File: test_estimator_checks.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1260 lines) | stat: -rw-r--r-- 43,757 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
# We can not use pytest here, because we run
# build_tools/azure/test_pytest_soft_dependency.sh on these
# tests to make sure estimator_checks works without pytest.

import importlib
import sys
import unittest
import warnings
from numbers import Integral, Real

import joblib
import numpy as np
import scipy.sparse as sp

from sklearn import config_context, get_config
from sklearn.base import BaseEstimator, ClassifierMixin, OutlierMixin
from sklearn.cluster import MiniBatchKMeans
from sklearn.datasets import make_multilabel_classification
from sklearn.decomposition import PCA
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.exceptions import ConvergenceWarning, SkipTestWarning
from sklearn.linear_model import (
    LinearRegression,
    LogisticRegression,
    MultiTaskElasticNet,
    SGDClassifier,
)
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVC, NuSVC
from sklearn.utils import _array_api, all_estimators, deprecated
from sklearn.utils._param_validation import Interval, StrOptions
from sklearn.utils._testing import (
    MinimalClassifier,
    MinimalRegressor,
    MinimalTransformer,
    SkipTest,
    ignore_warnings,
    raises,
)
from sklearn.utils.estimator_checks import (
    _NotAnArray,
    _set_checking_parameters,
    _yield_all_checks,
    check_array_api_input,
    check_class_weight_balanced_linear_classifier,
    check_classifier_data_not_an_array,
    check_classifiers_multilabel_output_format_decision_function,
    check_classifiers_multilabel_output_format_predict,
    check_classifiers_multilabel_output_format_predict_proba,
    check_dataframe_column_names_consistency,
    check_decision_proba_consistency,
    check_estimator,
    check_estimator_get_tags_default_keys,
    check_estimators_unfitted,
    check_fit_check_is_fitted,
    check_fit_score_takes_y,
    check_methods_sample_order_invariance,
    check_methods_subset_invariance,
    check_no_attributes_set_in_init,
    check_outlier_contamination,
    check_outlier_corruption,
    check_regressor_data_not_an_array,
    check_requires_y_none,
    set_random_state,
)
from sklearn.utils.fixes import CSR_CONTAINERS
from sklearn.utils.metaestimators import available_if
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y


class CorrectNotFittedError(ValueError):
    """Exception class to raise if estimator is used before fitting.

    Like NotFittedError, it inherits from ValueError, but not from
    AttributeError. Used for testing only.
    """


class BaseBadClassifier(ClassifierMixin, BaseEstimator):
    def fit(self, X, y):
        return self

    def predict(self, X):
        return np.ones(X.shape[0])


class ChangesDict(BaseEstimator):
    def __init__(self, key=0):
        self.key = key

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self

    def predict(self, X):
        X = check_array(X)
        self.key = 1000
        return np.ones(X.shape[0])


class SetsWrongAttribute(BaseEstimator):
    def __init__(self, acceptable_key=0):
        self.acceptable_key = acceptable_key

    def fit(self, X, y=None):
        self.wrong_attribute = 0
        X, y = self._validate_data(X, y)
        return self


class ChangesWrongAttribute(BaseEstimator):
    def __init__(self, wrong_attribute=0):
        self.wrong_attribute = wrong_attribute

    def fit(self, X, y=None):
        self.wrong_attribute = 1
        X, y = self._validate_data(X, y)
        return self


class ChangesUnderscoreAttribute(BaseEstimator):
    def fit(self, X, y=None):
        self._good_attribute = 1
        X, y = self._validate_data(X, y)
        return self


class RaisesErrorInSetParams(BaseEstimator):
    def __init__(self, p=0):
        self.p = p

    def set_params(self, **kwargs):
        if "p" in kwargs:
            p = kwargs.pop("p")
            if p < 0:
                raise ValueError("p can't be less than 0")
            self.p = p
        return super().set_params(**kwargs)

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self


class HasMutableParameters(BaseEstimator):
    def __init__(self, p=object()):
        self.p = p

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self


class HasImmutableParameters(BaseEstimator):
    # Note that object is an uninitialized class, thus immutable.
    def __init__(self, p=42, q=np.int32(42), r=object):
        self.p = p
        self.q = q
        self.r = r

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self


class ModifiesValueInsteadOfRaisingError(BaseEstimator):
    def __init__(self, p=0):
        self.p = p

    def set_params(self, **kwargs):
        if "p" in kwargs:
            p = kwargs.pop("p")
            if p < 0:
                p = 0
            self.p = p
        return super().set_params(**kwargs)

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self


class ModifiesAnotherValue(BaseEstimator):
    def __init__(self, a=0, b="method1"):
        self.a = a
        self.b = b

    def set_params(self, **kwargs):
        if "a" in kwargs:
            a = kwargs.pop("a")
            self.a = a
            if a is None:
                kwargs.pop("b")
                self.b = "method2"
        return super().set_params(**kwargs)

    def fit(self, X, y=None):
        X, y = self._validate_data(X, y)
        return self


class NoCheckinPredict(BaseBadClassifier):
    def fit(self, X, y):
        X, y = self._validate_data(X, y)
        return self


class NoSparseClassifier(BaseBadClassifier):
    def fit(self, X, y):
        X, y = self._validate_data(X, y, accept_sparse=["csr", "csc"])
        if sp.issparse(X):
            raise ValueError("Nonsensical Error")
        return self

    def predict(self, X):
        X = check_array(X)
        return np.ones(X.shape[0])


class CorrectNotFittedErrorClassifier(BaseBadClassifier):
    def fit(self, X, y):
        X, y = self._validate_data(X, y)
        self.coef_ = np.ones(X.shape[1])
        return self

    def predict(self, X):
        check_is_fitted(self)
        X = check_array(X)
        return np.ones(X.shape[0])


class NoSampleWeightPandasSeriesType(BaseEstimator):
    def fit(self, X, y, sample_weight=None):
        # Convert data
        X, y = self._validate_data(
            X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
        )
        # Function is only called after we verify that pandas is installed
        from pandas import Series

        if isinstance(sample_weight, Series):
            raise ValueError(
                "Estimator does not accept 'sample_weight'of type pandas.Series"
            )
        return self

    def predict(self, X):
        X = check_array(X)
        return np.ones(X.shape[0])


class BadBalancedWeightsClassifier(BaseBadClassifier):
    def __init__(self, class_weight=None):
        self.class_weight = class_weight

    def fit(self, X, y):
        from sklearn.preprocessing import LabelEncoder
        from sklearn.utils import compute_class_weight

        label_encoder = LabelEncoder().fit(y)
        classes = label_encoder.classes_
        class_weight = compute_class_weight(self.class_weight, classes=classes, y=y)

        # Intentionally modify the balanced class_weight
        # to simulate a bug and raise an exception
        if self.class_weight == "balanced":
            class_weight += 1.0

        # Simply assigning coef_ to the class_weight
        self.coef_ = class_weight
        return self


class BadTransformerWithoutMixin(BaseEstimator):
    def fit(self, X, y=None):
        X = self._validate_data(X)
        return self

    def transform(self, X):
        X = check_array(X)
        return X


class NotInvariantPredict(BaseEstimator):
    def fit(self, X, y):
        # Convert data
        X, y = self._validate_data(
            X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
        )
        return self

    def predict(self, X):
        # return 1 if X has more than one element else return 0
        X = check_array(X)
        if X.shape[0] > 1:
            return np.ones(X.shape[0])
        return np.zeros(X.shape[0])


class NotInvariantSampleOrder(BaseEstimator):
    def fit(self, X, y):
        X, y = self._validate_data(
            X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
        )
        # store the original X to check for sample order later
        self._X = X
        return self

    def predict(self, X):
        X = check_array(X)
        # if the input contains the same elements but different sample order,
        # then just return zeros.
        if (
            np.array_equiv(np.sort(X, axis=0), np.sort(self._X, axis=0))
            and (X != self._X).any()
        ):
            return np.zeros(X.shape[0])
        return X[:, 0]


class OneClassSampleErrorClassifier(BaseBadClassifier):
    """Classifier allowing to trigger different behaviors when `sample_weight` reduces
    the number of classes to 1."""

    def __init__(self, raise_when_single_class=False):
        self.raise_when_single_class = raise_when_single_class

    def fit(self, X, y, sample_weight=None):
        X, y = check_X_y(
            X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
        )

        self.has_single_class_ = False
        self.classes_, y = np.unique(y, return_inverse=True)
        n_classes_ = self.classes_.shape[0]
        if n_classes_ < 2 and self.raise_when_single_class:
            self.has_single_class_ = True
            raise ValueError("normal class error")

        # find the number of class after trimming
        if sample_weight is not None:
            if isinstance(sample_weight, np.ndarray) and len(sample_weight) > 0:
                n_classes_ = np.count_nonzero(np.bincount(y, sample_weight))
            if n_classes_ < 2:
                self.has_single_class_ = True
                raise ValueError("Nonsensical Error")

        return self

    def predict(self, X):
        check_is_fitted(self)
        X = check_array(X)
        if self.has_single_class_:
            return np.zeros(X.shape[0])
        return np.ones(X.shape[0])


class LargeSparseNotSupportedClassifier(BaseEstimator):
    def fit(self, X, y):
        X, y = self._validate_data(
            X,
            y,
            accept_sparse=("csr", "csc", "coo"),
            accept_large_sparse=True,
            multi_output=True,
            y_numeric=True,
        )
        if sp.issparse(X):
            if X.getformat() == "coo":
                if X.row.dtype == "int64" or X.col.dtype == "int64":
                    raise ValueError("Estimator doesn't support 64-bit indices")
            elif X.getformat() in ["csc", "csr"]:
                assert "int64" not in (
                    X.indices.dtype,
                    X.indptr.dtype,
                ), "Estimator doesn't support 64-bit indices"

        return self


class SparseTransformer(BaseEstimator):
    def __init__(self, sparse_container=None):
        self.sparse_container = sparse_container

    def fit(self, X, y=None):
        self.X_shape_ = self._validate_data(X).shape
        return self

    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)

    def transform(self, X):
        X = check_array(X)
        if X.shape[1] != self.X_shape_[1]:
            raise ValueError("Bad number of features")
        return self.sparse_container(X)


class EstimatorInconsistentForPandas(BaseEstimator):
    def fit(self, X, y):
        try:
            from pandas import DataFrame

            if isinstance(X, DataFrame):
                self.value_ = X.iloc[0, 0]
            else:
                X = check_array(X)
                self.value_ = X[1, 0]
            return self

        except ImportError:
            X = check_array(X)
            self.value_ = X[1, 0]
            return self

    def predict(self, X):
        X = check_array(X)
        return np.array([self.value_] * X.shape[0])


class UntaggedBinaryClassifier(SGDClassifier):
    # Toy classifier that only supports binary classification, will fail tests.
    def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None):
        super().fit(X, y, coef_init, intercept_init, sample_weight)
        if len(self.classes_) > 2:
            raise ValueError("Only 2 classes are supported")
        return self

    def partial_fit(self, X, y, classes=None, sample_weight=None):
        super().partial_fit(X=X, y=y, classes=classes, sample_weight=sample_weight)
        if len(self.classes_) > 2:
            raise ValueError("Only 2 classes are supported")
        return self


class TaggedBinaryClassifier(UntaggedBinaryClassifier):
    # Toy classifier that only supports binary classification.
    def _more_tags(self):
        return {"binary_only": True}


class EstimatorMissingDefaultTags(BaseEstimator):
    def _get_tags(self):
        tags = super()._get_tags().copy()
        del tags["allow_nan"]
        return tags


class RequiresPositiveXRegressor(LinearRegression):
    def fit(self, X, y):
        X, y = self._validate_data(X, y, multi_output=True)
        if (X < 0).any():
            raise ValueError("negative X values not supported!")
        return super().fit(X, y)

    def _more_tags(self):
        return {"requires_positive_X": True}


class RequiresPositiveYRegressor(LinearRegression):
    def fit(self, X, y):
        X, y = self._validate_data(X, y, multi_output=True)
        if (y <= 0).any():
            raise ValueError("negative y values not supported!")
        return super().fit(X, y)

    def _more_tags(self):
        return {"requires_positive_y": True}


class PoorScoreLogisticRegression(LogisticRegression):
    def decision_function(self, X):
        return super().decision_function(X) + 1

    def _more_tags(self):
        return {"poor_score": True}


class PartialFitChecksName(BaseEstimator):
    def fit(self, X, y):
        self._validate_data(X, y)
        return self

    def partial_fit(self, X, y):
        reset = not hasattr(self, "_fitted")
        self._validate_data(X, y, reset=reset)
        self._fitted = True
        return self


class BrokenArrayAPI(BaseEstimator):
    """Make different predictions when using Numpy and the Array API"""

    def fit(self, X, y):
        return self

    def predict(self, X):
        enabled = get_config()["array_api_dispatch"]
        xp, _ = _array_api.get_namespace(X)
        if enabled:
            return xp.asarray([1, 2, 3])
        else:
            return np.array([3, 2, 1])


def test_check_array_api_input():
    try:
        importlib.import_module("array_api_compat")
    except ModuleNotFoundError:
        raise SkipTest("array_api_compat is required to run this test")
    try:
        importlib.import_module("numpy.array_api")
    except ModuleNotFoundError:  # pragma: nocover
        raise SkipTest("numpy.array_api is required to run this test")

    with raises(AssertionError, match="Not equal to tolerance"):
        check_array_api_input(
            "BrokenArrayAPI",
            BrokenArrayAPI(),
            array_namespace="numpy.array_api",
            check_values=True,
        )


def test_not_an_array_array_function():
    not_array = _NotAnArray(np.ones(10))
    msg = "Don't want to call array_function sum!"
    with raises(TypeError, match=msg):
        np.sum(not_array)
    # always returns True
    assert np.may_share_memory(not_array, None)


def test_check_fit_score_takes_y_works_on_deprecated_fit():
    # Tests that check_fit_score_takes_y works on a class with
    # a deprecated fit method

    class TestEstimatorWithDeprecatedFitMethod(BaseEstimator):
        @deprecated("Deprecated for the purpose of testing check_fit_score_takes_y")
        def fit(self, X, y):
            return self

    check_fit_score_takes_y("test", TestEstimatorWithDeprecatedFitMethod())


def test_check_estimator():
    # tests that the estimator actually fails on "bad" estimators.
    # not a complete test of all checks, which are very extensive.

    # check that we have a set_params and can clone
    msg = "Passing a class was deprecated"
    with raises(TypeError, match=msg):
        check_estimator(object)
    msg = (
        "Parameter 'p' of estimator 'HasMutableParameters' is of type "
        "object which is not allowed"
    )
    # check that the "default_constructible" test checks for mutable parameters
    check_estimator(HasImmutableParameters())  # should pass
    with raises(AssertionError, match=msg):
        check_estimator(HasMutableParameters())
    # check that values returned by get_params match set_params
    msg = "get_params result does not match what was passed to set_params"
    with raises(AssertionError, match=msg):
        check_estimator(ModifiesValueInsteadOfRaisingError())
    with warnings.catch_warnings(record=True) as records:
        check_estimator(RaisesErrorInSetParams())
    assert UserWarning in [rec.category for rec in records]

    with raises(AssertionError, match=msg):
        check_estimator(ModifiesAnotherValue())
    # check that we have a fit method
    msg = "object has no attribute 'fit'"
    with raises(AttributeError, match=msg):
        check_estimator(BaseEstimator())
    # check that fit does input validation
    msg = "Did not raise"
    with raises(AssertionError, match=msg):
        check_estimator(BaseBadClassifier())
    # check that sample_weights in fit accepts pandas.Series type
    try:
        from pandas import Series  # noqa

        msg = (
            "Estimator NoSampleWeightPandasSeriesType raises error if "
            "'sample_weight' parameter is of type pandas.Series"
        )
        with raises(ValueError, match=msg):
            check_estimator(NoSampleWeightPandasSeriesType())
    except ImportError:
        pass
    # check that predict does input validation (doesn't accept dicts in input)
    msg = "Estimator NoCheckinPredict doesn't check for NaN and inf in predict"
    with raises(AssertionError, match=msg):
        check_estimator(NoCheckinPredict())
    # check that estimator state does not change
    # at transform/predict/predict_proba time
    msg = "Estimator changes __dict__ during predict"
    with raises(AssertionError, match=msg):
        check_estimator(ChangesDict())
    # check that `fit` only changes attributes that
    # are private (start with an _ or end with a _).
    msg = (
        "Estimator ChangesWrongAttribute should not change or mutate  "
        "the parameter wrong_attribute from 0 to 1 during fit."
    )
    with raises(AssertionError, match=msg):
        check_estimator(ChangesWrongAttribute())
    check_estimator(ChangesUnderscoreAttribute())
    # check that `fit` doesn't add any public attribute
    msg = (
        r"Estimator adds public attribute\(s\) during the fit method."
        " Estimators are only allowed to add private attributes"
        " either started with _ or ended"
        " with _ but wrong_attribute added"
    )
    with raises(AssertionError, match=msg):
        check_estimator(SetsWrongAttribute())
    # check for sample order invariance
    name = NotInvariantSampleOrder.__name__
    method = "predict"
    msg = (
        "{method} of {name} is not invariant when applied to a dataset"
        "with different sample order."
    ).format(method=method, name=name)
    with raises(AssertionError, match=msg):
        check_estimator(NotInvariantSampleOrder())
    # check for invariant method
    name = NotInvariantPredict.__name__
    method = "predict"
    msg = ("{method} of {name} is not invariant when applied to a subset.").format(
        method=method, name=name
    )
    with raises(AssertionError, match=msg):
        check_estimator(NotInvariantPredict())
    # check for sparse matrix input handling
    name = NoSparseClassifier.__name__
    msg = "Estimator %s doesn't seem to fail gracefully on sparse data" % name
    with raises(AssertionError, match=msg):
        check_estimator(NoSparseClassifier())

    # check for classifiers reducing to less than two classes via sample weights
    name = OneClassSampleErrorClassifier.__name__
    msg = (
        f"{name} failed when fitted on one label after sample_weight "
        "trimming. Error message is not explicit, it should have "
        "'class'."
    )
    with raises(AssertionError, match=msg):
        check_estimator(OneClassSampleErrorClassifier())

    # Large indices test on bad estimator
    msg = (
        "Estimator LargeSparseNotSupportedClassifier doesn't seem to "
        r"support \S{3}_64 matrix, and is not failing gracefully.*"
    )
    with raises(AssertionError, match=msg):
        check_estimator(LargeSparseNotSupportedClassifier())

    # does error on binary_only untagged estimator
    msg = "Only 2 classes are supported"
    with raises(ValueError, match=msg):
        check_estimator(UntaggedBinaryClassifier())

    for csr_container in CSR_CONTAINERS:
        # non-regression test for estimators transforming to sparse data
        check_estimator(SparseTransformer(sparse_container=csr_container))

    # doesn't error on actual estimator
    check_estimator(LogisticRegression())
    check_estimator(LogisticRegression(C=0.01))
    check_estimator(MultiTaskElasticNet())

    # doesn't error on binary_only tagged estimator
    check_estimator(TaggedBinaryClassifier())
    check_estimator(RequiresPositiveXRegressor())

    # Check regressor with requires_positive_y estimator tag
    msg = "negative y values not supported!"
    with raises(ValueError, match=msg):
        check_estimator(RequiresPositiveYRegressor())

    # Does not raise error on classifier with poor_score tag
    check_estimator(PoorScoreLogisticRegression())


def test_check_outlier_corruption():
    # should raise AssertionError
    decision = np.array([0.0, 1.0, 1.5, 2.0])
    with raises(AssertionError):
        check_outlier_corruption(1, 2, decision)
    # should pass
    decision = np.array([0.0, 1.0, 1.0, 2.0])
    check_outlier_corruption(1, 2, decision)


def test_check_estimator_transformer_no_mixin():
    # check that TransformerMixin is not required for transformer tests to run
    with raises(AttributeError, ".*fit_transform.*"):
        check_estimator(BadTransformerWithoutMixin())


def test_check_estimator_clones():
    # check that check_estimator doesn't modify the estimator it receives
    from sklearn.datasets import load_iris

    iris = load_iris()

    for Estimator in [
        GaussianMixture,
        LinearRegression,
        SGDClassifier,
        PCA,
        ExtraTreesClassifier,
        MiniBatchKMeans,
    ]:
        # without fitting
        with ignore_warnings(category=ConvergenceWarning):
            est = Estimator()
            _set_checking_parameters(est)
            set_random_state(est)
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)

        # with fitting
        with ignore_warnings(category=ConvergenceWarning):
            est = Estimator()
            _set_checking_parameters(est)
            set_random_state(est)
            est.fit(iris.data + 10, iris.target)
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)


def test_check_estimators_unfitted():
    # check that a ValueError/AttributeError is raised when calling predict
    # on an unfitted estimator
    msg = "Did not raise"
    with raises(AssertionError, match=msg):
        check_estimators_unfitted("estimator", NoSparseClassifier())

    # check that CorrectNotFittedError inherit from either ValueError
    # or AttributeError
    check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier())


def test_check_no_attributes_set_in_init():
    class NonConformantEstimatorPrivateSet(BaseEstimator):
        def __init__(self):
            self.you_should_not_set_this_ = None

    class NonConformantEstimatorNoParamSet(BaseEstimator):
        def __init__(self, you_should_set_this_=None):
            pass

    class ConformantEstimatorClassAttribute(BaseEstimator):
        # making sure our __metadata_request__* class attributes are okay!
        __metadata_request__fit = {"foo": True}

    msg = (
        "Estimator estimator_name should not set any"
        " attribute apart from parameters during init."
        r" Found attributes \['you_should_not_set_this_'\]."
    )
    with raises(AssertionError, match=msg):
        check_no_attributes_set_in_init(
            "estimator_name", NonConformantEstimatorPrivateSet()
        )

    msg = (
        "Estimator estimator_name should store all parameters as an attribute"
        " during init"
    )
    with raises(AttributeError, match=msg):
        check_no_attributes_set_in_init(
            "estimator_name", NonConformantEstimatorNoParamSet()
        )

    # a private class attribute is okay!
    check_no_attributes_set_in_init(
        "estimator_name", ConformantEstimatorClassAttribute()
    )
    # also check if cloning an estimator which has non-default set requests is
    # fine. Setting a non-default value via `set_{method}_request` sets the
    # private _metadata_request instance attribute which is copied in `clone`.
    with config_context(enable_metadata_routing=True):
        check_no_attributes_set_in_init(
            "estimator_name",
            ConformantEstimatorClassAttribute().set_fit_request(foo=True),
        )


def test_check_estimator_pairwise():
    # check that check_estimator() works on estimator with _pairwise
    # kernel or metric

    # test precomputed kernel
    est = SVC(kernel="precomputed")
    check_estimator(est)

    # test precomputed metric
    est = KNeighborsRegressor(metric="precomputed")
    check_estimator(est)


def test_check_classifier_data_not_an_array():
    with raises(AssertionError, match="Not equal to tolerance"):
        check_classifier_data_not_an_array(
            "estimator_name", EstimatorInconsistentForPandas()
        )


def test_check_regressor_data_not_an_array():
    with raises(AssertionError, match="Not equal to tolerance"):
        check_regressor_data_not_an_array(
            "estimator_name", EstimatorInconsistentForPandas()
        )


def test_check_estimator_get_tags_default_keys():
    estimator = EstimatorMissingDefaultTags()
    err_msg = (
        r"EstimatorMissingDefaultTags._get_tags\(\) is missing entries"
        r" for the following default tags: {'allow_nan'}"
    )
    with raises(AssertionError, match=err_msg):
        check_estimator_get_tags_default_keys(estimator.__class__.__name__, estimator)

    # noop check when _get_tags is not available
    estimator = MinimalTransformer()
    check_estimator_get_tags_default_keys(estimator.__class__.__name__, estimator)


def test_check_dataframe_column_names_consistency():
    err_msg = "Estimator does not have a feature_names_in_"
    with raises(ValueError, match=err_msg):
        check_dataframe_column_names_consistency("estimator_name", BaseBadClassifier())
    check_dataframe_column_names_consistency("estimator_name", PartialFitChecksName())

    lr = LogisticRegression()
    check_dataframe_column_names_consistency(lr.__class__.__name__, lr)
    lr.__doc__ = "Docstring that does not document the estimator's attributes"
    err_msg = (
        "Estimator LogisticRegression does not document its feature_names_in_ attribute"
    )
    with raises(ValueError, match=err_msg):
        check_dataframe_column_names_consistency(lr.__class__.__name__, lr)


class _BaseMultiLabelClassifierMock(ClassifierMixin, BaseEstimator):
    def __init__(self, response_output):
        self.response_output = response_output

    def fit(self, X, y):
        return self

    def _more_tags(self):
        return {"multilabel": True}


def test_check_classifiers_multilabel_output_format_predict():
    n_samples, test_size, n_outputs = 100, 25, 5
    _, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    y_test = y[-test_size:]

    class MultiLabelClassifierPredict(_BaseMultiLabelClassifierMock):
        def predict(self, X):
            return self.response_output

    # 1. inconsistent array type
    clf = MultiLabelClassifierPredict(response_output=y_test.tolist())
    err_msg = (
        r"MultiLabelClassifierPredict.predict is expected to output a "
        r"NumPy array. Got <class 'list'> instead."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict(clf.__class__.__name__, clf)
    # 2. inconsistent shape
    clf = MultiLabelClassifierPredict(response_output=y_test[:, :-1])
    err_msg = (
        r"MultiLabelClassifierPredict.predict outputs a NumPy array of "
        r"shape \(25, 4\) instead of \(25, 5\)."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict(clf.__class__.__name__, clf)
    # 3. inconsistent dtype
    clf = MultiLabelClassifierPredict(response_output=y_test.astype(np.float64))
    err_msg = (
        r"MultiLabelClassifierPredict.predict does not output the same "
        r"dtype than the targets."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict(clf.__class__.__name__, clf)


def test_check_classifiers_multilabel_output_format_predict_proba():
    n_samples, test_size, n_outputs = 100, 25, 5
    _, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    y_test = y[-test_size:]

    class MultiLabelClassifierPredictProba(_BaseMultiLabelClassifierMock):
        def predict_proba(self, X):
            return self.response_output

    for csr_container in CSR_CONTAINERS:
        # 1. unknown output type
        clf = MultiLabelClassifierPredictProba(response_output=csr_container(y_test))
        err_msg = (
            f"Unknown returned type .*{csr_container.__name__}.* by "
            r"MultiLabelClassifierPredictProba.predict_proba. A list or a Numpy "
            r"array is expected."
        )
        with raises(ValueError, match=err_msg):
            check_classifiers_multilabel_output_format_predict_proba(
                clf.__class__.__name__,
                clf,
            )
    # 2. for list output
    # 2.1. inconsistent length
    clf = MultiLabelClassifierPredictProba(response_output=y_test.tolist())
    err_msg = (
        "When MultiLabelClassifierPredictProba.predict_proba returns a list, "
        "the list should be of length n_outputs and contain NumPy arrays. Got "
        f"length of {test_size} instead of {n_outputs}."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 2.2. array of inconsistent shape
    response_output = [np.ones_like(y_test) for _ in range(n_outputs)]
    clf = MultiLabelClassifierPredictProba(response_output=response_output)
    err_msg = (
        r"When MultiLabelClassifierPredictProba.predict_proba returns a list, "
        r"this list should contain NumPy arrays of shape \(n_samples, 2\). Got "
        r"NumPy arrays of shape \(25, 5\) instead of \(25, 2\)."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 2.3. array of inconsistent dtype
    response_output = [
        np.ones(shape=(y_test.shape[0], 2), dtype=np.int64) for _ in range(n_outputs)
    ]
    clf = MultiLabelClassifierPredictProba(response_output=response_output)
    err_msg = (
        "When MultiLabelClassifierPredictProba.predict_proba returns a list, "
        "it should contain NumPy arrays with floating dtype."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 2.4. array does not contain probability (each row should sum to 1)
    response_output = [
        np.ones(shape=(y_test.shape[0], 2), dtype=np.float64) for _ in range(n_outputs)
    ]
    clf = MultiLabelClassifierPredictProba(response_output=response_output)
    err_msg = (
        r"When MultiLabelClassifierPredictProba.predict_proba returns a list, "
        r"each NumPy array should contain probabilities for each class and "
        r"thus each row should sum to 1"
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 3 for array output
    # 3.1. array of inconsistent shape
    clf = MultiLabelClassifierPredictProba(response_output=y_test[:, :-1])
    err_msg = (
        r"When MultiLabelClassifierPredictProba.predict_proba returns a NumPy "
        r"array, the expected shape is \(n_samples, n_outputs\). Got \(25, 4\)"
        r" instead of \(25, 5\)."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 3.2. array of inconsistent dtype
    response_output = np.zeros_like(y_test, dtype=np.int64)
    clf = MultiLabelClassifierPredictProba(response_output=response_output)
    err_msg = (
        r"When MultiLabelClassifierPredictProba.predict_proba returns a NumPy "
        r"array, the expected data type is floating."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )
    # 4. array does not contain probabilities
    clf = MultiLabelClassifierPredictProba(response_output=y_test * 2.0)
    err_msg = (
        r"When MultiLabelClassifierPredictProba.predict_proba returns a NumPy "
        r"array, this array is expected to provide probabilities of the "
        r"positive class and should therefore contain values between 0 and 1."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_predict_proba(
            clf.__class__.__name__,
            clf,
        )


def test_check_classifiers_multilabel_output_format_decision_function():
    n_samples, test_size, n_outputs = 100, 25, 5
    _, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    y_test = y[-test_size:]

    class MultiLabelClassifierDecisionFunction(_BaseMultiLabelClassifierMock):
        def decision_function(self, X):
            return self.response_output

    # 1. inconsistent array type
    clf = MultiLabelClassifierDecisionFunction(response_output=y_test.tolist())
    err_msg = (
        r"MultiLabelClassifierDecisionFunction.decision_function is expected "
        r"to output a NumPy array. Got <class 'list'> instead."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_decision_function(
            clf.__class__.__name__,
            clf,
        )
    # 2. inconsistent shape
    clf = MultiLabelClassifierDecisionFunction(response_output=y_test[:, :-1])
    err_msg = (
        r"MultiLabelClassifierDecisionFunction.decision_function is expected "
        r"to provide a NumPy array of shape \(n_samples, n_outputs\). Got "
        r"\(25, 4\) instead of \(25, 5\)"
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_decision_function(
            clf.__class__.__name__,
            clf,
        )
    # 3. inconsistent dtype
    clf = MultiLabelClassifierDecisionFunction(response_output=y_test)
    err_msg = (
        r"MultiLabelClassifierDecisionFunction.decision_function is expected "
        r"to output a floating dtype."
    )
    with raises(AssertionError, match=err_msg):
        check_classifiers_multilabel_output_format_decision_function(
            clf.__class__.__name__,
            clf,
        )


def run_tests_without_pytest():
    """Runs the tests in this file without using pytest."""
    main_module = sys.modules["__main__"]
    test_functions = [
        getattr(main_module, name)
        for name in dir(main_module)
        if name.startswith("test_")
    ]
    test_cases = [unittest.FunctionTestCase(fn) for fn in test_functions]
    suite = unittest.TestSuite()
    suite.addTests(test_cases)
    runner = unittest.TextTestRunner()
    runner.run(suite)


def test_check_class_weight_balanced_linear_classifier():
    # check that ill-computed balanced weights raises an exception
    msg = "Classifier estimator_name is not computing class_weight=balanced properly"
    with raises(AssertionError, match=msg):
        check_class_weight_balanced_linear_classifier(
            "estimator_name", BadBalancedWeightsClassifier
        )


def test_all_estimators_all_public():
    # all_estimator should not fail when pytest is not installed and return
    # only public estimators
    with warnings.catch_warnings(record=True) as record:
        estimators = all_estimators()
    # no warnings are raised
    assert not record
    for est in estimators:
        assert not est.__class__.__name__.startswith("_")


if __name__ == "__main__":
    # This module is run as a script to check that we have no dependency on
    # pytest for estimator checks.
    run_tests_without_pytest()


def test_xfail_ignored_in_check_estimator():
    # Make sure checks marked as xfail are just ignored and not run by
    # check_estimator(), but still raise a warning.
    with warnings.catch_warnings(record=True) as records:
        check_estimator(NuSVC())
    assert SkipTestWarning in [rec.category for rec in records]


# FIXME: this test should be uncommented when the checks will be granular
# enough. In 0.24, these tests fail due to low estimator performance.
def test_minimal_class_implementation_checks():
    # Check that third-party library can run tests without inheriting from
    # BaseEstimator.
    # FIXME
    raise SkipTest
    minimal_estimators = [MinimalTransformer(), MinimalRegressor(), MinimalClassifier()]
    for estimator in minimal_estimators:
        check_estimator(estimator)


def test_check_fit_check_is_fitted():
    class Estimator(BaseEstimator):
        def __init__(self, behavior="attribute"):
            self.behavior = behavior

        def fit(self, X, y, **kwargs):
            if self.behavior == "attribute":
                self.is_fitted_ = True
            elif self.behavior == "method":
                self._is_fitted = True
            return self

        @available_if(lambda self: self.behavior in {"method", "always-true"})
        def __sklearn_is_fitted__(self):
            if self.behavior == "always-true":
                return True
            return hasattr(self, "_is_fitted")

    with raises(Exception, match="passes check_is_fitted before being fit"):
        check_fit_check_is_fitted("estimator", Estimator(behavior="always-true"))

    check_fit_check_is_fitted("estimator", Estimator(behavior="method"))
    check_fit_check_is_fitted("estimator", Estimator(behavior="attribute"))


def test_check_requires_y_none():
    class Estimator(BaseEstimator):
        def fit(self, X, y):
            X, y = check_X_y(X, y)

    with warnings.catch_warnings(record=True) as record:
        check_requires_y_none("estimator", Estimator())

    # no warnings are raised
    assert not [r.message for r in record]


def test_non_deterministic_estimator_skip_tests():
    # check estimators with non_deterministic tag set to True
    # will skip certain tests, refer to issue #22313 for details
    for est in [MinimalTransformer, MinimalRegressor, MinimalClassifier]:
        all_tests = list(_yield_all_checks(est()))
        assert check_methods_sample_order_invariance in all_tests
        assert check_methods_subset_invariance in all_tests

        class Estimator(est):
            def _more_tags(self):
                return {"non_deterministic": True}

        all_tests = list(_yield_all_checks(Estimator()))
        assert check_methods_sample_order_invariance not in all_tests
        assert check_methods_subset_invariance not in all_tests


def test_check_outlier_contamination():
    """Check the test for the contamination parameter in the outlier detectors."""

    # Without any parameter constraints, the estimator will early exit the test by
    # returning None.
    class OutlierDetectorWithoutConstraint(OutlierMixin, BaseEstimator):
        """Outlier detector without parameter validation."""

        def __init__(self, contamination=0.1):
            self.contamination = contamination

        def fit(self, X, y=None, sample_weight=None):
            return self  # pragma: no cover

        def predict(self, X, y=None):
            return np.ones(X.shape[0])

    detector = OutlierDetectorWithoutConstraint()
    assert check_outlier_contamination(detector.__class__.__name__, detector) is None

    # Now, we check that with the parameter constraints, the test should only be valid
    # if an Interval constraint with bound in [0, 1] is provided.
    class OutlierDetectorWithConstraint(OutlierDetectorWithoutConstraint):
        _parameter_constraints = {"contamination": [StrOptions({"auto"})]}

    detector = OutlierDetectorWithConstraint()
    err_msg = "contamination constraints should contain a Real Interval constraint."
    with raises(AssertionError, match=err_msg):
        check_outlier_contamination(detector.__class__.__name__, detector)

    # Add a correct interval constraint and check that the test passes.
    OutlierDetectorWithConstraint._parameter_constraints["contamination"] = [
        Interval(Real, 0, 0.5, closed="right")
    ]
    detector = OutlierDetectorWithConstraint()
    check_outlier_contamination(detector.__class__.__name__, detector)

    incorrect_intervals = [
        Interval(Integral, 0, 1, closed="right"),  # not an integral interval
        Interval(Real, -1, 1, closed="right"),  # lower bound is negative
        Interval(Real, 0, 2, closed="right"),  # upper bound is greater than 1
        Interval(Real, 0, 0.5, closed="left"),  # lower bound include 0
    ]

    err_msg = r"contamination constraint should be an interval in \(0, 0.5\]"
    for interval in incorrect_intervals:
        OutlierDetectorWithConstraint._parameter_constraints["contamination"] = [
            interval
        ]
        detector = OutlierDetectorWithConstraint()
        with raises(AssertionError, match=err_msg):
            check_outlier_contamination(detector.__class__.__name__, detector)


def test_decision_proba_tie_ranking():
    """Check that in case with some probabilities ties, we relax the
    ranking comparison with the decision function.
    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/24025
    """
    estimator = SGDClassifier(loss="log_loss")
    check_decision_proba_consistency("SGDClassifier", estimator)