1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
|
"""
Testing for the tree module (sklearn.tree).
"""
import copy
import copyreg
import io
import pickle
import struct
from itertools import chain, product
import joblib
import numpy as np
import pytest
from joblib.numpy_pickle import NumpyPickler
from numpy.testing import assert_allclose
from sklearn import clone, datasets, tree
from sklearn.dummy import DummyRegressor
from sklearn.exceptions import NotFittedError
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, mean_poisson_deviance, mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.random_projection import _sparse_random_matrix
from sklearn.tree import (
DecisionTreeClassifier,
DecisionTreeRegressor,
ExtraTreeClassifier,
ExtraTreeRegressor,
)
from sklearn.tree._classes import (
CRITERIA_CLF,
CRITERIA_REG,
DENSE_SPLITTERS,
SPARSE_SPLITTERS,
)
from sklearn.tree._tree import (
NODE_DTYPE,
TREE_LEAF,
TREE_UNDEFINED,
_check_n_classes,
_check_node_ndarray,
_check_value_ndarray,
)
from sklearn.tree._tree import Tree as CythonTree
from sklearn.utils import _IS_32BIT, compute_sample_weight
from sklearn.utils._testing import (
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
create_memmap_backed_data,
ignore_warnings,
skip_if_32bit,
)
from sklearn.utils.estimator_checks import check_sample_weights_invariance
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS
from sklearn.utils.validation import check_random_state
CLF_CRITERIONS = ("gini", "log_loss")
REG_CRITERIONS = ("squared_error", "absolute_error", "friedman_mse", "poisson")
CLF_TREES = {
"DecisionTreeClassifier": DecisionTreeClassifier,
"ExtraTreeClassifier": ExtraTreeClassifier,
}
REG_TREES = {
"DecisionTreeRegressor": DecisionTreeRegressor,
"ExtraTreeRegressor": ExtraTreeRegressor,
}
ALL_TREES: dict = dict()
ALL_TREES.update(CLF_TREES)
ALL_TREES.update(REG_TREES)
SPARSE_TREES = [
"DecisionTreeClassifier",
"DecisionTreeRegressor",
"ExtraTreeClassifier",
"ExtraTreeRegressor",
]
X_small = np.array(
[
[0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0],
[0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1],
[-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1],
[-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1],
[-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1],
[-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1],
[2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1],
[2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1],
[2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1],
[2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0],
[2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0],
[2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0],
[2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0],
[1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0],
[3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1],
[2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1],
[2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1],
[2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1],
[2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1],
[2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1],
[2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1],
[1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1],
[3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0],
]
)
y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]
y_small_reg = [
1.0,
2.1,
1.2,
0.05,
10,
2.4,
3.1,
1.01,
0.01,
2.98,
3.1,
1.1,
0.0,
1.2,
2,
11,
0,
0,
4.5,
0.201,
1.06,
0.9,
0,
]
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = np.random.RandomState(1)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# also load the diabetes dataset
# and randomly permute it
diabetes = datasets.load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]
digits = datasets.load_digits()
perm = rng.permutation(digits.target.size)
digits.data = digits.data[perm]
digits.target = digits.target[perm]
random_state = check_random_state(0)
X_multilabel, y_multilabel = datasets.make_multilabel_classification(
random_state=0, n_samples=30, n_features=10
)
# NB: despite their names X_sparse_* are numpy arrays (and not sparse matrices)
X_sparse_pos = random_state.uniform(size=(20, 5))
X_sparse_pos[X_sparse_pos <= 0.8] = 0.0
y_random = random_state.randint(0, 4, size=(20,))
X_sparse_mix = _sparse_random_matrix(20, 10, density=0.25, random_state=0).toarray()
DATASETS = {
"iris": {"X": iris.data, "y": iris.target},
"diabetes": {"X": diabetes.data, "y": diabetes.target},
"digits": {"X": digits.data, "y": digits.target},
"toy": {"X": X, "y": y},
"clf_small": {"X": X_small, "y": y_small},
"reg_small": {"X": X_small, "y": y_small_reg},
"multilabel": {"X": X_multilabel, "y": y_multilabel},
"sparse-pos": {"X": X_sparse_pos, "y": y_random},
"sparse-neg": {"X": -X_sparse_pos, "y": y_random},
"sparse-mix": {"X": X_sparse_mix, "y": y_random},
"zeros": {"X": np.zeros((20, 3)), "y": y_random},
}
def assert_tree_equal(d, s, message):
assert (
s.node_count == d.node_count
), "{0}: inequal number of node ({1} != {2})".format(
message, s.node_count, d.node_count
)
assert_array_equal(
d.children_right, s.children_right, message + ": inequal children_right"
)
assert_array_equal(
d.children_left, s.children_left, message + ": inequal children_left"
)
external = d.children_right == TREE_LEAF
internal = np.logical_not(external)
assert_array_equal(
d.feature[internal], s.feature[internal], message + ": inequal features"
)
assert_array_equal(
d.threshold[internal], s.threshold[internal], message + ": inequal threshold"
)
assert_array_equal(
d.n_node_samples.sum(),
s.n_node_samples.sum(),
message + ": inequal sum(n_node_samples)",
)
assert_array_equal(
d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples"
)
assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity")
assert_array_almost_equal(
d.value[external], s.value[external], err_msg=message + ": inequal value"
)
def test_classification_toy():
# Check classification on a toy dataset.
for name, Tree in CLF_TREES.items():
clf = Tree(random_state=0)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name))
clf = Tree(max_features=1, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name))
def test_weighted_classification_toy():
# Check classification on a weighted toy dataset.
for name, Tree in CLF_TREES.items():
clf = Tree(random_state=0)
clf.fit(X, y, sample_weight=np.ones(len(X)))
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name))
clf.fit(X, y, sample_weight=np.full(len(X), 0.5))
assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name))
@pytest.mark.parametrize("Tree", REG_TREES.values())
@pytest.mark.parametrize("criterion", REG_CRITERIONS)
def test_regression_toy(Tree, criterion):
# Check regression on a toy dataset.
if criterion == "poisson":
# make target positive while not touching the original y and
# true_result
a = np.abs(np.min(y)) + 1
y_train = np.array(y) + a
y_test = np.array(true_result) + a
else:
y_train = y
y_test = true_result
reg = Tree(criterion=criterion, random_state=1)
reg.fit(X, y_train)
assert_allclose(reg.predict(T), y_test)
clf = Tree(criterion=criterion, max_features=1, random_state=1)
clf.fit(X, y_train)
assert_allclose(reg.predict(T), y_test)
def test_xor():
# Check on a XOR problem
y = np.zeros((10, 10))
y[:5, :5] = 1
y[5:, 5:] = 1
gridx, gridy = np.indices(y.shape)
X = np.vstack([gridx.ravel(), gridy.ravel()]).T
y = y.ravel()
for name, Tree in CLF_TREES.items():
clf = Tree(random_state=0)
clf.fit(X, y)
assert clf.score(X, y) == 1.0, "Failed with {0}".format(name)
clf = Tree(random_state=0, max_features=1)
clf.fit(X, y)
assert clf.score(X, y) == 1.0, "Failed with {0}".format(name)
def test_iris():
# Check consistency on dataset iris.
for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS):
clf = Tree(criterion=criterion, random_state=0)
clf.fit(iris.data, iris.target)
score = accuracy_score(clf.predict(iris.data), iris.target)
assert score > 0.9, "Failed with {0}, criterion = {1} and score = {2}".format(
name, criterion, score
)
clf = Tree(criterion=criterion, max_features=2, random_state=0)
clf.fit(iris.data, iris.target)
score = accuracy_score(clf.predict(iris.data), iris.target)
assert score > 0.5, "Failed with {0}, criterion = {1} and score = {2}".format(
name, criterion, score
)
@pytest.mark.parametrize("name, Tree", REG_TREES.items())
@pytest.mark.parametrize("criterion", REG_CRITERIONS)
def test_diabetes_overfit(name, Tree, criterion):
# check consistency of overfitted trees on the diabetes dataset
# since the trees will overfit, we expect an MSE of 0
reg = Tree(criterion=criterion, random_state=0)
reg.fit(diabetes.data, diabetes.target)
score = mean_squared_error(diabetes.target, reg.predict(diabetes.data))
assert score == pytest.approx(
0
), f"Failed with {name}, criterion = {criterion} and score = {score}"
@skip_if_32bit
@pytest.mark.parametrize("name, Tree", REG_TREES.items())
@pytest.mark.parametrize(
"criterion, max_depth, metric, max_loss",
[
("squared_error", 15, mean_squared_error, 60),
("absolute_error", 20, mean_squared_error, 60),
("friedman_mse", 15, mean_squared_error, 60),
("poisson", 15, mean_poisson_deviance, 30),
],
)
def test_diabetes_underfit(name, Tree, criterion, max_depth, metric, max_loss):
# check consistency of trees when the depth and the number of features are
# limited
reg = Tree(criterion=criterion, max_depth=max_depth, max_features=6, random_state=0)
reg.fit(diabetes.data, diabetes.target)
loss = metric(diabetes.target, reg.predict(diabetes.data))
assert 0 < loss < max_loss
def test_probability():
# Predict probabilities using DecisionTreeClassifier.
for name, Tree in CLF_TREES.items():
clf = Tree(max_depth=1, max_features=1, random_state=42)
clf.fit(iris.data, iris.target)
prob_predict = clf.predict_proba(iris.data)
assert_array_almost_equal(
np.sum(prob_predict, 1),
np.ones(iris.data.shape[0]),
err_msg="Failed with {0}".format(name),
)
assert_array_equal(
np.argmax(prob_predict, 1),
clf.predict(iris.data),
err_msg="Failed with {0}".format(name),
)
assert_almost_equal(
clf.predict_proba(iris.data),
np.exp(clf.predict_log_proba(iris.data)),
8,
err_msg="Failed with {0}".format(name),
)
def test_arrayrepr():
# Check the array representation.
# Check resize
X = np.arange(10000)[:, np.newaxis]
y = np.arange(10000)
for name, Tree in REG_TREES.items():
reg = Tree(max_depth=None, random_state=0)
reg.fit(X, y)
def test_pure_set():
# Check when y is pure.
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [1, 1, 1, 1, 1, 1]
for name, TreeClassifier in CLF_TREES.items():
clf = TreeClassifier(random_state=0)
clf.fit(X, y)
assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name))
for name, TreeRegressor in REG_TREES.items():
reg = TreeRegressor(random_state=0)
reg.fit(X, y)
assert_almost_equal(reg.predict(X), y, err_msg="Failed with {0}".format(name))
def test_numerical_stability():
# Check numerical stability.
X = np.array(
[
[152.08097839, 140.40744019, 129.75102234, 159.90493774],
[142.50700378, 135.81935120, 117.82884979, 162.75781250],
[127.28772736, 140.40744019, 129.75102234, 159.90493774],
[132.37025452, 143.71923828, 138.35694885, 157.84558105],
[103.10237122, 143.71928406, 138.35696411, 157.84559631],
[127.71276855, 143.71923828, 138.35694885, 157.84558105],
[120.91514587, 140.40744019, 129.75102234, 159.90493774],
]
)
y = np.array([1.0, 0.70209277, 0.53896582, 0.0, 0.90914464, 0.48026916, 0.49622521])
with np.errstate(all="raise"):
for name, Tree in REG_TREES.items():
reg = Tree(random_state=0)
reg.fit(X, y)
reg.fit(X, -y)
reg.fit(-X, y)
reg.fit(-X, -y)
def test_importances():
# Check variable importances.
X, y = datasets.make_classification(
n_samples=5000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
for name, Tree in CLF_TREES.items():
clf = Tree(random_state=0)
clf.fit(X, y)
importances = clf.feature_importances_
n_important = np.sum(importances > 0.1)
assert importances.shape[0] == 10, "Failed with {0}".format(name)
assert n_important == 3, "Failed with {0}".format(name)
# Check on iris that importances are the same for all builders
clf = DecisionTreeClassifier(random_state=0)
clf.fit(iris.data, iris.target)
clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data))
clf2.fit(iris.data, iris.target)
assert_array_equal(clf.feature_importances_, clf2.feature_importances_)
def test_importances_raises():
# Check if variable importance before fit raises ValueError.
clf = DecisionTreeClassifier()
with pytest.raises(ValueError):
getattr(clf, "feature_importances_")
def test_importances_gini_equal_squared_error():
# Check that gini is equivalent to squared_error for binary output variable
X, y = datasets.make_classification(
n_samples=2000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=0,
)
# The gini index and the mean square error (variance) might differ due
# to numerical instability. Since those instabilities mainly occurs at
# high tree depth, we restrict this maximal depth.
clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(
X, y
)
reg = DecisionTreeRegressor(
criterion="squared_error", max_depth=5, random_state=0
).fit(X, y)
assert_almost_equal(clf.feature_importances_, reg.feature_importances_)
assert_array_equal(clf.tree_.feature, reg.tree_.feature)
assert_array_equal(clf.tree_.children_left, reg.tree_.children_left)
assert_array_equal(clf.tree_.children_right, reg.tree_.children_right)
assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples)
def test_max_features():
# Check max_features.
for name, TreeEstimator in ALL_TREES.items():
est = TreeEstimator(max_features="sqrt")
est.fit(iris.data, iris.target)
assert est.max_features_ == int(np.sqrt(iris.data.shape[1]))
est = TreeEstimator(max_features="log2")
est.fit(iris.data, iris.target)
assert est.max_features_ == int(np.log2(iris.data.shape[1]))
est = TreeEstimator(max_features=1)
est.fit(iris.data, iris.target)
assert est.max_features_ == 1
est = TreeEstimator(max_features=3)
est.fit(iris.data, iris.target)
assert est.max_features_ == 3
est = TreeEstimator(max_features=0.01)
est.fit(iris.data, iris.target)
assert est.max_features_ == 1
est = TreeEstimator(max_features=0.5)
est.fit(iris.data, iris.target)
assert est.max_features_ == int(0.5 * iris.data.shape[1])
est = TreeEstimator(max_features=1.0)
est.fit(iris.data, iris.target)
assert est.max_features_ == iris.data.shape[1]
est = TreeEstimator(max_features=None)
est.fit(iris.data, iris.target)
assert est.max_features_ == iris.data.shape[1]
def test_error():
# Test that it gives proper exception on deficient input.
for name, TreeEstimator in CLF_TREES.items():
# predict before fit
est = TreeEstimator()
with pytest.raises(NotFittedError):
est.predict_proba(X)
est.fit(X, y)
X2 = [[-2, -1, 1]] # wrong feature shape for sample
with pytest.raises(ValueError):
est.predict_proba(X2)
# Wrong dimensions
est = TreeEstimator()
y2 = y[:-1]
with pytest.raises(ValueError):
est.fit(X, y2)
# Test with arrays that are non-contiguous.
Xf = np.asfortranarray(X)
est = TreeEstimator()
est.fit(Xf, y)
assert_almost_equal(est.predict(T), true_result)
# predict before fitting
est = TreeEstimator()
with pytest.raises(NotFittedError):
est.predict(T)
# predict on vector with different dims
est.fit(X, y)
t = np.asarray(T)
with pytest.raises(ValueError):
est.predict(t[:, 1:])
# wrong sample shape
Xt = np.array(X).T
est = TreeEstimator()
est.fit(np.dot(X, Xt), y)
with pytest.raises(ValueError):
est.predict(X)
with pytest.raises(ValueError):
est.apply(X)
clf = TreeEstimator()
clf.fit(X, y)
with pytest.raises(ValueError):
clf.predict(Xt)
with pytest.raises(ValueError):
clf.apply(Xt)
# apply before fitting
est = TreeEstimator()
with pytest.raises(NotFittedError):
est.apply(T)
# non positive target for Poisson splitting Criterion
est = DecisionTreeRegressor(criterion="poisson")
with pytest.raises(ValueError, match="y is not positive.*Poisson"):
est.fit([[0, 1, 2]], [0, 0, 0])
with pytest.raises(ValueError, match="Some.*y are negative.*Poisson"):
est.fit([[0, 1, 2]], [5, -0.1, 2])
def test_min_samples_split():
"""Test min_samples_split parameter"""
X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE)
y = iris.target
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
TreeEstimator = ALL_TREES[name]
# test for integer parameter
est = TreeEstimator(
min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y)
# count samples on nodes, -1 means it is a leaf
node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1]
assert np.min(node_samples) > 9, "Failed with {0}".format(name)
# test for float parameter
est = TreeEstimator(
min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y)
# count samples on nodes, -1 means it is a leaf
node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1]
assert np.min(node_samples) > 9, "Failed with {0}".format(name)
def test_min_samples_leaf():
# Test if leaves contain more than leaf_count training examples
X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE)
y = iris.target
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
TreeEstimator = ALL_TREES[name]
# test integer parameter
est = TreeEstimator(
min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y)
out = est.tree_.apply(X)
node_counts = np.bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert np.min(leaf_count) > 4, "Failed with {0}".format(name)
# test float parameter
est = TreeEstimator(
min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y)
out = est.tree_.apply(X)
node_counts = np.bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert np.min(leaf_count) > 4, "Failed with {0}".format(name)
def check_min_weight_fraction_leaf(name, datasets, sparse_container=None):
"""Test if leaves contain at least min_weight_fraction_leaf of the
training set"""
X = DATASETS[datasets]["X"].astype(np.float32)
if sparse_container is not None:
X = sparse_container(X)
y = DATASETS[datasets]["y"]
weights = rng.rand(X.shape[0])
total_weight = np.sum(weights)
TreeEstimator = ALL_TREES[name]
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)):
est = TreeEstimator(
min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y, sample_weight=weights)
if sparse_container is not None:
out = est.tree_.apply(X.tocsr())
else:
out = est.tree_.apply(X)
node_weights = np.bincount(out, weights=weights)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert (
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf
), "Failed with {0} min_weight_fraction_leaf={1}".format(
name, est.min_weight_fraction_leaf
)
# test case with no weights passed in
total_weight = X.shape[0]
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)):
est = TreeEstimator(
min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0
)
est.fit(X, y)
if sparse_container is not None:
out = est.tree_.apply(X.tocsr())
else:
out = est.tree_.apply(X)
node_weights = np.bincount(out)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert (
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf
), "Failed with {0} min_weight_fraction_leaf={1}".format(
name, est.min_weight_fraction_leaf
)
@pytest.mark.parametrize("name", ALL_TREES)
def test_min_weight_fraction_leaf_on_dense_input(name):
check_min_weight_fraction_leaf(name, "iris")
@pytest.mark.parametrize("name", SPARSE_TREES)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_min_weight_fraction_leaf_on_sparse_input(name, csc_container):
check_min_weight_fraction_leaf(name, "multilabel", sparse_container=csc_container)
def check_min_weight_fraction_leaf_with_min_samples_leaf(
name, datasets, sparse_container=None
):
"""Test the interaction between min_weight_fraction_leaf and
min_samples_leaf when sample_weights is not provided in fit."""
X = DATASETS[datasets]["X"].astype(np.float32)
if sparse_container is not None:
X = sparse_container(X)
y = DATASETS[datasets]["y"]
total_weight = X.shape[0]
TreeEstimator = ALL_TREES[name]
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)):
# test integer min_samples_leaf
est = TreeEstimator(
min_weight_fraction_leaf=frac,
max_leaf_nodes=max_leaf_nodes,
min_samples_leaf=5,
random_state=0,
)
est.fit(X, y)
if sparse_container is not None:
out = est.tree_.apply(X.tocsr())
else:
out = est.tree_.apply(X)
node_weights = np.bincount(out)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert np.min(leaf_weights) >= max(
(total_weight * est.min_weight_fraction_leaf), 5
), "Failed with {0} min_weight_fraction_leaf={1}, min_samples_leaf={2}".format(
name, est.min_weight_fraction_leaf, est.min_samples_leaf
)
for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)):
# test float min_samples_leaf
est = TreeEstimator(
min_weight_fraction_leaf=frac,
max_leaf_nodes=max_leaf_nodes,
min_samples_leaf=0.1,
random_state=0,
)
est.fit(X, y)
if sparse_container is not None:
out = est.tree_.apply(X.tocsr())
else:
out = est.tree_.apply(X)
node_weights = np.bincount(out)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert np.min(leaf_weights) >= max(
(total_weight * est.min_weight_fraction_leaf),
(total_weight * est.min_samples_leaf),
), "Failed with {0} min_weight_fraction_leaf={1}, min_samples_leaf={2}".format(
name, est.min_weight_fraction_leaf, est.min_samples_leaf
)
@pytest.mark.parametrize("name", ALL_TREES)
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input(name):
check_min_weight_fraction_leaf_with_min_samples_leaf(name, "iris")
@pytest.mark.parametrize("name", SPARSE_TREES)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input(
name, csc_container
):
check_min_weight_fraction_leaf_with_min_samples_leaf(
name, "multilabel", sparse_container=csc_container
)
def test_min_impurity_decrease(global_random_seed):
# test if min_impurity_decrease ensure that a split is made only if
# if the impurity decrease is at least that value
X, y = datasets.make_classification(n_samples=100, random_state=global_random_seed)
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
TreeEstimator = ALL_TREES[name]
# Check default value of min_impurity_decrease, 1e-7
est1 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0)
# Check with explicit value of 0.05
est2 = TreeEstimator(
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.05, random_state=0
)
# Check with a much lower value of 0.0001
est3 = TreeEstimator(
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.0001, random_state=0
)
# Check with a much lower value of 0.1
est4 = TreeEstimator(
max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.1, random_state=0
)
for est, expected_decrease in (
(est1, 1e-7),
(est2, 0.05),
(est3, 0.0001),
(est4, 0.1),
):
assert (
est.min_impurity_decrease <= expected_decrease
), "Failed, min_impurity_decrease = {0} > {1}".format(
est.min_impurity_decrease, expected_decrease
)
est.fit(X, y)
for node in range(est.tree_.node_count):
# If current node is a not leaf node, check if the split was
# justified w.r.t the min_impurity_decrease
if est.tree_.children_left[node] != TREE_LEAF:
imp_parent = est.tree_.impurity[node]
wtd_n_node = est.tree_.weighted_n_node_samples[node]
left = est.tree_.children_left[node]
wtd_n_left = est.tree_.weighted_n_node_samples[left]
imp_left = est.tree_.impurity[left]
wtd_imp_left = wtd_n_left * imp_left
right = est.tree_.children_right[node]
wtd_n_right = est.tree_.weighted_n_node_samples[right]
imp_right = est.tree_.impurity[right]
wtd_imp_right = wtd_n_right * imp_right
wtd_avg_left_right_imp = wtd_imp_right + wtd_imp_left
wtd_avg_left_right_imp /= wtd_n_node
fractional_node_weight = (
est.tree_.weighted_n_node_samples[node] / X.shape[0]
)
actual_decrease = fractional_node_weight * (
imp_parent - wtd_avg_left_right_imp
)
assert (
actual_decrease >= expected_decrease
), "Failed with {0} expected min_impurity_decrease={1}".format(
actual_decrease, expected_decrease
)
def test_pickle():
"""Test pickling preserves Tree properties and performance."""
for name, TreeEstimator in ALL_TREES.items():
if "Classifier" in name:
X, y = iris.data, iris.target
else:
X, y = diabetes.data, diabetes.target
est = TreeEstimator(random_state=0)
est.fit(X, y)
score = est.score(X, y)
# test that all class properties are maintained
attributes = [
"max_depth",
"node_count",
"capacity",
"n_classes",
"children_left",
"children_right",
"n_leaves",
"feature",
"threshold",
"impurity",
"n_node_samples",
"weighted_n_node_samples",
"value",
]
fitted_attribute = {
attribute: getattr(est.tree_, attribute) for attribute in attributes
}
serialized_object = pickle.dumps(est)
est2 = pickle.loads(serialized_object)
assert type(est2) == est.__class__
score2 = est2.score(X, y)
assert (
score == score2
), "Failed to generate same score after pickling with {0}".format(name)
for attribute in fitted_attribute:
assert_array_equal(
getattr(est2.tree_, attribute),
fitted_attribute[attribute],
err_msg=(
f"Failed to generate same attribute {attribute} after pickling with"
f" {name}"
),
)
def test_multioutput():
# Check estimators on multi-output problems.
X = [
[-2, -1],
[-1, -1],
[-1, -2],
[1, 1],
[1, 2],
[2, 1],
[-2, 1],
[-1, 1],
[-1, 2],
[2, -1],
[1, -1],
[1, -2],
]
y = [
[-1, 0],
[-1, 0],
[-1, 0],
[1, 1],
[1, 1],
[1, 1],
[-1, 2],
[-1, 2],
[-1, 2],
[1, 3],
[1, 3],
[1, 3],
]
T = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]]
# toy classification problem
for name, TreeClassifier in CLF_TREES.items():
clf = TreeClassifier(random_state=0)
y_hat = clf.fit(X, y).predict(T)
assert_array_equal(y_hat, y_true)
assert y_hat.shape == (4, 2)
proba = clf.predict_proba(T)
assert len(proba) == 2
assert proba[0].shape == (4, 2)
assert proba[1].shape == (4, 4)
log_proba = clf.predict_log_proba(T)
assert len(log_proba) == 2
assert log_proba[0].shape == (4, 2)
assert log_proba[1].shape == (4, 4)
# toy regression problem
for name, TreeRegressor in REG_TREES.items():
reg = TreeRegressor(random_state=0)
y_hat = reg.fit(X, y).predict(T)
assert_almost_equal(y_hat, y_true)
assert y_hat.shape == (4, 2)
def test_classes_shape():
# Test that n_classes_ and classes_ have proper shape.
for name, TreeClassifier in CLF_TREES.items():
# Classification, single output
clf = TreeClassifier(random_state=0)
clf.fit(X, y)
assert clf.n_classes_ == 2
assert_array_equal(clf.classes_, [-1, 1])
# Classification, multi-output
_y = np.vstack((y, np.array(y) * 2)).T
clf = TreeClassifier(random_state=0)
clf.fit(X, _y)
assert len(clf.n_classes_) == 2
assert len(clf.classes_) == 2
assert_array_equal(clf.n_classes_, [2, 2])
assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]])
def test_unbalanced_iris():
# Check class rebalancing.
unbalanced_X = iris.data[:125]
unbalanced_y = iris.target[:125]
sample_weight = compute_sample_weight("balanced", unbalanced_y)
for name, TreeClassifier in CLF_TREES.items():
clf = TreeClassifier(random_state=0)
clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight)
assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y)
def test_memory_layout():
# Check that it works no matter the memory layout
for (name, TreeEstimator), dtype in product(
ALL_TREES.items(), [np.float64, np.float32]
):
est = TreeEstimator(random_state=0)
# Nothing
X = np.asarray(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# C-order
X = np.asarray(iris.data, order="C", dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# F-order
X = np.asarray(iris.data, order="F", dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# Contiguous
X = np.ascontiguousarray(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# csr
for csr_container in CSR_CONTAINERS:
X = csr_container(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# csc
for csc_container in CSC_CONTAINERS:
X = csc_container(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# Strided
X = np.asarray(iris.data[::3], dtype=dtype)
y = iris.target[::3]
assert_array_equal(est.fit(X, y).predict(X), y)
def test_sample_weight():
# Check sample weighting.
# Test that zero-weighted samples are not taken into account
X = np.arange(100)[:, np.newaxis]
y = np.ones(100)
y[:50] = 0.0
sample_weight = np.ones(100)
sample_weight[y == 0] = 0.0
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X, y, sample_weight=sample_weight)
assert_array_equal(clf.predict(X), np.ones(100))
# Test that low weighted samples are not taken into account at low depth
X = np.arange(200)[:, np.newaxis]
y = np.zeros(200)
y[50:100] = 1
y[100:200] = 2
X[100:200, 0] = 200
sample_weight = np.ones(200)
sample_weight[y == 2] = 0.51 # Samples of class '2' are still weightier
clf = DecisionTreeClassifier(max_depth=1, random_state=0)
clf.fit(X, y, sample_weight=sample_weight)
assert clf.tree_.threshold[0] == 149.5
sample_weight[y == 2] = 0.5 # Samples of class '2' are no longer weightier
clf = DecisionTreeClassifier(max_depth=1, random_state=0)
clf.fit(X, y, sample_weight=sample_weight)
assert clf.tree_.threshold[0] == 49.5 # Threshold should have moved
# Test that sample weighting is the same as having duplicates
X = iris.data
y = iris.target
duplicates = rng.randint(0, X.shape[0], 100)
clf = DecisionTreeClassifier(random_state=1)
clf.fit(X[duplicates], y[duplicates])
sample_weight = np.bincount(duplicates, minlength=X.shape[0])
clf2 = DecisionTreeClassifier(random_state=1)
clf2.fit(X, y, sample_weight=sample_weight)
internal = clf.tree_.children_left != tree._tree.TREE_LEAF
assert_array_almost_equal(
clf.tree_.threshold[internal], clf2.tree_.threshold[internal]
)
def test_sample_weight_invalid():
# Check sample weighting raises errors.
X = np.arange(100)[:, np.newaxis]
y = np.ones(100)
y[:50] = 0.0
clf = DecisionTreeClassifier(random_state=0)
sample_weight = np.random.rand(100, 1)
with pytest.raises(ValueError):
clf.fit(X, y, sample_weight=sample_weight)
sample_weight = np.array(0)
expected_err = r"Singleton.* cannot be considered a valid collection"
with pytest.raises(TypeError, match=expected_err):
clf.fit(X, y, sample_weight=sample_weight)
@pytest.mark.parametrize("name", CLF_TREES)
def test_class_weights(name):
# Test that class_weights resemble sample_weights behavior.
TreeClassifier = CLF_TREES[name]
# Iris is balanced, so no effect expected for using 'balanced' weights
clf1 = TreeClassifier(random_state=0)
clf1.fit(iris.data, iris.target)
clf2 = TreeClassifier(class_weight="balanced", random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Make a multi-output problem with three copies of Iris
iris_multi = np.vstack((iris.target, iris.target, iris.target)).T
# Create user-defined weights that should balance over the outputs
clf3 = TreeClassifier(
class_weight=[
{0: 2.0, 1: 2.0, 2: 1.0},
{0: 2.0, 1: 1.0, 2: 2.0},
{0: 1.0, 1: 2.0, 2: 2.0},
],
random_state=0,
)
clf3.fit(iris.data, iris_multi)
assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_)
# Check against multi-output "auto" which should also have no effect
clf4 = TreeClassifier(class_weight="balanced", random_state=0)
clf4.fit(iris.data, iris_multi)
assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_)
# Inflate importance of class 1, check against user-defined weights
sample_weight = np.ones(iris.target.shape)
sample_weight[iris.target == 1] *= 100
class_weight = {0: 1.0, 1: 100.0, 2: 1.0}
clf1 = TreeClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight)
clf2 = TreeClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Check that sample_weight and class_weight are multiplicative
clf1 = TreeClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight**2)
clf2 = TreeClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target, sample_weight)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
@pytest.mark.parametrize("name", CLF_TREES)
def test_class_weight_errors(name):
# Test if class_weight raises errors and warnings when expected.
TreeClassifier = CLF_TREES[name]
_y = np.vstack((y, np.array(y) * 2)).T
# Incorrect length list for multi-output
clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.0}], random_state=0)
err_msg = "number of elements in class_weight should match number of outputs."
with pytest.raises(ValueError, match=err_msg):
clf.fit(X, _y)
def test_max_leaf_nodes():
# Test greedy trees with max_depth + 1 leafs.
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
k = 4
for name, TreeEstimator in ALL_TREES.items():
est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y)
assert est.get_n_leaves() == k + 1
def test_max_leaf_nodes_max_depth():
# Test precedence of max_leaf_nodes over max_depth.
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
k = 4
for name, TreeEstimator in ALL_TREES.items():
est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y)
assert est.get_depth() == 1
def test_arrays_persist():
# Ensure property arrays' memory stays alive when tree disappears
# non-regression for #2726
for attr in [
"n_classes",
"value",
"children_left",
"children_right",
"threshold",
"impurity",
"feature",
"n_node_samples",
]:
value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr)
# if pointing to freed memory, contents may be arbitrary
assert -3 <= value.flat[0] < 3, "Array points to arbitrary memory"
def test_only_constant_features():
random_state = check_random_state(0)
X = np.zeros((10, 20))
y = random_state.randint(0, 2, (10,))
for name, TreeEstimator in ALL_TREES.items():
est = TreeEstimator(random_state=0)
est.fit(X, y)
assert est.tree_.max_depth == 0
def test_behaviour_constant_feature_after_splits():
X = np.transpose(
np.vstack(([[0, 0, 0, 0, 0, 1, 2, 4, 5, 6, 7]], np.zeros((4, 11))))
)
y = [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3]
for name, TreeEstimator in ALL_TREES.items():
# do not check extra random trees
if "ExtraTree" not in name:
est = TreeEstimator(random_state=0, max_features=1)
est.fit(X, y)
assert est.tree_.max_depth == 2
assert est.tree_.node_count == 5
def test_with_only_one_non_constant_features():
X = np.hstack([np.array([[1.0], [1.0], [0.0], [0.0]]), np.zeros((4, 1000))])
y = np.array([0.0, 1.0, 0.0, 1.0])
for name, TreeEstimator in CLF_TREES.items():
est = TreeEstimator(random_state=0, max_features=1)
est.fit(X, y)
assert est.tree_.max_depth == 1
assert_array_equal(est.predict_proba(X), np.full((4, 2), 0.5))
for name, TreeEstimator in REG_TREES.items():
est = TreeEstimator(random_state=0, max_features=1)
est.fit(X, y)
assert est.tree_.max_depth == 1
assert_array_equal(est.predict(X), np.full((4,), 0.5))
def test_big_input():
# Test if the warning for too large inputs is appropriate.
X = np.repeat(10**40.0, 4).astype(np.float64).reshape(-1, 1)
clf = DecisionTreeClassifier()
with pytest.raises(ValueError, match="float32"):
clf.fit(X, [0, 1, 0, 1])
def test_realloc():
from sklearn.tree._utils import _realloc_test
with pytest.raises(MemoryError):
_realloc_test()
def test_huge_allocations():
n_bits = 8 * struct.calcsize("P")
X = np.random.randn(10, 2)
y = np.random.randint(0, 2, 10)
# Sanity check: we cannot request more memory than the size of the address
# space. Currently raises OverflowError.
huge = 2 ** (n_bits + 1)
clf = DecisionTreeClassifier(splitter="best", max_leaf_nodes=huge)
with pytest.raises(Exception):
clf.fit(X, y)
# Non-regression test: MemoryError used to be dropped by Cython
# because of missing "except *".
huge = 2 ** (n_bits - 1) - 1
clf = DecisionTreeClassifier(splitter="best", max_leaf_nodes=huge)
with pytest.raises(MemoryError):
clf.fit(X, y)
def check_sparse_input(tree, dataset, max_depth=None):
TreeEstimator = ALL_TREES[tree]
X = DATASETS[dataset]["X"]
y = DATASETS[dataset]["y"]
# Gain testing time
if dataset in ["digits", "diabetes"]:
n_samples = X.shape[0] // 5
X = X[:n_samples]
y = y[:n_samples]
for sparse_container in COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS:
X_sparse = sparse_container(X)
# Check the default (depth first search)
d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y)
s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree),
)
y_pred = d.predict(X)
if tree in CLF_TREES:
y_proba = d.predict_proba(X)
y_log_proba = d.predict_log_proba(X)
for sparse_container_test in COO_CONTAINERS + CSR_CONTAINERS + CSC_CONTAINERS:
X_sparse_test = sparse_container_test(X_sparse, dtype=np.float32)
assert_array_almost_equal(s.predict(X_sparse_test), y_pred)
if tree in CLF_TREES:
assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba)
assert_array_almost_equal(
s.predict_log_proba(X_sparse_test), y_log_proba
)
@pytest.mark.parametrize("tree_type", SPARSE_TREES)
@pytest.mark.parametrize(
"dataset",
(
"clf_small",
"toy",
"digits",
"multilabel",
"sparse-pos",
"sparse-neg",
"sparse-mix",
"zeros",
),
)
def test_sparse_input(tree_type, dataset):
max_depth = 3 if dataset == "digits" else None
check_sparse_input(tree_type, dataset, max_depth)
@pytest.mark.parametrize("tree_type", sorted(set(SPARSE_TREES).intersection(REG_TREES)))
@pytest.mark.parametrize("dataset", ["diabetes", "reg_small"])
def test_sparse_input_reg_trees(tree_type, dataset):
# Due to numerical instability of MSE and too strict test, we limit the
# maximal depth
check_sparse_input(tree_type, dataset, 2)
@pytest.mark.parametrize("tree_type", SPARSE_TREES)
@pytest.mark.parametrize("dataset", ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"])
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_sparse_parameters(tree_type, dataset, csc_container):
TreeEstimator = ALL_TREES[tree_type]
X = DATASETS[dataset]["X"]
X_sparse = csc_container(X)
y = DATASETS[dataset]["y"]
# Check max_features
d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y)
s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree_type),
)
assert_array_almost_equal(s.predict(X), d.predict(X))
# Check min_samples_split
d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y)
s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(
X_sparse, y
)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree_type),
)
assert_array_almost_equal(s.predict(X), d.predict(X))
# Check min_samples_leaf
d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y)
s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(
X_sparse, y
)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree_type),
)
assert_array_almost_equal(s.predict(X), d.predict(X))
# Check best-first search
d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y)
s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree_type),
)
assert_array_almost_equal(s.predict(X), d.predict(X))
@pytest.mark.parametrize(
"tree_type, criterion",
list(product([tree for tree in SPARSE_TREES if tree in REG_TREES], REG_CRITERIONS))
+ list(
product([tree for tree in SPARSE_TREES if tree in CLF_TREES], CLF_CRITERIONS)
),
)
@pytest.mark.parametrize("dataset", ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"])
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_sparse_criteria(tree_type, dataset, csc_container, criterion):
TreeEstimator = ALL_TREES[tree_type]
X = DATASETS[dataset]["X"]
X_sparse = csc_container(X)
y = DATASETS[dataset]["y"]
d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y)
s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree_type),
)
assert_array_almost_equal(s.predict(X), d.predict(X))
@pytest.mark.parametrize("tree_type", SPARSE_TREES)
@pytest.mark.parametrize(
"csc_container,csr_container", zip(CSC_CONTAINERS, CSR_CONTAINERS)
)
def test_explicit_sparse_zeros(tree_type, csc_container, csr_container):
TreeEstimator = ALL_TREES[tree_type]
max_depth = 3
n_features = 10
# n_samples set n_feature to ease construction of a simultaneous
# construction of a csr and csc matrix
n_samples = n_features
samples = np.arange(n_samples)
# Generate X, y
random_state = check_random_state(0)
indices = []
data = []
offset = 0
indptr = [offset]
for i in range(n_features):
n_nonzero_i = random_state.binomial(n_samples, 0.5)
indices_i = random_state.permutation(samples)[:n_nonzero_i]
indices.append(indices_i)
data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i,)) - 1
data.append(data_i)
offset += n_nonzero_i
indptr.append(offset)
indices = np.concatenate(indices).astype(np.int32)
indptr = np.array(indptr, dtype=np.int32)
data = np.array(np.concatenate(data), dtype=np.float32)
X_sparse = csc_container((data, indices, indptr), shape=(n_samples, n_features))
X = X_sparse.toarray()
X_sparse_test = csr_container(
(data, indices, indptr), shape=(n_samples, n_features)
)
X_test = X_sparse_test.toarray()
y = random_state.randint(0, 3, size=(n_samples,))
# Ensure that X_sparse_test owns its data, indices and indptr array
X_sparse_test = X_sparse_test.copy()
# Ensure that we have explicit zeros
assert (X_sparse.data == 0.0).sum() > 0
assert (X_sparse_test.data == 0.0).sum() > 0
# Perform the comparison
d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y)
s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y)
assert_tree_equal(
d.tree_,
s.tree_,
"{0} with dense and sparse format gave different trees".format(tree),
)
Xs = (X_test, X_sparse_test)
for X1, X2 in product(Xs, Xs):
assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2))
assert_array_almost_equal(s.apply(X1), d.apply(X2))
assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1))
assert_array_almost_equal(
s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()
)
assert_array_almost_equal(
s.decision_path(X1).toarray(), d.decision_path(X2).toarray()
)
assert_array_almost_equal(
s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()
)
assert_array_almost_equal(s.predict(X1), d.predict(X2))
if tree in CLF_TREES:
assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2))
@ignore_warnings
def check_raise_error_on_1d_input(name):
TreeEstimator = ALL_TREES[name]
X = iris.data[:, 0].ravel()
X_2d = iris.data[:, 0].reshape((-1, 1))
y = iris.target
with pytest.raises(ValueError):
TreeEstimator(random_state=0).fit(X, y)
est = TreeEstimator(random_state=0)
est.fit(X_2d, y)
with pytest.raises(ValueError):
est.predict([X])
@pytest.mark.parametrize("name", ALL_TREES)
def test_1d_input(name):
with ignore_warnings():
check_raise_error_on_1d_input(name)
@pytest.mark.parametrize("name", ALL_TREES)
@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS)
def test_min_weight_leaf_split_level(name, sparse_container):
TreeEstimator = ALL_TREES[name]
X = np.array([[0], [0], [0], [0], [1]])
y = [0, 0, 0, 0, 1]
sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2]
if sparse_container is not None:
X = sparse_container(X)
est = TreeEstimator(random_state=0)
est.fit(X, y, sample_weight=sample_weight)
assert est.tree_.max_depth == 1
est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4)
est.fit(X, y, sample_weight=sample_weight)
assert est.tree_.max_depth == 0
@pytest.mark.parametrize("name", ALL_TREES)
def test_public_apply_all_trees(name):
X_small32 = X_small.astype(tree._tree.DTYPE, copy=False)
est = ALL_TREES[name]()
est.fit(X_small, y_small)
assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32))
@pytest.mark.parametrize("name", SPARSE_TREES)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_public_apply_sparse_trees(name, csr_container):
X_small32 = csr_container(X_small.astype(tree._tree.DTYPE, copy=False))
est = ALL_TREES[name]()
est.fit(X_small, y_small)
assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32))
def test_decision_path_hardcoded():
X = iris.data
y = iris.target
est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y)
node_indicator = est.decision_path(X[:2]).toarray()
assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]])
@pytest.mark.parametrize("name", ALL_TREES)
def test_decision_path(name):
X = iris.data
y = iris.target
n_samples = X.shape[0]
TreeEstimator = ALL_TREES[name]
est = TreeEstimator(random_state=0, max_depth=2)
est.fit(X, y)
node_indicator_csr = est.decision_path(X)
node_indicator = node_indicator_csr.toarray()
assert node_indicator.shape == (n_samples, est.tree_.node_count)
# Assert that leaves index are correct
leaves = est.apply(X)
leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)]
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))
# Ensure only one leave node per sample
all_leaves = est.tree_.children_left == TREE_LEAF
assert_array_almost_equal(
np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)
)
# Ensure max depth is consistent with sum of indicator
max_depth = node_indicator.sum(axis=1).max()
assert est.tree_.max_depth <= max_depth
@pytest.mark.parametrize("name", ALL_TREES)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_no_sparse_y_support(name, csr_container):
# Currently we don't support sparse y
X, y = X_multilabel, csr_container(y_multilabel)
TreeEstimator = ALL_TREES[name]
with pytest.raises(TypeError):
TreeEstimator(random_state=0).fit(X, y)
def test_mae():
"""Check MAE criterion produces correct results on small toy dataset:
------------------
| X | y | weight |
------------------
| 3 | 3 | 0.1 |
| 5 | 3 | 0.3 |
| 8 | 4 | 1.0 |
| 3 | 6 | 0.6 |
| 5 | 7 | 0.3 |
------------------
|sum wt:| 2.3 |
------------------
Because we are dealing with sample weights, we cannot find the median by
simply choosing/averaging the centre value(s), instead we consider the
median where 50% of the cumulative weight is found (in a y sorted data set)
. Therefore with regards to this test data, the cumulative weight is >= 50%
when y = 4. Therefore:
Median = 4
For all the samples, we can get the total error by summing:
Absolute(Median - y) * weight
I.e., total error = (Absolute(4 - 3) * 0.1)
+ (Absolute(4 - 3) * 0.3)
+ (Absolute(4 - 4) * 1.0)
+ (Absolute(4 - 6) * 0.6)
+ (Absolute(4 - 7) * 0.3)
= 2.5
Impurity = Total error / total weight
= 2.5 / 2.3
= 1.08695652173913
------------------
From this root node, the next best split is between X values of 3 and 5.
Thus, we have left and right child nodes:
LEFT RIGHT
------------------ ------------------
| X | y | weight | | X | y | weight |
------------------ ------------------
| 3 | 3 | 0.1 | | 5 | 3 | 0.3 |
| 3 | 6 | 0.6 | | 8 | 4 | 1.0 |
------------------ | 5 | 7 | 0.3 |
|sum wt:| 0.7 | ------------------
------------------ |sum wt:| 1.6 |
------------------
Impurity is found in the same way:
Left node Median = 6
Total error = (Absolute(6 - 3) * 0.1)
+ (Absolute(6 - 6) * 0.6)
= 0.3
Left Impurity = Total error / total weight
= 0.3 / 0.7
= 0.428571428571429
-------------------
Likewise for Right node:
Right node Median = 4
Total error = (Absolute(4 - 3) * 0.3)
+ (Absolute(4 - 4) * 1.0)
+ (Absolute(4 - 7) * 0.3)
= 1.2
Right Impurity = Total error / total weight
= 1.2 / 1.6
= 0.75
------
"""
dt_mae = DecisionTreeRegressor(
random_state=0, criterion="absolute_error", max_leaf_nodes=2
)
# Test MAE where sample weights are non-uniform (as illustrated above):
dt_mae.fit(
X=[[3], [5], [3], [8], [5]],
y=[6, 7, 3, 4, 3],
sample_weight=[0.6, 0.3, 0.1, 1.0, 0.3],
)
assert_allclose(dt_mae.tree_.impurity, [2.5 / 2.3, 0.3 / 0.7, 1.2 / 1.6])
assert_array_equal(dt_mae.tree_.value.flat, [4.0, 6.0, 4.0])
# Test MAE where all sample weights are uniform:
dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3], sample_weight=np.ones(5))
assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0])
assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0])
# Test MAE where a `sample_weight` is not explicitly provided.
# This is equivalent to providing uniform sample weights, though
# the internal logic is different:
dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3])
assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0])
assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0])
def test_criterion_copy():
# Let's check whether copy of our criterion has the same type
# and properties as original
n_outputs = 3
n_classes = np.arange(3, dtype=np.intp)
n_samples = 100
def _pickle_copy(obj):
return pickle.loads(pickle.dumps(obj))
for copy_func in [copy.copy, copy.deepcopy, _pickle_copy]:
for _, typename in CRITERIA_CLF.items():
criteria = typename(n_outputs, n_classes)
result = copy_func(criteria).__reduce__()
typename_, (n_outputs_, n_classes_), _ = result
assert typename == typename_
assert n_outputs == n_outputs_
assert_array_equal(n_classes, n_classes_)
for _, typename in CRITERIA_REG.items():
criteria = typename(n_outputs, n_samples)
result = copy_func(criteria).__reduce__()
typename_, (n_outputs_, n_samples_), _ = result
assert typename == typename_
assert n_outputs == n_outputs_
assert n_samples == n_samples_
@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS)
def test_empty_leaf_infinite_threshold(sparse_container):
# try to make empty leaf by using near infinite value.
data = np.random.RandomState(0).randn(100, 11) * 2e38
data = np.nan_to_num(data.astype("float32"))
X = data[:, :-1]
if sparse_container is not None:
X = sparse_container(X)
y = data[:, -1]
tree = DecisionTreeRegressor(random_state=0).fit(X, y)
terminal_regions = tree.apply(X)
left_leaf = set(np.where(tree.tree_.children_left == TREE_LEAF)[0])
empty_leaf = left_leaf.difference(terminal_regions)
infinite_threshold = np.where(~np.isfinite(tree.tree_.threshold))[0]
assert len(infinite_threshold) == 0
assert len(empty_leaf) == 0
@pytest.mark.parametrize(
"dataset", sorted(set(DATASETS.keys()) - {"reg_small", "diabetes"})
)
@pytest.mark.parametrize("tree_cls", [DecisionTreeClassifier, ExtraTreeClassifier])
def test_prune_tree_classifier_are_subtrees(dataset, tree_cls):
dataset = DATASETS[dataset]
X, y = dataset["X"], dataset["y"]
est = tree_cls(max_leaf_nodes=20, random_state=0)
info = est.cost_complexity_pruning_path(X, y)
pruning_path = info.ccp_alphas
impurities = info.impurities
assert np.all(np.diff(pruning_path) >= 0)
assert np.all(np.diff(impurities) >= 0)
assert_pruning_creates_subtree(tree_cls, X, y, pruning_path)
@pytest.mark.parametrize("dataset", DATASETS.keys())
@pytest.mark.parametrize("tree_cls", [DecisionTreeRegressor, ExtraTreeRegressor])
def test_prune_tree_regression_are_subtrees(dataset, tree_cls):
dataset = DATASETS[dataset]
X, y = dataset["X"], dataset["y"]
est = tree_cls(max_leaf_nodes=20, random_state=0)
info = est.cost_complexity_pruning_path(X, y)
pruning_path = info.ccp_alphas
impurities = info.impurities
assert np.all(np.diff(pruning_path) >= 0)
assert np.all(np.diff(impurities) >= 0)
assert_pruning_creates_subtree(tree_cls, X, y, pruning_path)
def test_prune_single_node_tree():
# single node tree
clf1 = DecisionTreeClassifier(random_state=0)
clf1.fit([[0], [1]], [0, 0])
# pruned single node tree
clf2 = DecisionTreeClassifier(random_state=0, ccp_alpha=10)
clf2.fit([[0], [1]], [0, 0])
assert_is_subtree(clf1.tree_, clf2.tree_)
def assert_pruning_creates_subtree(estimator_cls, X, y, pruning_path):
# generate trees with increasing alphas
estimators = []
for ccp_alpha in pruning_path:
est = estimator_cls(max_leaf_nodes=20, ccp_alpha=ccp_alpha, random_state=0).fit(
X, y
)
estimators.append(est)
# A pruned tree must be a subtree of the previous tree (which had a
# smaller ccp_alpha)
for prev_est, next_est in zip(estimators, estimators[1:]):
assert_is_subtree(prev_est.tree_, next_est.tree_)
def assert_is_subtree(tree, subtree):
assert tree.node_count >= subtree.node_count
assert tree.max_depth >= subtree.max_depth
tree_c_left = tree.children_left
tree_c_right = tree.children_right
subtree_c_left = subtree.children_left
subtree_c_right = subtree.children_right
stack = [(0, 0)]
while stack:
tree_node_idx, subtree_node_idx = stack.pop()
assert_array_almost_equal(
tree.value[tree_node_idx], subtree.value[subtree_node_idx]
)
assert_almost_equal(
tree.impurity[tree_node_idx], subtree.impurity[subtree_node_idx]
)
assert_almost_equal(
tree.n_node_samples[tree_node_idx], subtree.n_node_samples[subtree_node_idx]
)
assert_almost_equal(
tree.weighted_n_node_samples[tree_node_idx],
subtree.weighted_n_node_samples[subtree_node_idx],
)
if subtree_c_left[subtree_node_idx] == subtree_c_right[subtree_node_idx]:
# is a leaf
assert_almost_equal(TREE_UNDEFINED, subtree.threshold[subtree_node_idx])
else:
# not a leaf
assert_almost_equal(
tree.threshold[tree_node_idx], subtree.threshold[subtree_node_idx]
)
stack.append((tree_c_left[tree_node_idx], subtree_c_left[subtree_node_idx]))
stack.append(
(tree_c_right[tree_node_idx], subtree_c_right[subtree_node_idx])
)
@pytest.mark.parametrize("name", ALL_TREES)
@pytest.mark.parametrize("splitter", ["best", "random"])
@pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
def test_apply_path_readonly_all_trees(name, splitter, sparse_container):
dataset = DATASETS["clf_small"]
X_small = dataset["X"].astype(tree._tree.DTYPE, copy=False)
if sparse_container is None:
X_readonly = create_memmap_backed_data(X_small)
else:
X_readonly = sparse_container(dataset["X"])
X_readonly.data = np.array(X_readonly.data, dtype=tree._tree.DTYPE)
(
X_readonly.data,
X_readonly.indices,
X_readonly.indptr,
) = create_memmap_backed_data(
(X_readonly.data, X_readonly.indices, X_readonly.indptr)
)
y_readonly = create_memmap_backed_data(np.array(y_small, dtype=tree._tree.DTYPE))
est = ALL_TREES[name](splitter=splitter)
est.fit(X_readonly, y_readonly)
assert_array_equal(est.predict(X_readonly), est.predict(X_small))
assert_array_equal(
est.decision_path(X_readonly).todense(), est.decision_path(X_small).todense()
)
@pytest.mark.parametrize("criterion", ["squared_error", "friedman_mse", "poisson"])
@pytest.mark.parametrize("Tree", REG_TREES.values())
def test_balance_property(criterion, Tree):
# Test that sum(y_pred)=sum(y_true) on training set.
# This works if the mean is predicted (should even be true for each leaf).
# MAE predicts the median and is therefore excluded from this test.
# Choose a training set with non-negative targets (for poisson)
X, y = diabetes.data, diabetes.target
reg = Tree(criterion=criterion)
reg.fit(X, y)
assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y))
@pytest.mark.parametrize("seed", range(3))
def test_poisson_zero_nodes(seed):
# Test that sum(y)=0 and therefore y_pred=0 is forbidden on nodes.
X = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 2], [1, 3]]
y = [0, 0, 0, 0, 1, 2, 3, 4]
# Note that X[:, 0] == 0 is a 100% indicator for y == 0. The tree can
# easily learn that:
reg = DecisionTreeRegressor(criterion="squared_error", random_state=seed)
reg.fit(X, y)
assert np.amin(reg.predict(X)) == 0
# whereas Poisson must predict strictly positive numbers
reg = DecisionTreeRegressor(criterion="poisson", random_state=seed)
reg.fit(X, y)
assert np.all(reg.predict(X) > 0)
# Test additional dataset where something could go wrong.
n_features = 10
X, y = datasets.make_regression(
effective_rank=n_features * 2 // 3,
tail_strength=0.6,
n_samples=1_000,
n_features=n_features,
n_informative=n_features * 2 // 3,
random_state=seed,
)
# some excess zeros
y[(-1 < y) & (y < 0)] = 0
# make sure the target is positive
y = np.abs(y)
reg = DecisionTreeRegressor(criterion="poisson", random_state=seed)
reg.fit(X, y)
assert np.all(reg.predict(X) > 0)
def test_poisson_vs_mse():
# For a Poisson distributed target, Poisson loss should give better results
# than squared error measured in Poisson deviance as metric.
# We have a similar test, test_poisson(), in
# sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py
rng = np.random.RandomState(42)
n_train, n_test, n_features = 500, 500, 10
X = datasets.make_low_rank_matrix(
n_samples=n_train + n_test, n_features=n_features, random_state=rng
)
# We create a log-linear Poisson model and downscale coef as it will get
# exponentiated.
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
y = rng.poisson(lam=np.exp(X @ coef))
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=n_test, random_state=rng
)
# We prevent some overfitting by setting min_samples_split=10.
tree_poi = DecisionTreeRegressor(
criterion="poisson", min_samples_split=10, random_state=rng
)
tree_mse = DecisionTreeRegressor(
criterion="squared_error", min_samples_split=10, random_state=rng
)
tree_poi.fit(X_train, y_train)
tree_mse.fit(X_train, y_train)
dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]:
metric_poi = mean_poisson_deviance(y, tree_poi.predict(X))
# squared_error might produce non-positive predictions => clip
metric_mse = mean_poisson_deviance(y, np.clip(tree_mse.predict(X), 1e-15, None))
metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
# As squared_error might correctly predict 0 in train set, its train
# score can be better than Poisson. This is no longer the case for the
# test set.
if val == "test":
assert metric_poi < 0.5 * metric_mse
assert metric_poi < 0.75 * metric_dummy
@pytest.mark.parametrize("criterion", REG_CRITERIONS)
def test_decision_tree_regressor_sample_weight_consistency(criterion):
"""Test that the impact of sample_weight is consistent."""
tree_params = dict(criterion=criterion)
tree = DecisionTreeRegressor(**tree_params, random_state=42)
for kind in ["zeros", "ones"]:
check_sample_weights_invariance(
"DecisionTreeRegressor_" + criterion, tree, kind="zeros"
)
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = np.mean(X, axis=1) + rng.rand(n_samples)
# make it positive in order to work also for poisson criterion
y += np.min(y) + 0.1
# check that multiplying sample_weight by 2 is equivalent
# to repeating corresponding samples twice
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
y2 = np.concatenate([y, y[: n_samples // 2]])
sample_weight_1 = np.ones(len(y))
sample_weight_1[: n_samples // 2] = 2
tree1 = DecisionTreeRegressor(**tree_params).fit(
X, y, sample_weight=sample_weight_1
)
tree2 = DecisionTreeRegressor(**tree_params).fit(X2, y2, sample_weight=None)
assert tree1.tree_.node_count == tree2.tree_.node_count
# Thresholds, tree.tree_.threshold, and values, tree.tree_.value, are not
# exactly the same, but on the training set, those differences do not
# matter and thus predictions are the same.
assert_allclose(tree1.predict(X), tree2.predict(X))
@pytest.mark.parametrize("Tree", [DecisionTreeClassifier, ExtraTreeClassifier])
@pytest.mark.parametrize("n_classes", [2, 4])
def test_criterion_entropy_same_as_log_loss(Tree, n_classes):
"""Test that criterion=entropy gives same as log_loss."""
n_samples, n_features = 50, 5
X, y = datasets.make_classification(
n_classes=n_classes,
n_samples=n_samples,
n_features=n_features,
n_informative=n_features,
n_redundant=0,
random_state=42,
)
tree_log_loss = Tree(criterion="log_loss", random_state=43).fit(X, y)
tree_entropy = Tree(criterion="entropy", random_state=43).fit(X, y)
assert_tree_equal(
tree_log_loss.tree_,
tree_entropy.tree_,
f"{Tree!r} with criterion 'entropy' and 'log_loss' gave different trees.",
)
assert_allclose(tree_log_loss.predict(X), tree_entropy.predict(X))
def test_different_endianness_pickle():
X, y = datasets.make_classification(random_state=0)
clf = DecisionTreeClassifier(random_state=0, max_depth=3)
clf.fit(X, y)
score = clf.score(X, y)
def reduce_ndarray(arr):
return arr.byteswap().view(arr.dtype.newbyteorder()).__reduce__()
def get_pickle_non_native_endianness():
f = io.BytesIO()
p = pickle.Pickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[np.ndarray] = reduce_ndarray
p.dump(clf)
f.seek(0)
return f
new_clf = pickle.load(get_pickle_non_native_endianness())
new_score = new_clf.score(X, y)
assert np.isclose(score, new_score)
def test_different_endianness_joblib_pickle():
X, y = datasets.make_classification(random_state=0)
clf = DecisionTreeClassifier(random_state=0, max_depth=3)
clf.fit(X, y)
score = clf.score(X, y)
class NonNativeEndiannessNumpyPickler(NumpyPickler):
def save(self, obj):
if isinstance(obj, np.ndarray):
obj = obj.byteswap().view(obj.dtype.newbyteorder())
super().save(obj)
def get_joblib_pickle_non_native_endianness():
f = io.BytesIO()
p = NonNativeEndiannessNumpyPickler(f)
p.dump(clf)
f.seek(0)
return f
new_clf = joblib.load(get_joblib_pickle_non_native_endianness())
new_score = new_clf.score(X, y)
assert np.isclose(score, new_score)
def get_different_bitness_node_ndarray(node_ndarray):
new_dtype_for_indexing_fields = np.int64 if _IS_32BIT else np.int32
# field names in Node struct with SIZE_t types (see sklearn/tree/_tree.pxd)
indexing_field_names = ["left_child", "right_child", "feature", "n_node_samples"]
new_dtype_dict = {
name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items()
}
for name in indexing_field_names:
new_dtype_dict[name] = new_dtype_for_indexing_fields
new_dtype = np.dtype(
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())}
)
return node_ndarray.astype(new_dtype, casting="same_kind")
def get_different_alignment_node_ndarray(node_ndarray):
new_dtype_dict = {
name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items()
}
offsets = [offset for dtype, offset in node_ndarray.dtype.fields.values()]
shifted_offsets = [8 + offset for offset in offsets]
new_dtype = np.dtype(
{
"names": list(new_dtype_dict.keys()),
"formats": list(new_dtype_dict.values()),
"offsets": shifted_offsets,
}
)
return node_ndarray.astype(new_dtype, casting="same_kind")
def reduce_tree_with_different_bitness(tree):
new_dtype = np.int64 if _IS_32BIT else np.int32
tree_cls, (n_features, n_classes, n_outputs), state = tree.__reduce__()
new_n_classes = n_classes.astype(new_dtype, casting="same_kind")
new_state = state.copy()
new_state["nodes"] = get_different_bitness_node_ndarray(new_state["nodes"])
return (tree_cls, (n_features, new_n_classes, n_outputs), new_state)
def test_different_bitness_pickle():
X, y = datasets.make_classification(random_state=0)
clf = DecisionTreeClassifier(random_state=0, max_depth=3)
clf.fit(X, y)
score = clf.score(X, y)
def pickle_dump_with_different_bitness():
f = io.BytesIO()
p = pickle.Pickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[CythonTree] = reduce_tree_with_different_bitness
p.dump(clf)
f.seek(0)
return f
new_clf = pickle.load(pickle_dump_with_different_bitness())
new_score = new_clf.score(X, y)
assert score == pytest.approx(new_score)
def test_different_bitness_joblib_pickle():
# Make sure that a platform specific pickle generated on a 64 bit
# platform can be converted at pickle load time into an estimator
# with Cython code that works with the host's native integer precision
# to index nodes in the tree data structure when the host is a 32 bit
# platform (and vice versa).
X, y = datasets.make_classification(random_state=0)
clf = DecisionTreeClassifier(random_state=0, max_depth=3)
clf.fit(X, y)
score = clf.score(X, y)
def joblib_dump_with_different_bitness():
f = io.BytesIO()
p = NumpyPickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[CythonTree] = reduce_tree_with_different_bitness
p.dump(clf)
f.seek(0)
return f
new_clf = joblib.load(joblib_dump_with_different_bitness())
new_score = new_clf.score(X, y)
assert score == pytest.approx(new_score)
def test_check_n_classes():
expected_dtype = np.dtype(np.int32) if _IS_32BIT else np.dtype(np.int64)
allowed_dtypes = [np.dtype(np.int32), np.dtype(np.int64)]
allowed_dtypes += [dt.newbyteorder() for dt in allowed_dtypes]
n_classes = np.array([0, 1], dtype=expected_dtype)
for dt in allowed_dtypes:
_check_n_classes(n_classes.astype(dt), expected_dtype)
with pytest.raises(ValueError, match="Wrong dimensions.+n_classes"):
wrong_dim_n_classes = np.array([[0, 1]], dtype=expected_dtype)
_check_n_classes(wrong_dim_n_classes, expected_dtype)
with pytest.raises(ValueError, match="n_classes.+incompatible dtype"):
wrong_dtype_n_classes = n_classes.astype(np.float64)
_check_n_classes(wrong_dtype_n_classes, expected_dtype)
def test_check_value_ndarray():
expected_dtype = np.dtype(np.float64)
expected_shape = (5, 1, 2)
value_ndarray = np.zeros(expected_shape, dtype=expected_dtype)
allowed_dtypes = [expected_dtype, expected_dtype.newbyteorder()]
for dt in allowed_dtypes:
_check_value_ndarray(
value_ndarray, expected_dtype=dt, expected_shape=expected_shape
)
with pytest.raises(ValueError, match="Wrong shape.+value array"):
_check_value_ndarray(
value_ndarray, expected_dtype=expected_dtype, expected_shape=(1, 2)
)
for problematic_arr in [value_ndarray[:, :, :1], np.asfortranarray(value_ndarray)]:
with pytest.raises(ValueError, match="value array.+C-contiguous"):
_check_value_ndarray(
problematic_arr,
expected_dtype=expected_dtype,
expected_shape=problematic_arr.shape,
)
with pytest.raises(ValueError, match="value array.+incompatible dtype"):
_check_value_ndarray(
value_ndarray.astype(np.float32),
expected_dtype=expected_dtype,
expected_shape=expected_shape,
)
def test_check_node_ndarray():
expected_dtype = NODE_DTYPE
node_ndarray = np.zeros((5,), dtype=expected_dtype)
valid_node_ndarrays = [
node_ndarray,
get_different_bitness_node_ndarray(node_ndarray),
get_different_alignment_node_ndarray(node_ndarray),
]
valid_node_ndarrays += [
arr.astype(arr.dtype.newbyteorder()) for arr in valid_node_ndarrays
]
for arr in valid_node_ndarrays:
_check_node_ndarray(node_ndarray, expected_dtype=expected_dtype)
with pytest.raises(ValueError, match="Wrong dimensions.+node array"):
problematic_node_ndarray = np.zeros((5, 2), dtype=expected_dtype)
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype)
with pytest.raises(ValueError, match="node array.+C-contiguous"):
problematic_node_ndarray = node_ndarray[::2]
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype)
dtype_dict = {name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items()}
# array with wrong 'threshold' field dtype (int64 rather than float64)
new_dtype_dict = dtype_dict.copy()
new_dtype_dict["threshold"] = np.int64
new_dtype = np.dtype(
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())}
)
problematic_node_ndarray = node_ndarray.astype(new_dtype)
with pytest.raises(ValueError, match="node array.+incompatible dtype"):
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype)
# array with wrong 'left_child' field dtype (float64 rather than int64 or int32)
new_dtype_dict = dtype_dict.copy()
new_dtype_dict["left_child"] = np.float64
new_dtype = np.dtype(
{"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())}
)
problematic_node_ndarray = node_ndarray.astype(new_dtype)
with pytest.raises(ValueError, match="node array.+incompatible dtype"):
_check_node_ndarray(problematic_node_ndarray, expected_dtype=expected_dtype)
@pytest.mark.parametrize(
"Splitter", chain(DENSE_SPLITTERS.values(), SPARSE_SPLITTERS.values())
)
def test_splitter_serializable(Splitter):
"""Check that splitters are serializable."""
rng = np.random.RandomState(42)
max_features = 10
n_outputs, n_classes = 2, np.array([3, 2], dtype=np.intp)
criterion = CRITERIA_CLF["gini"](n_outputs, n_classes)
splitter = Splitter(criterion, max_features, 5, 0.5, rng, monotonic_cst=None)
splitter_serialize = pickle.dumps(splitter)
splitter_back = pickle.loads(splitter_serialize)
assert splitter_back.max_features == max_features
assert isinstance(splitter_back, Splitter)
def test_tree_deserialization_from_read_only_buffer(tmpdir):
"""Check that Trees can be deserialized with read only buffers.
Non-regression test for gh-25584.
"""
pickle_path = str(tmpdir.join("clf.joblib"))
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X_small, y_small)
joblib.dump(clf, pickle_path)
loaded_clf = joblib.load(pickle_path, mmap_mode="r")
assert_tree_equal(
loaded_clf.tree_,
clf.tree_,
"The trees of the original and loaded classifiers are not equal.",
)
@pytest.mark.parametrize("Tree", ALL_TREES.values())
def test_min_sample_split_1_error(Tree):
"""Check that an error is raised when min_sample_split=1.
non-regression test for issue gh-25481.
"""
X = np.array([[0, 0], [1, 1]])
y = np.array([0, 1])
# min_samples_split=1.0 is valid
Tree(min_samples_split=1.0).fit(X, y)
# min_samples_split=1 is invalid
tree = Tree(min_samples_split=1)
msg = (
r"'min_samples_split' .* must be an int in the range \[2, inf\) "
r"or a float in the range \(0.0, 1.0\]"
)
with pytest.raises(ValueError, match=msg):
tree.fit(X, y)
@pytest.mark.parametrize("criterion", ["squared_error", "friedman_mse"])
def test_missing_values_on_equal_nodes_no_missing(criterion):
"""Check missing values goes to correct node during predictions"""
X = np.array([[0, 1, 2, 3, 8, 9, 11, 12, 15]]).T
y = np.array([0.1, 0.2, 0.3, 0.2, 1.4, 1.4, 1.5, 1.6, 2.6])
dtc = DecisionTreeRegressor(random_state=42, max_depth=1, criterion=criterion)
dtc.fit(X, y)
# Goes to right node because it has the most data points
y_pred = dtc.predict([[np.nan]])
assert_allclose(y_pred, [np.mean(y[-5:])])
# equal number of elements in both nodes
X_equal = X[:-1]
y_equal = y[:-1]
dtc = DecisionTreeRegressor(random_state=42, max_depth=1, criterion=criterion)
dtc.fit(X_equal, y_equal)
# Goes to right node because the implementation sets:
# missing_go_to_left = n_left > n_right, which is False
y_pred = dtc.predict([[np.nan]])
assert_allclose(y_pred, [np.mean(y_equal[-4:])])
@pytest.mark.parametrize("criterion", ["entropy", "gini"])
def test_missing_values_best_splitter_three_classes(criterion):
"""Test when missing values are uniquely present in a class among 3 classes."""
missing_values_class = 0
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 8, 9, 11, 12]]).T
y = np.array([missing_values_class] * 4 + [1] * 4 + [2] * 4)
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion)
dtc.fit(X, y)
X_test = np.array([[np.nan, 3, 12]]).T
y_nan_pred = dtc.predict(X_test)
# Missing values necessarily are associated to the observed class.
assert_array_equal(y_nan_pred, [missing_values_class, 1, 2])
@pytest.mark.parametrize("criterion", ["entropy", "gini"])
def test_missing_values_best_splitter_to_left(criterion):
"""Missing values spanning only one class at fit-time must make missing
values at predict-time be classified has belonging to this class."""
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 4, 5]]).T
y = np.array([0] * 4 + [1] * 6)
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion)
dtc.fit(X, y)
X_test = np.array([[np.nan, 5, np.nan]]).T
y_pred = dtc.predict(X_test)
assert_array_equal(y_pred, [0, 1, 0])
@pytest.mark.parametrize("criterion", ["entropy", "gini"])
def test_missing_values_best_splitter_to_right(criterion):
"""Missing values and non-missing values sharing one class at fit-time
must make missing values at predict-time be classified has belonging
to this class."""
X = np.array([[np.nan] * 4 + [0, 1, 2, 3, 4, 5]]).T
y = np.array([1] * 4 + [0] * 4 + [1] * 2)
dtc = DecisionTreeClassifier(random_state=42, max_depth=2, criterion=criterion)
dtc.fit(X, y)
X_test = np.array([[np.nan, 1.2, 4.8]]).T
y_pred = dtc.predict(X_test)
assert_array_equal(y_pred, [1, 0, 1])
@pytest.mark.parametrize("criterion", ["entropy", "gini"])
def test_missing_values_missing_both_classes_has_nan(criterion):
"""Check behavior of missing value when there is one missing value in each class."""
X = np.array([[1, 2, 3, 5, np.nan, 10, 20, 30, 60, np.nan]]).T
y = np.array([0] * 5 + [1] * 5)
dtc = DecisionTreeClassifier(random_state=42, max_depth=1, criterion=criterion)
dtc.fit(X, y)
X_test = np.array([[np.nan, 2.3, 34.2]]).T
y_pred = dtc.predict(X_test)
# Missing value goes to the class at the right (here 1) because the implementation
# searches right first.
assert_array_equal(y_pred, [1, 0, 1])
@pytest.mark.parametrize("sparse_container", [None] + CSR_CONTAINERS)
@pytest.mark.parametrize(
"tree",
[
DecisionTreeClassifier(splitter="random"),
DecisionTreeRegressor(criterion="absolute_error"),
],
)
def test_missing_value_errors(sparse_container, tree):
"""Check unsupported configurations for missing values."""
X = np.array([[1, 2, 3, 5, np.nan, 10, 20, 30, 60, np.nan]]).T
y = np.array([0] * 5 + [1] * 5)
if sparse_container is not None:
X = sparse_container(X)
with pytest.raises(ValueError, match="Input X contains NaN"):
tree.fit(X, y)
def test_missing_values_poisson():
"""Smoke test for poisson regression and missing values."""
X, y = diabetes.data.copy(), diabetes.target
# Set some values missing
X[::5, 0] = np.nan
X[::6, -1] = np.nan
reg = DecisionTreeRegressor(criterion="poisson", random_state=42)
reg.fit(X, y)
y_pred = reg.predict(X)
assert (y_pred >= 0.0).all()
def make_friedman1_classification(*args, **kwargs):
X, y = datasets.make_friedman1(*args, **kwargs)
y = y > 14
return X, y
@pytest.mark.parametrize(
"make_data,Tree",
[
(datasets.make_friedman1, DecisionTreeRegressor),
(make_friedman1_classification, DecisionTreeClassifier),
],
)
@pytest.mark.parametrize("sample_weight_train", [None, "ones"])
def test_missing_values_is_resilience(
make_data, Tree, sample_weight_train, global_random_seed
):
"""Check that trees can deal with missing values have decent performance."""
n_samples, n_features = 5_000, 10
X, y = make_data(
n_samples=n_samples, n_features=n_features, random_state=global_random_seed
)
X_missing = X.copy()
rng = np.random.RandomState(global_random_seed)
X_missing[rng.choice([False, True], size=X.shape, p=[0.9, 0.1])] = np.nan
X_missing_train, X_missing_test, y_train, y_test = train_test_split(
X_missing, y, random_state=global_random_seed
)
if sample_weight_train == "ones":
sample_weight = np.ones(X_missing_train.shape[0])
else:
sample_weight = None
native_tree = Tree(max_depth=10, random_state=global_random_seed)
native_tree.fit(X_missing_train, y_train, sample_weight=sample_weight)
score_native_tree = native_tree.score(X_missing_test, y_test)
tree_with_imputer = make_pipeline(
SimpleImputer(), Tree(max_depth=10, random_state=global_random_seed)
)
tree_with_imputer.fit(X_missing_train, y_train)
score_tree_with_imputer = tree_with_imputer.score(X_missing_test, y_test)
assert (
score_native_tree > score_tree_with_imputer
), f"{score_native_tree=} should be strictly greater than {score_tree_with_imputer}"
def test_missing_value_is_predictive():
"""Check the tree learns when only the missing value is predictive."""
rng = np.random.RandomState(0)
n_samples = 1000
X = rng.standard_normal(size=(n_samples, 10))
y = rng.randint(0, high=2, size=n_samples)
# Create a predictive feature using `y` and with some noise
X_random_mask = rng.choice([False, True], size=n_samples, p=[0.95, 0.05])
y_mask = y.copy().astype(bool)
y_mask[X_random_mask] = ~y_mask[X_random_mask]
X_predictive = rng.standard_normal(size=n_samples)
X_predictive[y_mask] = np.nan
X[:, 5] = X_predictive
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
tree = DecisionTreeClassifier(random_state=rng).fit(X_train, y_train)
assert tree.score(X_train, y_train) >= 0.85
assert tree.score(X_test, y_test) >= 0.85
@pytest.mark.parametrize(
"make_data, Tree",
[
(datasets.make_regression, DecisionTreeRegressor),
(datasets.make_classification, DecisionTreeClassifier),
],
)
def test_sample_weight_non_uniform(make_data, Tree):
"""Check sample weight is correctly handled with missing values."""
rng = np.random.RandomState(0)
n_samples, n_features = 1000, 10
X, y = make_data(n_samples=n_samples, n_features=n_features, random_state=rng)
# Create dataset with missing values
X[rng.choice([False, True], size=X.shape, p=[0.9, 0.1])] = np.nan
# Zero sample weight is the same as removing the sample
sample_weight = np.ones(X.shape[0])
sample_weight[::2] = 0.0
tree_with_sw = Tree(random_state=0)
tree_with_sw.fit(X, y, sample_weight=sample_weight)
tree_samples_removed = Tree(random_state=0)
tree_samples_removed.fit(X[1::2, :], y[1::2])
assert_allclose(tree_samples_removed.predict(X), tree_with_sw.predict(X))
def test_deterministic_pickle():
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/27268
# Uninitialised memory would lead to the two pickle strings being different.
tree1 = DecisionTreeClassifier(random_state=0).fit(iris.data, iris.target)
tree2 = DecisionTreeClassifier(random_state=0).fit(iris.data, iris.target)
pickle1 = pickle.dumps(tree1)
pickle2 = pickle.dumps(tree2)
assert pickle1 == pickle2
@pytest.mark.parametrize(
"X",
[
# missing values will go left for greedy splits
np.array([np.nan, 2, np.nan, 4, 5, 6]),
np.array([np.nan, np.nan, 3, 4, 5, 6]),
# missing values will go right for greedy splits
np.array([1, 2, 3, 4, np.nan, np.nan]),
np.array([1, 2, 3, np.nan, 6, np.nan]),
],
)
@pytest.mark.parametrize("criterion", ["squared_error", "friedman_mse"])
def test_regression_tree_missing_values_toy(X, criterion):
"""Check that we properly handle missing values in regression trees using a toy
dataset.
The regression targeted by this test was that we were not reinitializing the
criterion when it comes to the number of missing values. Therefore, the value
of the critetion (i.e. MSE) was completely wrong.
This test check that the MSE is null when there is a single sample in the leaf.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28254
https://github.com/scikit-learn/scikit-learn/issues/28316
"""
X = X.reshape(-1, 1)
y = np.arange(6)
tree = DecisionTreeRegressor(criterion=criterion, random_state=0).fit(X, y)
tree_ref = clone(tree).fit(y.reshape(-1, 1), y)
assert all(tree.tree_.impurity >= 0) # MSE should always be positive
# Check the impurity match after the first split
assert_allclose(tree.tree_.impurity[:2], tree_ref.tree_.impurity[:2])
# Find the leaves with a single sample where the MSE should be 0
leaves_idx = np.flatnonzero(
(tree.tree_.children_left == -1) & (tree.tree_.n_node_samples == 1)
)
assert_allclose(tree.tree_.impurity[leaves_idx], 0.0)
def test_classification_tree_missing_values_toy():
"""Check that we properly handle missing values in clasification trees using a toy
dataset.
The test is more involved because we use a case where we detected a regression
in a random forest. We therefore define the seed and bootstrap indices to detect
one of the non-frequent regression.
Here, we check that the impurity is null or positive in the leaves.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28254
"""
X, y = datasets.load_iris(return_X_y=True)
rng = np.random.RandomState(42)
X_missing = X.copy()
mask = rng.binomial(
n=np.ones(shape=(1, 4), dtype=np.int32), p=X[:, [2]] / 8
).astype(bool)
X_missing[mask] = np.nan
X_train, _, y_train, _ = train_test_split(X_missing, y, random_state=13)
# fmt: off
# no black reformatting for this specific array
indices = np.array([
2, 81, 39, 97, 91, 38, 46, 31, 101, 13, 89, 82, 100, 42, 69, 27, 81, 16, 73, 74,
51, 47, 107, 17, 75, 110, 20, 15, 104, 57, 26, 15, 75, 79, 35, 77, 90, 51, 46,
13, 94, 91, 23, 8, 93, 93, 73, 77, 12, 13, 74, 109, 110, 24, 10, 23, 104, 27,
92, 52, 20, 109, 8, 8, 28, 27, 35, 12, 12, 7, 43, 0, 30, 31, 78, 12, 24, 105,
50, 0, 73, 12, 102, 105, 13, 31, 1, 69, 11, 32, 75, 90, 106, 94, 60, 56, 35, 17,
62, 85, 81, 39, 80, 16, 63, 6, 80, 84, 3, 3, 76, 78
], dtype=np.int32)
# fmt: on
tree = DecisionTreeClassifier(
max_depth=3, max_features="sqrt", random_state=1857819720
)
tree.fit(X_train[indices], y_train[indices])
assert all(tree.tree_.impurity >= 0)
leaves_idx = np.flatnonzero(
(tree.tree_.children_left == -1) & (tree.tree_.n_node_samples == 1)
)
assert_allclose(tree.tree_.impurity[leaves_idx], 0.0)
|