File: test_class_weight.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (316 lines) | stat: -rw-r--r-- 12,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import numpy as np
import pytest
from numpy.testing import assert_allclose

from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils._testing import assert_almost_equal, assert_array_almost_equal
from sklearn.utils.class_weight import compute_class_weight, compute_sample_weight
from sklearn.utils.fixes import CSC_CONTAINERS


def test_compute_class_weight():
    # Test (and demo) compute_class_weight.
    y = np.asarray([2, 2, 2, 3, 3, 4])
    classes = np.unique(y)

    cw = compute_class_weight("balanced", classes=classes, y=y)
    # total effect of samples is preserved
    class_counts = np.bincount(y)[2:]
    assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
    assert cw[0] < cw[1] < cw[2]


@pytest.mark.parametrize(
    "y_type, class_weight, classes, err_msg",
    [
        (
            "numeric",
            "balanced",
            np.arange(4),
            "classes should have valid labels that are in y",
        ),
        # Non-regression for https://github.com/scikit-learn/scikit-learn/issues/8312
        (
            "numeric",
            {"label_not_present": 1.0},
            np.arange(4),
            r"The classes, \[0, 1, 2, 3\], are not in class_weight",
        ),
        (
            "numeric",
            "balanced",
            np.arange(2),
            "classes should include all valid labels",
        ),
        (
            "numeric",
            {0: 1.0, 1: 2.0},
            np.arange(2),
            "classes should include all valid labels",
        ),
        (
            "string",
            {"dogs": 3, "cat": 2},
            np.array(["dog", "cat"]),
            r"The classes, \['dog'\], are not in class_weight",
        ),
    ],
)
def test_compute_class_weight_not_present(y_type, class_weight, classes, err_msg):
    # Raise error when y does not contain all class labels
    y = (
        np.asarray([0, 0, 0, 1, 1, 2])
        if y_type == "numeric"
        else np.asarray(["dog", "cat", "dog"])
    )

    print(y)
    with pytest.raises(ValueError, match=err_msg):
        compute_class_weight(class_weight, classes=classes, y=y)


def test_compute_class_weight_dict():
    classes = np.arange(3)
    class_weights = {0: 1.0, 1: 2.0, 2: 3.0}
    y = np.asarray([0, 0, 1, 2])
    cw = compute_class_weight(class_weights, classes=classes, y=y)

    # When the user specifies class weights, compute_class_weights should just
    # return them.
    assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw)

    # When a class weight is specified that isn't in classes, the weight is ignored
    class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5}
    cw = compute_class_weight(class_weights, classes=classes, y=y)
    assert_allclose([1.0, 2.0, 3.0], cw)

    class_weights = {-1: 5.0, 0: 4.0, 1: 2.0, 2: 3.0}
    cw = compute_class_weight(class_weights, classes=classes, y=y)
    assert_allclose([4.0, 2.0, 3.0], cw)


def test_compute_class_weight_invariance():
    # Test that results with class_weight="balanced" is invariant wrt
    # class imbalance if the number of samples is identical.
    # The test uses a balanced two class dataset with 100 datapoints.
    # It creates three versions, one where class 1 is duplicated
    # resulting in 150 points of class 1 and 50 of class 0,
    # one where there are 50 points in class 1 and 150 in class 0,
    # and one where there are 100 points of each class (this one is balanced
    # again).
    # With balancing class weights, all three should give the same model.
    X, y = make_blobs(centers=2, random_state=0)
    # create dataset where class 1 is duplicated twice
    X_1 = np.vstack([X] + [X[y == 1]] * 2)
    y_1 = np.hstack([y] + [y[y == 1]] * 2)
    # create dataset where class 0 is duplicated twice
    X_0 = np.vstack([X] + [X[y == 0]] * 2)
    y_0 = np.hstack([y] + [y[y == 0]] * 2)
    # duplicate everything
    X_ = np.vstack([X] * 2)
    y_ = np.hstack([y] * 2)
    # results should be identical
    logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1)
    logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0)
    logreg = LogisticRegression(class_weight="balanced").fit(X_, y_)
    assert_array_almost_equal(logreg1.coef_, logreg0.coef_)
    assert_array_almost_equal(logreg.coef_, logreg0.coef_)


def test_compute_class_weight_balanced_negative():
    # Test compute_class_weight when labels are negative
    # Test with balanced class labels.
    classes = np.array([-2, -1, 0])
    y = np.asarray([-1, -1, 0, 0, -2, -2])

    cw = compute_class_weight("balanced", classes=classes, y=y)
    assert len(cw) == len(classes)
    assert_array_almost_equal(cw, np.array([1.0, 1.0, 1.0]))

    # Test with unbalanced class labels.
    y = np.asarray([-1, 0, 0, -2, -2, -2])

    cw = compute_class_weight("balanced", classes=classes, y=y)
    assert len(cw) == len(classes)
    class_counts = np.bincount(y + 2)
    assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
    assert_array_almost_equal(cw, [2.0 / 3, 2.0, 1.0])


def test_compute_class_weight_balanced_unordered():
    # Test compute_class_weight when classes are unordered
    classes = np.array([1, 0, 3])
    y = np.asarray([1, 0, 0, 3, 3, 3])

    cw = compute_class_weight("balanced", classes=classes, y=y)
    class_counts = np.bincount(y)[classes]
    assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
    assert_array_almost_equal(cw, [2.0, 1.0, 2.0 / 3])


def test_compute_class_weight_default():
    # Test for the case where no weight is given for a present class.
    # Current behaviour is to assign the unweighted classes a weight of 1.
    y = np.asarray([2, 2, 2, 3, 3, 4])
    classes = np.unique(y)
    classes_len = len(classes)

    # Test for non specified weights
    cw = compute_class_weight(None, classes=classes, y=y)
    assert len(cw) == classes_len
    assert_array_almost_equal(cw, np.ones(3))

    # Tests for partly specified weights
    cw = compute_class_weight({2: 1.5}, classes=classes, y=y)
    assert len(cw) == classes_len
    assert_array_almost_equal(cw, [1.5, 1.0, 1.0])

    cw = compute_class_weight({2: 1.5, 4: 0.5}, classes=classes, y=y)
    assert len(cw) == classes_len
    assert_array_almost_equal(cw, [1.5, 1.0, 0.5])


def test_compute_sample_weight():
    # Test (and demo) compute_sample_weight.
    # Test with balanced classes
    y = np.asarray([1, 1, 1, 2, 2, 2])
    sample_weight = compute_sample_weight("balanced", y)
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with user-defined weights
    sample_weight = compute_sample_weight({1: 2, 2: 1}, y)
    assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 1.0, 1.0, 1.0])

    # Test with column vector of balanced classes
    y = np.asarray([[1], [1], [1], [2], [2], [2]])
    sample_weight = compute_sample_weight("balanced", y)
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with unbalanced classes
    y = np.asarray([1, 1, 1, 2, 2, 2, 3])
    sample_weight = compute_sample_weight("balanced", y)
    expected_balanced = np.array(
        [0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]
    )
    assert_array_almost_equal(sample_weight, expected_balanced, decimal=4)

    # Test with `None` weights
    sample_weight = compute_sample_weight(None, y)
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with multi-output of balanced classes
    y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
    sample_weight = compute_sample_weight("balanced", y)
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with multi-output with user-defined weights
    y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
    sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y)
    assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])

    # Test with multi-output of unbalanced classes
    y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]])
    sample_weight = compute_sample_weight("balanced", y)
    assert_array_almost_equal(sample_weight, expected_balanced**2, decimal=3)


def test_compute_sample_weight_with_subsample():
    # Test compute_sample_weight with subsamples specified.
    # Test with balanced classes and all samples present
    y = np.asarray([1, 1, 1, 2, 2, 2])
    sample_weight = compute_sample_weight("balanced", y, indices=range(6))
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with column vector of balanced classes and all samples present
    y = np.asarray([[1], [1], [1], [2], [2], [2]])
    sample_weight = compute_sample_weight("balanced", y, indices=range(6))
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])

    # Test with a subsample
    y = np.asarray([1, 1, 1, 2, 2, 2])
    sample_weight = compute_sample_weight("balanced", y, indices=range(4))
    assert_array_almost_equal(sample_weight, [2.0 / 3, 2.0 / 3, 2.0 / 3, 2.0, 2.0, 2.0])

    # Test with a bootstrap subsample
    y = np.asarray([1, 1, 1, 2, 2, 2])
    sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
    expected_balanced = np.asarray([0.6, 0.6, 0.6, 3.0, 3.0, 3.0])
    assert_array_almost_equal(sample_weight, expected_balanced)

    # Test with a bootstrap subsample for multi-output
    y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
    sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
    assert_array_almost_equal(sample_weight, expected_balanced**2)

    # Test with a missing class
    y = np.asarray([1, 1, 1, 2, 2, 2, 3])
    sample_weight = compute_sample_weight("balanced", y, indices=range(6))
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])

    # Test with a missing class for multi-output
    y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]])
    sample_weight = compute_sample_weight("balanced", y, indices=range(6))
    assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])


@pytest.mark.parametrize(
    "y_type, class_weight, indices, err_msg",
    [
        (
            "single-output",
            {1: 2, 2: 1},
            range(4),
            "The only valid class_weight for subsampling is 'balanced'.",
        ),
        (
            "multi-output",
            {1: 2, 2: 1},
            None,
            "For multi-output, class_weight should be a list of dicts, or the string",
        ),
        (
            "multi-output",
            [{1: 2, 2: 1}],
            None,
            r"Got 1 element\(s\) while having 2 outputs",
        ),
    ],
)
def test_compute_sample_weight_errors(y_type, class_weight, indices, err_msg):
    # Test compute_sample_weight raises errors expected.
    # Invalid preset string
    y_single_output = np.asarray([1, 1, 1, 2, 2, 2])
    y_multi_output = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])

    y = y_single_output if y_type == "single-output" else y_multi_output
    with pytest.raises(ValueError, match=err_msg):
        compute_sample_weight(class_weight, y, indices=indices)


def test_compute_sample_weight_more_than_32():
    # Non-regression smoke test for #12146
    y = np.arange(50)  # more than 32 distinct classes
    indices = np.arange(50)  # use subsampling
    weight = compute_sample_weight("balanced", y, indices=indices)
    assert_array_almost_equal(weight, np.ones(y.shape[0]))


def test_class_weight_does_not_contains_more_classes():
    """Check that class_weight can contain more labels than in y.

    Non-regression test for #22413
    """
    tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})

    # Does not raise
    tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])


@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_compute_sample_weight_sparse(csc_container):
    """Check that we can compute weight for sparse `y`."""
    y = csc_container(np.asarray([[0], [1], [1]]))
    sample_weight = compute_sample_weight("balanced", y)
    assert_allclose(sample_weight, [1.5, 0.75, 0.75])