File: test_export.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (519 lines) | stat: -rw-r--r-- 17,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
Testing for export functions of decision trees (sklearn.tree.export).
"""
from io import StringIO
from re import finditer, search
from textwrap import dedent

import numpy as np
import pytest
from numpy.random import RandomState

from sklearn.base import is_classifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.tree import (
    DecisionTreeClassifier,
    DecisionTreeRegressor,
    export_graphviz,
    export_text,
    plot_tree,
)

# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]]
w = [1, 1, 1, 0.5, 0.5, 0.5]
y_degraded = [1, 1, 1, 1, 1, 1]


def test_graphviz_toy():
    # Check correctness of export_graphviz
    clf = DecisionTreeClassifier(
        max_depth=3, min_samples_split=2, criterion="gini", random_state=2
    )
    clf.fit(X, y)

    # Test export code
    contents1 = export_graphviz(clf, out_file=None)
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
        'value = [3, 3]"] ;\n'
        '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=45, "
        'headlabel="True"] ;\n'
        '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=-45, "
        'headlabel="False"] ;\n'
        "}"
    )

    assert contents1 == contents2

    # Test plot_options
    contents1 = export_graphviz(
        clf,
        filled=True,
        impurity=False,
        proportion=True,
        special_characters=True,
        rounded=True,
        out_file=None,
        fontname="sans",
    )
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, style="filled, rounded", color="black", '
        'fontname="sans"] ;\n'
        'edge [fontname="sans"] ;\n'
        "0 [label=<x<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>"
        'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n'
        "1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, "
        'fillcolor="#e58139"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=45, "
        'headlabel="True"] ;\n'
        "2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, "
        'fillcolor="#399de5"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=-45, "
        'headlabel="False"] ;\n'
        "}"
    )

    assert contents1 == contents2

    # Test max_depth
    contents1 = export_graphviz(clf, max_depth=0, class_names=True, out_file=None)
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
        'value = [3, 3]\\nclass = y[0]"] ;\n'
        '1 [label="(...)"] ;\n'
        "0 -> 1 ;\n"
        '2 [label="(...)"] ;\n'
        "0 -> 2 ;\n"
        "}"
    )

    assert contents1 == contents2

    # Test max_depth with plot_options
    contents1 = export_graphviz(
        clf, max_depth=0, filled=True, out_file=None, node_ids=True
    )
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, style="filled", color="black", '
        'fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="node #0\\nx[0] <= 0.0\\ngini = 0.5\\n'
        'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n'
        '1 [label="(...)", fillcolor="#C0C0C0"] ;\n'
        "0 -> 1 ;\n"
        '2 [label="(...)", fillcolor="#C0C0C0"] ;\n'
        "0 -> 2 ;\n"
        "}"
    )

    assert contents1 == contents2

    # Test multi-output with weighted samples
    clf = DecisionTreeClassifier(
        max_depth=2, min_samples_split=2, criterion="gini", random_state=2
    )
    clf = clf.fit(X, y2, sample_weight=w)

    contents1 = export_graphviz(clf, filled=True, impurity=False, out_file=None)
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, style="filled", color="black", '
        'fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="x[0] <= 0.0\\nsamples = 6\\n'
        "value = [[3.0, 1.5, 0.0]\\n"
        '[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n'
        '1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n'
        '[3, 0, 0]]", fillcolor="#e58139"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=45, "
        'headlabel="True"] ;\n'
        '2 [label="x[0] <= 1.5\\nsamples = 3\\n'
        "value = [[0.0, 1.5, 0.0]\\n"
        '[0.0, 1.0, 0.5]]", fillcolor="#f1bd97"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=-45, "
        'headlabel="False"] ;\n'
        '3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n'
        '[0, 1, 0]]", fillcolor="#e58139"] ;\n'
        "2 -> 3 ;\n"
        '4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n'
        '[0.0, 0.0, 0.5]]", fillcolor="#e58139"] ;\n'
        "2 -> 4 ;\n"
        "}"
    )

    assert contents1 == contents2

    # Test regression output with plot_options
    clf = DecisionTreeRegressor(
        max_depth=3, min_samples_split=2, criterion="squared_error", random_state=2
    )
    clf.fit(X, y)

    contents1 = export_graphviz(
        clf,
        filled=True,
        leaves_parallel=True,
        out_file=None,
        rotate=True,
        rounded=True,
        fontname="sans",
    )
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, style="filled, rounded", color="black", '
        'fontname="sans"] ;\n'
        "graph [ranksep=equally, splines=polyline] ;\n"
        'edge [fontname="sans"] ;\n'
        "rankdir=LR ;\n"
        '0 [label="x[0] <= 0.0\\nsquared_error = 1.0\\nsamples = 6\\n'
        'value = 0.0", fillcolor="#f2c09c"] ;\n'
        '1 [label="squared_error = 0.0\\nsamples = 3\\'
        'nvalue = -1.0", '
        'fillcolor="#ffffff"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=-45, "
        'headlabel="True"] ;\n'
        '2 [label="squared_error = 0.0\\nsamples = 3\\nvalue = 1.0", '
        'fillcolor="#e58139"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=45, "
        'headlabel="False"] ;\n'
        "{rank=same ; 0} ;\n"
        "{rank=same ; 1; 2} ;\n"
        "}"
    )

    assert contents1 == contents2

    # Test classifier with degraded learning set
    clf = DecisionTreeClassifier(max_depth=3)
    clf.fit(X, y_degraded)

    contents1 = export_graphviz(clf, filled=True, out_file=None)
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, style="filled", color="black", '
        'fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", '
        'fillcolor="#ffffff"] ;\n'
        "}"
    )


@pytest.mark.parametrize("constructor", [list, np.array])
def test_graphviz_feature_class_names_array_support(constructor):
    # Check that export_graphviz treats feature names
    # and class names correctly and supports arrays
    clf = DecisionTreeClassifier(
        max_depth=3, min_samples_split=2, criterion="gini", random_state=2
    )
    clf.fit(X, y)

    # Test with feature_names
    contents1 = export_graphviz(
        clf, feature_names=constructor(["feature0", "feature1"]), out_file=None
    )
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
        'value = [3, 3]"] ;\n'
        '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=45, "
        'headlabel="True"] ;\n'
        '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=-45, "
        'headlabel="False"] ;\n'
        "}"
    )

    assert contents1 == contents2

    # Test with class_names
    contents1 = export_graphviz(
        clf, class_names=constructor(["yes", "no"]), out_file=None
    )
    contents2 = (
        "digraph Tree {\n"
        'node [shape=box, fontname="helvetica"] ;\n'
        'edge [fontname="helvetica"] ;\n'
        '0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
        'value = [3, 3]\\nclass = yes"] ;\n'
        '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n'
        'class = yes"] ;\n'
        "0 -> 1 [labeldistance=2.5, labelangle=45, "
        'headlabel="True"] ;\n'
        '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n'
        'class = no"] ;\n'
        "0 -> 2 [labeldistance=2.5, labelangle=-45, "
        'headlabel="False"] ;\n'
        "}"
    )

    assert contents1 == contents2


def test_graphviz_errors():
    # Check for errors of export_graphviz
    clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)

    # Check not-fitted decision tree error
    out = StringIO()
    with pytest.raises(NotFittedError):
        export_graphviz(clf, out)

    clf.fit(X, y)

    # Check if it errors when length of feature_names
    # mismatches with number of features
    message = "Length of feature_names, 1 does not match number of features, 2"
    with pytest.raises(ValueError, match=message):
        export_graphviz(clf, None, feature_names=["a"])

    message = "Length of feature_names, 3 does not match number of features, 2"
    with pytest.raises(ValueError, match=message):
        export_graphviz(clf, None, feature_names=["a", "b", "c"])

    # Check error when argument is not an estimator
    message = "is not an estimator instance"
    with pytest.raises(TypeError, match=message):
        export_graphviz(clf.fit(X, y).tree_)

    # Check class_names error
    out = StringIO()
    with pytest.raises(IndexError):
        export_graphviz(clf, out, class_names=[])


def test_friedman_mse_in_graphviz():
    clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
    clf.fit(X, y)
    dot_data = StringIO()
    export_graphviz(clf, out_file=dot_data)

    clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
    clf.fit(X, y)
    for estimator in clf.estimators_:
        export_graphviz(estimator[0], out_file=dot_data)

    for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
        assert "friedman_mse" in finding.group()


def test_precision():
    rng_reg = RandomState(2)
    rng_clf = RandomState(8)
    for X, y, clf in zip(
        (rng_reg.random_sample((5, 2)), rng_clf.random_sample((1000, 4))),
        (rng_reg.random_sample((5,)), rng_clf.randint(2, size=(1000,))),
        (
            DecisionTreeRegressor(
                criterion="friedman_mse", random_state=0, max_depth=1
            ),
            DecisionTreeClassifier(max_depth=1, random_state=0),
        ),
    ):
        clf.fit(X, y)
        for precision in (4, 3):
            dot_data = export_graphviz(
                clf, out_file=None, precision=precision, proportion=True
            )

            # With the current random state, the impurity and the threshold
            # will have the number of precision set in the export_graphviz
            # function. We will check the number of precision with a strict
            # equality. The value reported will have only 2 precision and
            # therefore, only a less equal comparison will be done.

            # check value
            for finding in finditer(r"value = \d+\.\d+", dot_data):
                assert len(search(r"\.\d+", finding.group()).group()) <= precision + 1
            # check impurity
            if is_classifier(clf):
                pattern = r"gini = \d+\.\d+"
            else:
                pattern = r"friedman_mse = \d+\.\d+"

            # check impurity
            for finding in finditer(pattern, dot_data):
                assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
            # check threshold
            for finding in finditer(r"<= \d+\.\d+", dot_data):
                assert len(search(r"\.\d+", finding.group()).group()) == precision + 1


def test_export_text_errors():
    clf = DecisionTreeClassifier(max_depth=2, random_state=0)
    clf.fit(X, y)
    err_msg = "feature_names must contain 2 elements, got 1"
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, feature_names=["a"])
    err_msg = (
        "When `class_names` is an array, it should contain as"
        " many items as `decision_tree.classes_`. Got 1 while"
        " the tree was fitted with 2 classes."
    )
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, class_names=["a"])


def test_export_text():
    clf = DecisionTreeClassifier(max_depth=2, random_state=0)
    clf.fit(X, y)

    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- class: -1
    |--- feature_1 >  0.00
    |   |--- class: 1
    """).lstrip()

    assert export_text(clf) == expected_report
    # testing that leaves at level 1 are not truncated
    assert export_text(clf, max_depth=0) == expected_report
    # testing that the rest of the tree is truncated
    assert export_text(clf, max_depth=10) == expected_report

    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- weights: [3.00, 0.00] class: -1
    |--- feature_1 >  0.00
    |   |--- weights: [0.00, 3.00] class: 1
    """).lstrip()
    assert export_text(clf, show_weights=True) == expected_report

    expected_report = dedent("""
    |- feature_1 <= 0.00
    | |- class: -1
    |- feature_1 >  0.00
    | |- class: 1
    """).lstrip()
    assert export_text(clf, spacing=1) == expected_report

    X_l = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, 1]]
    y_l = [-1, -1, -1, 1, 1, 1, 2]
    clf = DecisionTreeClassifier(max_depth=4, random_state=0)
    clf.fit(X_l, y_l)
    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- class: -1
    |--- feature_1 >  0.00
    |   |--- truncated branch of depth 2
    """).lstrip()
    assert export_text(clf, max_depth=0) == expected_report

    X_mo = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
    y_mo = [[-1, -1], [-1, -1], [-1, -1], [1, 1], [1, 1], [1, 1]]

    reg = DecisionTreeRegressor(max_depth=2, random_state=0)
    reg.fit(X_mo, y_mo)

    expected_report = dedent("""
    |--- feature_1 <= 0.0
    |   |--- value: [-1.0, -1.0]
    |--- feature_1 >  0.0
    |   |--- value: [1.0, 1.0]
    """).lstrip()
    assert export_text(reg, decimals=1) == expected_report
    assert export_text(reg, decimals=1, show_weights=True) == expected_report

    X_single = [[-2], [-1], [-1], [1], [1], [2]]
    reg = DecisionTreeRegressor(max_depth=2, random_state=0)
    reg.fit(X_single, y_mo)

    expected_report = dedent("""
    |--- first <= 0.0
    |   |--- value: [-1.0, -1.0]
    |--- first >  0.0
    |   |--- value: [1.0, 1.0]
    """).lstrip()
    assert export_text(reg, decimals=1, feature_names=["first"]) == expected_report
    assert (
        export_text(reg, decimals=1, show_weights=True, feature_names=["first"])
        == expected_report
    )


@pytest.mark.parametrize("constructor", [list, np.array])
def test_export_text_feature_class_names_array_support(constructor):
    # Check that export_graphviz treats feature names
    # and class names correctly and supports arrays
    clf = DecisionTreeClassifier(max_depth=2, random_state=0)
    clf.fit(X, y)

    expected_report = dedent("""
    |--- b <= 0.00
    |   |--- class: -1
    |--- b >  0.00
    |   |--- class: 1
    """).lstrip()
    assert export_text(clf, feature_names=constructor(["a", "b"])) == expected_report

    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- class: cat
    |--- feature_1 >  0.00
    |   |--- class: dog
    """).lstrip()
    assert export_text(clf, class_names=constructor(["cat", "dog"])) == expected_report


def test_plot_tree_entropy(pyplot):
    # mostly smoke tests
    # Check correctness of export_graphviz for criterion = entropy
    clf = DecisionTreeClassifier(
        max_depth=3, min_samples_split=2, criterion="entropy", random_state=2
    )
    clf.fit(X, y)

    # Test export code
    feature_names = ["first feat", "sepal_width"]
    nodes = plot_tree(clf, feature_names=feature_names)
    assert len(nodes) == 3
    assert (
        nodes[0].get_text()
        == "first feat <= 0.0\nentropy = 1.0\nsamples = 6\nvalue = [3, 3]"
    )
    assert nodes[1].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [3, 0]"
    assert nodes[2].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [0, 3]"


def test_plot_tree_gini(pyplot):
    # mostly smoke tests
    # Check correctness of export_graphviz for criterion = gini
    clf = DecisionTreeClassifier(
        max_depth=3, min_samples_split=2, criterion="gini", random_state=2
    )
    clf.fit(X, y)

    # Test export code
    feature_names = ["first feat", "sepal_width"]
    nodes = plot_tree(clf, feature_names=feature_names)
    assert len(nodes) == 3
    assert (
        nodes[0].get_text()
        == "first feat <= 0.0\ngini = 0.5\nsamples = 6\nvalue = [3, 3]"
    )
    assert nodes[1].get_text() == "gini = 0.0\nsamples = 3\nvalue = [3, 0]"
    assert nodes[2].get_text() == "gini = 0.0\nsamples = 3\nvalue = [0, 3]"


def test_not_fitted_tree(pyplot):
    # Testing if not fitted tree throws the correct error
    clf = DecisionTreeRegressor()
    with pytest.raises(NotFittedError):
        plot_tree(clf)