_ptr = self.array_ptr
        cdef WeightedPQueueRecord* array = self.array_
        cdef intp_t idx_to_remove = -1
        cdef intp_t i

        if array_ptr <= 0:
            return -1

        # find element to remove
        for i in range(array_ptr):
            if array[i].data == data and array[i].weight == weight:
                idx_to_remove = i
                break

        if idx_to_remove == -1:
            return -1

        # shift the elements after the removed element
        # to the left.
        for i in range(idx_to_remove, array_ptr-1):
            array[i] = array[i+1]

        self.array_ptr = array_ptr - 1
        return 0

    cdef int pop(self, float64_t* data, float64_t* weight) noexcept nogil:
        """Remove the top (minimum) element from array.
        Returns 0 if successful, -1 if nothing to remove."""
        cdef intp_t array_ptr = self.array_ptr
        cdef WeightedPQueueRecord* array = self.array_
        cdef intp_t i

        if array_ptr <= 0:
            return -1

        data[0] = array[0].data
        weight[0] = array[0].weight

        # shift the elements after the removed element
        # to the left.
        for i in range(0, array_ptr-1):
            array[i] = array[i+1]

        self.array_ptr = array_ptr - 1
        return 0

    cdef int peek(self, float64_t* data, float64_t* weight) noexcept nogil:
        """Write the top element from array to a pointer.
        Returns 0 if successful, -1 if nothing to write."""
        cdef WeightedPQueueRecord* array = self.array_
        if self.array_ptr <= 0:
            return -1
        # Take first value
        data[0] = array[0].data
        weight[0] = array[0].weight
        return 0

    cdef float64_t get_weight_from_index(self, intp_t index) noexcept nogil:
        """Given an index between [0,self.current_capacity], access
        the appropriate heap and return the requested weight"""
        cdef WeightedPQueueRecord* array = self.array_

        # get weight at index
        return array[index].weight

    cdef float64_t get_value_from_index(self, intp_t index) noexcept nogil:
        """Given an index between [0,self.current_capacity], access
        the appropriate heap and return the requested value"""
        cdef WeightedPQueueRecord* array = self.array_

        # get value at index
        return array[index].data

# =============================================================================
# WeightedMedianCalculator data structure
# =============================================================================

cdef class WeightedMedianCalculator:
    """A class to handle calculation of the weighted median from streams of
    data. To do so, it maintains a parameter ``k`` such that the sum of the
    weights in the range [0,k) is greater than or equal to half of the total
    weight. By minimizing the value of ``k`` that fulfills this constraint,
    calculating the median is done by either taking the value of the sample
    at index ``k-1`` of ``samples`` (samples[k-1].data) or the average of
    the samples at index ``k-1`` and ``k`` of ``samples``
    ((samples[k-1] + samples[k]) / 2).

    Attributes
    ----------
    initial_capacity : intp_t
        The initial capacity of the WeightedMedianCalculator.

    samples : WeightedPQueue
        Holds the samples (consisting of values and their weights) used in the
        weighted median calculation.

    total_weight : float64_t
        The sum of the weights of items in ``samples``. Represents the total
        weight of all samples used in the median calculation.

    k : intp_t
        Index used to calculate the median.

    sum_w_0_k : float64_t
        The sum of the weights from samples[0:k]. Used in the weighted
        median calculation; minimizing the value of ``k`` such that
        ``sum_w_0_k`` >= ``total_weight / 2`` provides a mechanism for
        calculating the median in constant time.

    """

    def __cinit__(self, intp_t initial_capacity):
        self.initial_capacity = initial_capacity
        self.samples = WeightedPQueue(initial_capacity)
        self.total_weight = 0
        self.k = 0
        self.sum_w_0_k = 0

    cdef intp_t size(self) noexcept nogil:
        """Return the number of samples in the
        WeightedMedianCalculator"""
        return self.samples.size()

    cdef int reset(self) except -1 nogil:
        """Reset the WeightedMedianCalculator to its state at construction

        Return -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        # samples.reset (WeightedPQueue.reset) uses safe_realloc, hence
        # except -1
        self.samples.reset()
        self.total_weight = 0
        self.k = 0
        self.sum_w_0_k = 0
        return 0

    cdef int push(self, float64_t data, float64_t weight) except -1 nogil:
        """Push a value and its associated weight to the WeightedMedianCalculator

        Return -1 in case of failure to allocate memory (and raise MemoryError)
        or 0 otherwise.
        """
        cdef int return_value
        cdef float64_t original_median = 0.0

        if self.size() != 0:
            original_median = self.get_median()
        # samples.push (WeightedPQueue.push) uses safe_realloc, hence except -1
        return_value = self.samples.push(data, weight)
        self.update_median_parameters_post_push(data, weight,
                                                original_median)
        return return_value

    cdef int update_median_parameters_post_push(
            self, float64_t data, float64_t weight,
            float64_t original_median) noexcept nogil:
        """Update the parameters used in the median calculation,
        namely `k` and `sum_w_0_k` after an insertion"""

        # trivial case of one element.
        if self.size() == 1:
            self.k = 1
            self.total_weight = weight
            self.sum_w_0_k = self.total_weight
            return 0

        # get the original weighted median
        self.total_weight += weight

        if data < original_median:
            # inserting below the median, so increment k and
            # then update self.sum_w_0_k accordingly by adding
            # the weight that was added.
            self.k += 1
            # update sum_w_0_k by adding the weight added
            self.sum_w_0_k += weight

            # minimize k such that sum(W[0:k]) >= total_weight / 2
            # minimum value of k is 1
            while(self.k > 1 and ((self.sum_w_0_k -
                                   self.samples.get_weight_from_index(self.k-1))
                                  >= self.total_weight / 2.0)):
                self.k -= 1
                self.sum_w_0_k -= self.samples.get_weight_from_index(self.k)
            return 0

        if data >= original_median:
            # inserting above or at the median
            # minimize k such that sum(W[0:k]) >= total_weight / 2
            while(self.k < self.samples.size() and
                  (self.sum_w_0_k < self.total_weight / 2.0)):
                self.k += 1
                self.sum_w_0_k += self.samples.get_weight_from_index(self.k-1)
            return 0

    cdef int remove(self, float64_t data, float64_t weight) noexcept nogil:
        """Remove a value from the MedianHeap, removing it
        from consideration in the median calculation
        """
        cdef int return_value
        cdef float64_t original_median = 0.0

        if self.size() != 0:
            original_median = self.get_median()

        return_value = self.samples.remove(data, weight)
        self.update_median_parameters_post_remove(data, weight,
                                                  original_median)
        return return_value

    cdef int pop(self, float64_t* data, float64_t* weight) noexcept nogil:
        """Pop a value from the MedianHeap, starting from the
        left and moving to the right.
        """
        cdef int return_value
        cdef float64_t original_median = 0.0

        if self.size() != 0:
            original_median = self.get_median()

        # no elements to pop
        if self.samples.size() == 0:
            return -1

        return_value = self.samples.pop(data, weight)
        self.update_median_parameters_post_remove(data[0],
                                                  weight[0],
                                                  original_median)
        return return_value

    cdef int update_median_parameters_post_remove(
            self, float64_t data, float64_t weight,
            float64_t original_median) noexcept nogil:
        """Update the parameters used in the median calculation,
        namely `k` and `sum_w_0_k` after a removal"""
        # reset parameters because it there are no elements
        if self.samples.size() == 0:
            self.k = 0
            self.total_weight = 0
            self.sum_w_0_k = 0
            return 0

        # trivial case of one element.
        if self.samples.size() == 1:
            self.k = 1
            self.total_weight -= weight
            self.sum_w_0_k = self.total_weight
            return 0

        # get the current weighted median
        self.total_weight -= weight

        if data < original_median:
            # removing below the median, so decrement k and
            # then update self.sum_w_0_k accordingly by subtracting
            # the removed weight

            self.k -= 1
            # update sum_w_0_k by removing the weight at index k
            self.sum_w_0_k -= weight

            # minimize k such that sum(W[0:k]) >= total_weight / 2
            # by incrementing k and updating sum_w_0_k accordingly
            # until the condition is met.
            while(self.k < self.samples.size() and
                  (self.sum_w_0_k < self.total_weight / 2.0)):
                self.k += 1
                self.sum_w_0_k += self.samples.get_weight_from_index(self.k-1)
            return 0

        if data >= original_median:
            # removing above the median
            # minimize k such that sum(W[0:k]) >= total_weight / 2
            while(self.k > 1 and ((self.sum_w_0_k -
                                   self.samples.get_weight_from_index(self.k-1))
                                  >= self.total_weight / 2.0)):
                self.k -= 1
                self.sum_w_0_k -= self.samples.get_weight_from_index(self.k)
            return 0

    cdef float64_t get_median(self) noexcept nogil:
        """Write the median to a pointer, taking into account
        sample weights."""
        if self.sum_w_0_k == (self.total_weight / 2.0):
            # split median
            return (self.samples.get_value_from_index(self.k) +
                    self.samples.get_value_from_index(self.k-1)) / 2.0
        if self.sum_w_0_k > (self.total_weight / 2.0):
            # whole median
            return self.samples.get_value_from_index(self.k-1)


def _any_isnan_axis0(const float32_t[:, :] X):
    """Same as np.any(np.isnan(X), axis=0)"""
    cdef:
        int i, j
        int n_samples = X.shape[0]
        int n_features = X.shape[1]
        unsigned char[::1] isnan_out = np.zeros(X.shape[1], dtype=np.bool_)

    with nogil:
        for i in range(n_samples):
            for j in range(n_features):
                if isnan_out[j]:
                    continue
                if isnan(X[i, j]):
                    isnan_out[j] = True
                    break
    return np.asarray(isnan_out)