File: test_set_output.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (452 lines) | stat: -rw-r--r-- 15,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import importlib
from collections import namedtuple

import numpy as np
import pytest
from numpy.testing import assert_array_equal

from sklearn._config import config_context, get_config
from sklearn.preprocessing import StandardScaler
from sklearn.utils._set_output import (
    ADAPTERS_MANAGER,
    ContainerAdapterProtocol,
    _get_output_config,
    _safe_set_output,
    _SetOutputMixin,
    _wrap_data_with_container,
    check_library_installed,
)
from sklearn.utils.fixes import CSR_CONTAINERS


def test_pandas_adapter():
    """Check pandas adapter has expected behavior."""
    pd = pytest.importorskip("pandas")
    X_np = np.asarray([[1, 0, 3], [0, 0, 1]])
    columns = np.asarray(["f0", "f1", "f2"], dtype=object)
    index = np.asarray([0, 1])
    X_df_orig = pd.DataFrame([[1, 2], [1, 3]], index=index)

    adapter = ADAPTERS_MANAGER.adapters["pandas"]
    X_container = adapter.create_container(X_np, X_df_orig, columns=lambda: columns)
    assert isinstance(X_container, pd.DataFrame)
    assert_array_equal(X_container.columns, columns)
    assert_array_equal(X_container.index, index)

    # Input dataframe's index does not change
    new_columns = np.asarray(["f0", "f1"], dtype=object)
    X_df = pd.DataFrame([[1, 2], [1, 3]], index=[10, 12])
    new_df = adapter.create_container(X_df, X_df_orig, columns=new_columns)
    assert_array_equal(new_df.columns, new_columns)
    assert_array_equal(new_df.index, X_df.index)

    assert adapter.is_supported_container(X_df)
    assert not adapter.is_supported_container(X_np)

    # adapter.update_columns updates the columns
    new_columns = np.array(["a", "c"], dtype=object)
    new_df = adapter.rename_columns(X_df, new_columns)
    assert_array_equal(new_df.columns, new_columns)

    # adapter.hstack stacks the dataframes horizontally.
    X_df_1 = pd.DataFrame([[1, 2, 5], [3, 4, 6]], columns=["a", "b", "e"])
    X_df_2 = pd.DataFrame([[4], [5]], columns=["c"])
    X_stacked = adapter.hstack([X_df_1, X_df_2])

    expected_df = pd.DataFrame(
        [[1, 2, 5, 4], [3, 4, 6, 5]], columns=["a", "b", "e", "c"]
    )
    pd.testing.assert_frame_equal(X_stacked, expected_df)

    # check that we update properly the columns even with duplicate column names
    # this use-case potentially happen when using ColumnTransformer
    # non-regression test for gh-28260
    X_df = pd.DataFrame([[1, 2], [1, 3]], columns=["a", "a"])
    new_columns = np.array(["x__a", "y__a"], dtype=object)
    new_df = adapter.rename_columns(X_df, new_columns)
    assert_array_equal(new_df.columns, new_columns)

    # check the behavior of the inplace parameter in `create_container`
    # we should trigger a copy
    X_df = pd.DataFrame([[1, 2], [1, 3]], index=index)
    X_output = adapter.create_container(X_df, X_df, columns=["a", "b"], inplace=False)
    assert X_output is not X_df
    assert list(X_df.columns) == [0, 1]
    assert list(X_output.columns) == ["a", "b"]

    # the operation is inplace
    X_df = pd.DataFrame([[1, 2], [1, 3]], index=index)
    X_output = adapter.create_container(X_df, X_df, columns=["a", "b"], inplace=True)
    assert X_output is X_df
    assert list(X_df.columns) == ["a", "b"]
    assert list(X_output.columns) == ["a", "b"]


def test_polars_adapter():
    """Check Polars adapter has expected behavior."""
    pl = pytest.importorskip("polars")
    X_np = np.array([[1, 0, 3], [0, 0, 1]])
    columns = ["f1", "f2", "f3"]
    X_df_orig = pl.DataFrame(X_np, schema=columns, orient="row")

    adapter = ADAPTERS_MANAGER.adapters["polars"]
    X_container = adapter.create_container(X_np, X_df_orig, columns=lambda: columns)

    assert isinstance(X_container, pl.DataFrame)
    assert_array_equal(X_container.columns, columns)

    # Update columns with create_container
    new_columns = np.asarray(["a", "b", "c"], dtype=object)
    new_df = adapter.create_container(X_df_orig, X_df_orig, columns=new_columns)
    assert_array_equal(new_df.columns, new_columns)

    assert adapter.is_supported_container(X_df_orig)
    assert not adapter.is_supported_container(X_np)

    # adapter.update_columns updates the columns
    new_columns = np.array(["a", "c", "g"], dtype=object)
    new_df = adapter.rename_columns(X_df_orig, new_columns)
    assert_array_equal(new_df.columns, new_columns)

    # adapter.hstack stacks the dataframes horizontally.
    X_df_1 = pl.DataFrame([[1, 2, 5], [3, 4, 6]], schema=["a", "b", "e"], orient="row")
    X_df_2 = pl.DataFrame([[4], [5]], schema=["c"], orient="row")
    X_stacked = adapter.hstack([X_df_1, X_df_2])

    expected_df = pl.DataFrame(
        [[1, 2, 5, 4], [3, 4, 6, 5]], schema=["a", "b", "e", "c"], orient="row"
    )
    from polars.testing import assert_frame_equal

    assert_frame_equal(X_stacked, expected_df)

    # check the behavior of the inplace parameter in `create_container`
    # we should trigger a copy
    X_df = pl.DataFrame([[1, 2], [1, 3]], schema=["a", "b"], orient="row")
    X_output = adapter.create_container(X_df, X_df, columns=["c", "d"], inplace=False)
    assert X_output is not X_df
    assert list(X_df.columns) == ["a", "b"]
    assert list(X_output.columns) == ["c", "d"]

    # the operation is inplace
    X_df = pl.DataFrame([[1, 2], [1, 3]], schema=["a", "b"], orient="row")
    X_output = adapter.create_container(X_df, X_df, columns=["c", "d"], inplace=True)
    assert X_output is X_df
    assert list(X_df.columns) == ["c", "d"]
    assert list(X_output.columns) == ["c", "d"]


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test__container_error_validation(csr_container):
    """Check errors in _wrap_data_with_container."""
    X = np.asarray([[1, 0, 3], [0, 0, 1]])
    X_csr = csr_container(X)
    match = "The transformer outputs a scipy sparse matrix."
    with config_context(transform_output="pandas"):
        with pytest.raises(ValueError, match=match):
            _wrap_data_with_container("transform", X_csr, X, StandardScaler())


class EstimatorWithoutSetOutputAndWithoutTransform:
    pass


class EstimatorNoSetOutputWithTransform:
    def transform(self, X, y=None):
        return X  # pragma: no cover


class EstimatorWithSetOutput(_SetOutputMixin):
    def fit(self, X, y=None):
        self.n_features_in_ = X.shape[1]
        return self

    def transform(self, X, y=None):
        return X

    def get_feature_names_out(self, input_features=None):
        return np.asarray([f"X{i}" for i in range(self.n_features_in_)], dtype=object)


def test__safe_set_output():
    """Check _safe_set_output works as expected."""

    # Estimator without transform will not raise when setting set_output for transform.
    est = EstimatorWithoutSetOutputAndWithoutTransform()
    _safe_set_output(est, transform="pandas")

    # Estimator with transform but without set_output will raise
    est = EstimatorNoSetOutputWithTransform()
    with pytest.raises(ValueError, match="Unable to configure output"):
        _safe_set_output(est, transform="pandas")

    est = EstimatorWithSetOutput().fit(np.asarray([[1, 2, 3]]))
    _safe_set_output(est, transform="pandas")
    config = _get_output_config("transform", est)
    assert config["dense"] == "pandas"

    _safe_set_output(est, transform="default")
    config = _get_output_config("transform", est)
    assert config["dense"] == "default"

    # transform is None is a no-op, so the config remains "default"
    _safe_set_output(est, transform=None)
    config = _get_output_config("transform", est)
    assert config["dense"] == "default"


class EstimatorNoSetOutputWithTransformNoFeatureNamesOut(_SetOutputMixin):
    def transform(self, X, y=None):
        return X  # pragma: no cover


def test_set_output_mixin():
    """Estimator without get_feature_names_out does not define `set_output`."""
    est = EstimatorNoSetOutputWithTransformNoFeatureNamesOut()
    assert not hasattr(est, "set_output")


def test__safe_set_output_error():
    """Check transform with invalid config."""
    X = np.asarray([[1, 0, 3], [0, 0, 1]])

    est = EstimatorWithSetOutput()
    _safe_set_output(est, transform="bad")

    msg = "output config must be in"
    with pytest.raises(ValueError, match=msg):
        est.transform(X)


@pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
def test_set_output_method(dataframe_lib):
    """Check that the output is a dataframe."""
    lib = pytest.importorskip(dataframe_lib)

    X = np.asarray([[1, 0, 3], [0, 0, 1]])
    est = EstimatorWithSetOutput().fit(X)

    # transform=None is a no-op
    est2 = est.set_output(transform=None)
    assert est2 is est
    X_trans_np = est2.transform(X)
    assert isinstance(X_trans_np, np.ndarray)

    est.set_output(transform=dataframe_lib)

    X_trans_pd = est.transform(X)

    assert isinstance(X_trans_pd, lib.DataFrame)


def test_set_output_method_error():
    """Check transform fails with invalid transform."""

    X = np.asarray([[1, 0, 3], [0, 0, 1]])
    est = EstimatorWithSetOutput().fit(X)
    est.set_output(transform="bad")

    msg = "output config must be in"
    with pytest.raises(ValueError, match=msg):
        est.transform(X)


@pytest.mark.parametrize("transform_output", ["pandas", "polars"])
def test__get_output_config(transform_output):
    """Check _get_output_config works as expected."""

    # Without a configuration set, the global config is used
    global_config = get_config()["transform_output"]
    config = _get_output_config("transform")
    assert config["dense"] == global_config

    with config_context(transform_output=transform_output):
        # with estimator=None, the global config is used
        config = _get_output_config("transform")
        assert config["dense"] == transform_output

        est = EstimatorNoSetOutputWithTransform()
        config = _get_output_config("transform", est)
        assert config["dense"] == transform_output

        est = EstimatorWithSetOutput()
        # If estimator has not config, use global config
        config = _get_output_config("transform", est)
        assert config["dense"] == transform_output

        # If estimator has a config, use local config
        est.set_output(transform="default")
        config = _get_output_config("transform", est)
        assert config["dense"] == "default"

    est.set_output(transform=transform_output)
    config = _get_output_config("transform", est)
    assert config["dense"] == transform_output


class EstimatorWithSetOutputNoAutoWrap(_SetOutputMixin, auto_wrap_output_keys=None):
    def transform(self, X, y=None):
        return X


def test_get_output_auto_wrap_false():
    """Check that auto_wrap_output_keys=None does not wrap."""
    est = EstimatorWithSetOutputNoAutoWrap()
    assert not hasattr(est, "set_output")

    X = np.asarray([[1, 0, 3], [0, 0, 1]])
    assert X is est.transform(X)


def test_auto_wrap_output_keys_errors_with_incorrect_input():
    msg = "auto_wrap_output_keys must be None or a tuple of keys."
    with pytest.raises(ValueError, match=msg):

        class BadEstimator(_SetOutputMixin, auto_wrap_output_keys="bad_parameter"):
            pass


class AnotherMixin:
    def __init_subclass__(cls, custom_parameter, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.custom_parameter = custom_parameter


def test_set_output_mixin_custom_mixin():
    """Check that multiple init_subclasses passes parameters up."""

    class BothMixinEstimator(_SetOutputMixin, AnotherMixin, custom_parameter=123):
        def transform(self, X, y=None):
            return X

        def get_feature_names_out(self, input_features=None):
            return input_features

    est = BothMixinEstimator()
    assert est.custom_parameter == 123
    assert hasattr(est, "set_output")


def test_set_output_mro():
    """Check that multi-inheritance resolves to the correct class method.

    Non-regression test gh-25293.
    """

    class Base(_SetOutputMixin):
        def transform(self, X):
            return "Base"  # noqa

    class A(Base):
        pass

    class B(Base):
        def transform(self, X):
            return "B"

    class C(A, B):
        pass

    assert C().transform(None) == "B"


class EstimatorWithSetOutputIndex(_SetOutputMixin):
    def fit(self, X, y=None):
        self.n_features_in_ = X.shape[1]
        return self

    def transform(self, X, y=None):
        import pandas as pd

        # transform by giving output a new index.
        return pd.DataFrame(X.to_numpy(), index=[f"s{i}" for i in range(X.shape[0])])

    def get_feature_names_out(self, input_features=None):
        return np.asarray([f"X{i}" for i in range(self.n_features_in_)], dtype=object)


def test_set_output_pandas_keep_index():
    """Check that set_output does not override index.

    Non-regression test for gh-25730.
    """
    pd = pytest.importorskip("pandas")

    X = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=[0, 1])
    est = EstimatorWithSetOutputIndex().set_output(transform="pandas")
    est.fit(X)

    X_trans = est.transform(X)
    assert_array_equal(X_trans.index, ["s0", "s1"])


class EstimatorReturnTuple(_SetOutputMixin):
    def __init__(self, OutputTuple):
        self.OutputTuple = OutputTuple

    def transform(self, X, y=None):
        return self.OutputTuple(X, 2 * X)


def test_set_output_named_tuple_out():
    """Check that namedtuples are kept by default."""
    Output = namedtuple("Output", "X, Y")
    X = np.asarray([[1, 2, 3]])
    est = EstimatorReturnTuple(OutputTuple=Output)
    X_trans = est.transform(X)

    assert isinstance(X_trans, Output)
    assert_array_equal(X_trans.X, X)
    assert_array_equal(X_trans.Y, 2 * X)


class EstimatorWithListInput(_SetOutputMixin):
    def fit(self, X, y=None):
        assert isinstance(X, list)
        self.n_features_in_ = len(X[0])
        return self

    def transform(self, X, y=None):
        return X

    def get_feature_names_out(self, input_features=None):
        return np.asarray([f"X{i}" for i in range(self.n_features_in_)], dtype=object)


@pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
def test_set_output_list_input(dataframe_lib):
    """Check set_output for list input.

    Non-regression test for #27037.
    """
    lib = pytest.importorskip(dataframe_lib)

    X = [[0, 1, 2, 3], [4, 5, 6, 7]]
    est = EstimatorWithListInput()
    est.set_output(transform=dataframe_lib)

    X_out = est.fit(X).transform(X)
    assert isinstance(X_out, lib.DataFrame)
    assert_array_equal(X_out.columns, ["X0", "X1", "X2", "X3"])


@pytest.mark.parametrize("name", sorted(ADAPTERS_MANAGER.adapters))
def test_adapter_class_has_interface(name):
    """Check adapters have the correct interface."""
    assert isinstance(ADAPTERS_MANAGER.adapters[name], ContainerAdapterProtocol)


def test_check_library_installed(monkeypatch):
    """Check import error changed."""
    orig_import_module = importlib.import_module

    def patched_import_module(name):
        if name == "pandas":
            raise ImportError()
        orig_import_module(name, package=None)

    monkeypatch.setattr(importlib, "import_module", patched_import_module)

    msg = "Setting output container to 'pandas' requires"
    with pytest.raises(ImportError, match=msg):
        check_library_installed("pandas")