1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
"""
Testing for export functions of decision trees (sklearn.tree.export).
"""
from io import StringIO
from re import finditer, search
from textwrap import dedent
import numpy as np
import pytest
from numpy.random import RandomState
from sklearn.base import is_classifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.tree import (
DecisionTreeClassifier,
DecisionTreeRegressor,
export_graphviz,
export_text,
plot_tree,
)
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]]
w = [1, 1, 1, 0.5, 0.5, 0.5]
y_degraded = [1, 1, 1, 1, 1, 1]
def test_graphviz_toy():
# Check correctness of export_graphviz
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test export code
contents1 = export_graphviz(clf, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test plot_options
contents1 = export_graphviz(
clf,
filled=True,
impurity=False,
proportion=True,
special_characters=True,
rounded=True,
out_file=None,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
'edge [fontname="sans"] ;\n'
"0 [label=<x<SUB>0</SUB> ≤ 0.0<br/>samples = 100.0%<br/>"
'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n'
"1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, "
'fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
"2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, "
'fillcolor="#399de5"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test max_depth
contents1 = export_graphviz(clf, max_depth=0, class_names=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = y[0]"] ;\n'
'1 [label="(...)"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test max_depth with plot_options
contents1 = export_graphviz(
clf, max_depth=0, filled=True, out_file=None, node_ids=True
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="node #0\\nx[0] <= 0.0\\ngini = 0.5\\n'
'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n'
'1 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test multi-output with weighted samples
clf = DecisionTreeClassifier(
max_depth=2, min_samples_split=2, criterion="gini", random_state=2
)
clf = clf.fit(X, y2, sample_weight=w)
contents1 = export_graphviz(clf, filled=True, impurity=False, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\nsamples = 6\\n'
"value = [[3.0, 1.5, 0.0]\\n"
'[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n'
'1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n'
'[3, 0, 0]]", fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="x[0] <= 1.5\\nsamples = 3\\n'
"value = [[0.0, 1.5, 0.0]\\n"
'[0.0, 1.0, 0.5]]", fillcolor="#f1bd97"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
'3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n'
'[0, 1, 0]]", fillcolor="#e58139"] ;\n'
"2 -> 3 ;\n"
'4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n'
'[0.0, 0.0, 0.5]]", fillcolor="#e58139"] ;\n'
"2 -> 4 ;\n"
"}"
)
assert contents1 == contents2
# Test regression output with plot_options
clf = DecisionTreeRegressor(
max_depth=3, min_samples_split=2, criterion="squared_error", random_state=2
)
clf.fit(X, y)
contents1 = export_graphviz(
clf,
filled=True,
leaves_parallel=True,
out_file=None,
rotate=True,
rounded=True,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
"graph [ranksep=equally, splines=polyline] ;\n"
'edge [fontname="sans"] ;\n'
"rankdir=LR ;\n"
'0 [label="x[0] <= 0.0\\nsquared_error = 1.0\\nsamples = 6\\n'
'value = 0.0", fillcolor="#f2c09c"] ;\n'
'1 [label="squared_error = 0.0\\nsamples = 3\\'
'nvalue = -1.0", '
'fillcolor="#ffffff"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=-45, "
'headlabel="True"] ;\n'
'2 [label="squared_error = 0.0\\nsamples = 3\\nvalue = 1.0", '
'fillcolor="#e58139"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=45, "
'headlabel="False"] ;\n'
"{rank=same ; 0} ;\n"
"{rank=same ; 1; 2} ;\n"
"}"
)
assert contents1 == contents2
# Test classifier with degraded learning set
clf = DecisionTreeClassifier(max_depth=3)
clf.fit(X, y_degraded)
contents1 = export_graphviz(clf, filled=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", '
'fillcolor="#ffffff"] ;\n'
"}"
)
@pytest.mark.parametrize("constructor", [list, np.array])
def test_graphviz_feature_class_names_array_support(constructor):
# Check that export_graphviz treats feature names
# and class names correctly and supports arrays
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test with feature_names
contents1 = export_graphviz(
clf, feature_names=constructor(["feature0", "feature1"]), out_file=None
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test with class_names
contents1 = export_graphviz(
clf, class_names=constructor(["yes", "no"]), out_file=None
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = yes"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n'
'class = yes"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n'
'class = no"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
def test_graphviz_errors():
# Check for errors of export_graphviz
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)
# Check not-fitted decision tree error
out = StringIO()
with pytest.raises(NotFittedError):
export_graphviz(clf, out)
clf.fit(X, y)
# Check if it errors when length of feature_names
# mismatches with number of features
message = "Length of feature_names, 1 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a"])
message = "Length of feature_names, 3 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a", "b", "c"])
# Check error when argument is not an estimator
message = "is not an estimator instance"
with pytest.raises(TypeError, match=message):
export_graphviz(clf.fit(X, y).tree_)
# Check class_names error
out = StringIO()
with pytest.raises(IndexError):
export_graphviz(clf, out, class_names=[])
def test_friedman_mse_in_graphviz():
clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
clf.fit(X, y)
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data)
clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
clf.fit(X, y)
for estimator in clf.estimators_:
export_graphviz(estimator[0], out_file=dot_data)
for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
assert "friedman_mse" in finding.group()
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)), rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5,)), rng_clf.randint(2, size=(1000,))),
(
DecisionTreeRegressor(
criterion="friedman_mse", random_state=0, max_depth=1
),
DecisionTreeClassifier(max_depth=1, random_state=0),
),
):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(
clf, out_file=None, precision=precision, proportion=True
)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) <= precision + 1
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
def test_export_text_errors():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
err_msg = "feature_names must contain 2 elements, got 1"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, feature_names=["a"])
err_msg = (
"When `class_names` is an array, it should contain as"
" many items as `decision_tree.classes_`. Got 1 while"
" the tree was fitted with 2 classes."
)
with pytest.raises(ValueError, match=err_msg):
export_text(clf, class_names=["a"])
def test_export_text():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
expected_report = dedent("""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- class: 1
""").lstrip()
assert export_text(clf) == expected_report
# testing that leaves at level 1 are not truncated
assert export_text(clf, max_depth=0) == expected_report
# testing that the rest of the tree is truncated
assert export_text(clf, max_depth=10) == expected_report
expected_report = dedent("""
|--- feature_1 <= 0.00
| |--- weights: [3.00, 0.00] class: -1
|--- feature_1 > 0.00
| |--- weights: [0.00, 3.00] class: 1
""").lstrip()
assert export_text(clf, show_weights=True) == expected_report
expected_report = dedent("""
|- feature_1 <= 0.00
| |- class: -1
|- feature_1 > 0.00
| |- class: 1
""").lstrip()
assert export_text(clf, spacing=1) == expected_report
X_l = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, 1]]
y_l = [-1, -1, -1, 1, 1, 1, 2]
clf = DecisionTreeClassifier(max_depth=4, random_state=0)
clf.fit(X_l, y_l)
expected_report = dedent("""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- truncated branch of depth 2
""").lstrip()
assert export_text(clf, max_depth=0) == expected_report
X_mo = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y_mo = [[-1, -1], [-1, -1], [-1, -1], [1, 1], [1, 1], [1, 1]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_mo, y_mo)
expected_report = dedent("""
|--- feature_1 <= 0.0
| |--- value: [-1.0, -1.0]
|--- feature_1 > 0.0
| |--- value: [1.0, 1.0]
""").lstrip()
assert export_text(reg, decimals=1) == expected_report
assert export_text(reg, decimals=1, show_weights=True) == expected_report
X_single = [[-2], [-1], [-1], [1], [1], [2]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_single, y_mo)
expected_report = dedent("""
|--- first <= 0.0
| |--- value: [-1.0, -1.0]
|--- first > 0.0
| |--- value: [1.0, 1.0]
""").lstrip()
assert export_text(reg, decimals=1, feature_names=["first"]) == expected_report
assert (
export_text(reg, decimals=1, show_weights=True, feature_names=["first"])
== expected_report
)
@pytest.mark.parametrize("constructor", [list, np.array])
def test_export_text_feature_class_names_array_support(constructor):
# Check that export_graphviz treats feature names
# and class names correctly and supports arrays
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
expected_report = dedent("""
|--- b <= 0.00
| |--- class: -1
|--- b > 0.00
| |--- class: 1
""").lstrip()
assert export_text(clf, feature_names=constructor(["a", "b"])) == expected_report
expected_report = dedent("""
|--- feature_1 <= 0.00
| |--- class: cat
|--- feature_1 > 0.00
| |--- class: dog
""").lstrip()
assert export_text(clf, class_names=constructor(["cat", "dog"])) == expected_report
def test_plot_tree_entropy(pyplot):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = entropy
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="entropy", random_state=2
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names)
assert len(nodes) == 3
assert (
nodes[0].get_text()
== "first feat <= 0.0\nentropy = 1.0\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [0, 3]"
def test_plot_tree_gini(pyplot):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = gini
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names)
assert len(nodes) == 3
assert (
nodes[0].get_text()
== "first feat <= 0.0\ngini = 0.5\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "gini = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "gini = 0.0\nsamples = 3\nvalue = [0, 3]"
def test_not_fitted_tree(pyplot):
# Testing if not fitted tree throws the correct error
clf = DecisionTreeRegressor()
with pytest.raises(NotFittedError):
plot_tree(clf)
|