1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
.. _installation-instructions:
=======================
Installing scikit-learn
=======================
There are different ways to install scikit-learn:
* :ref:`Install the latest official release <install_official_release>`. This
is the best approach for most users. It will provide a stable version
and pre-built packages are available for most platforms.
* Install the version of scikit-learn provided by your
:ref:`operating system or Python distribution <install_by_distribution>`.
This is a quick option for those who have operating systems or Python
distributions that distribute scikit-learn.
It might not provide the latest release version.
* :ref:`Building the package from source
<install_bleeding_edge>`. This is best for users who want the
latest-and-greatest features and aren't afraid of running
brand-new code. This is also needed for users who wish to contribute to the
project.
.. _install_official_release:
Installing the latest release
=============================
.. This quickstart installation is a hack of the awesome
https://spacy.io/usage/#quickstart page.
See the original javascript implementation
https://github.com/ines/quickstart
.. raw:: html
<div class="install">
<strong>Operating System</strong>
<input type="radio" name="os" id="quickstart-win" checked>
<label for="quickstart-win">Windows</label>
<input type="radio" name="os" id="quickstart-mac">
<label for="quickstart-mac">macOS</label>
<input type="radio" name="os" id="quickstart-lin">
<label for="quickstart-lin">Linux</label><br />
<strong>Packager</strong>
<input type="radio" name="packager" id="quickstart-pip" checked>
<label for="quickstart-pip">pip</label>
<input type="radio" name="packager" id="quickstart-conda">
<label for="quickstart-conda">conda</label><br />
<input type="checkbox" name="config" id="quickstart-venv">
<label for="quickstart-venv"></label>
</span>
.. raw:: html
<div>
<span class="sk-expandable" data-packager="pip" data-os="windows">Install the 64bit version of Python 3, for instance from <a href="https://www.python.org/">https://www.python.org</a>.</span
><span class="sk-expandable" data-packager="pip" data-os="mac">Install Python 3 using <a href="https://brew.sh/">homebrew</a> (<code>brew install python</code>) or by manually installing the package from <a href="https://www.python.org">https://www.python.org</a>.</span
><span class="sk-expandable" data-packager="pip" data-os="linux">Install python3 and python3-pip using the package manager of the Linux Distribution.</span
><span class="sk-expandable" data-packager="conda"
>Install conda using the <a href="https://docs.conda.io/projects/conda/en/latest/user-guide/install/">Anaconda or miniconda</a>
installers or the <a href="https://github.com/conda-forge/miniforge#miniforge">miniforge</a> installers
(no administrator permission required for any of those).</span>
</div>
Then run:
.. raw:: html
<div class="highlight">
<pre class="sk-expandable" data-packager="pip" data-os="linux" data-venv="no"
><span>pip3 install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="windows" data-venv="no"
><span>pip install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="mac" data-venv="no"
><span>pip install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="linux" data-venv=""
><span>python3 -m venv sklearn-venv</span>
<span>source sklearn-venv/bin/activate</span>
<span>pip3 install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="windows" data-venv=""
><span>python -m venv sklearn-venv</span>
<span>sklearn-venv\Scripts\activate</span>
<span>pip install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="mac" data-venv=""
><span>python -m venv sklearn-venv</span>
<span>source sklearn-venv/bin/activate</span>
<span>pip install -U scikit-learn</span></pre>
<pre class="sk-expandable" data-packager="conda"
><span>conda create -n sklearn-env -c conda-forge scikit-learn</span>
<span>conda activate sklearn-env</span></pre>
</div>
In order to check your installation you can use
.. raw:: html
<div class="highlight">
<pre class="sk-expandable" data-packager="pip" data-os="linux" data-venv="no"
><span>python3 -m pip show scikit-learn # to see which version and where scikit-learn is installed</span>
<span>python3 -m pip freeze # to see all packages installed in the active virtualenv</span>
<span>python3 -c "import sklearn; sklearn.show_versions()"</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="windows" data-venv="no"
><span>python -m pip show scikit-learn # to see which version and where scikit-learn is installed</span>
<span>python -m pip freeze # to see all packages installed in the active virtualenv</span>
<span>python -c "import sklearn; sklearn.show_versions()"</span></pre>
<pre class="sk-expandable" data-packager="pip" data-os="mac" data-venv="no"
><span>python -m pip show scikit-learn # to see which version and where scikit-learn is installed</span>
<span>python -m pip freeze # to see all packages installed in the active virtualenv</span>
<span>python -c "import sklearn; sklearn.show_versions()"</span></pre>
<pre class="sk-expandable" data-packager="pip" data-venv=""
><span>python -m pip show scikit-learn # to see which version and where scikit-learn is installed</span>
<span>python -m pip freeze # to see all packages installed in the active virtualenv</span>
<span>python -c "import sklearn; sklearn.show_versions()"</span></pre>
<pre class="sk-expandable" data-packager="conda"
><span>conda list scikit-learn # to see which scikit-learn version is installed</span>
<span>conda list # to see all packages installed in the active conda environment</span>
<span>python -c "import sklearn; sklearn.show_versions()"</span></pre>
</div>
Note that in order to avoid potential conflicts with other packages it is
strongly recommended to use a `virtual environment (venv)
<https://docs.python.org/3/tutorial/venv.html>`_ or a `conda environment
<https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html>`_.
Using such an isolated environment makes it possible to install a specific
version of scikit-learn with pip or conda and its dependencies independently of
any previously installed Python packages. In particular under Linux is it
discouraged to install pip packages alongside the packages managed by the
package manager of the distribution (apt, dnf, pacman...).
Note that you should always remember to activate the environment of your choice
prior to running any Python command whenever you start a new terminal session.
If you have not installed NumPy or SciPy yet, you can also install these using
conda or pip. When using pip, please ensure that *binary wheels* are used,
and NumPy and SciPy are not recompiled from source, which can happen when using
particular configurations of operating system and hardware (such as Linux on
a Raspberry Pi).
Scikit-learn plotting capabilities (i.e., functions start with "plot\_"
and classes end with "Display") require Matplotlib. The examples require
Matplotlib and some examples require scikit-image, pandas, or seaborn. The
minimum version of Scikit-learn dependencies are listed below along with its
purpose.
.. include:: min_dependency_table.rst
.. warning::
Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4.
Scikit-learn 0.21 supported Python 3.5-3.7.
Scikit-learn 0.22 supported Python 3.5-3.8.
Scikit-learn 0.23 - 0.24 require Python 3.6 or newer.
Scikit-learn 1.0 supported Python 3.7-3.10.
Scikit-learn 1.1 and later requires Python 3.8 or newer.
.. _install_by_distribution:
Third party distributions of scikit-learn
=========================================
Some third-party distributions provide versions of
scikit-learn integrated with their package-management systems.
These can make installation and upgrading much easier for users since
the integration includes the ability to automatically install
dependencies (numpy, scipy) that scikit-learn requires.
The following is an incomplete list of OS and python distributions
that provide their own version of scikit-learn.
Alpine Linux
------------
Alpine Linux's package is provided through the `official repositories
<https://pkgs.alpinelinux.org/packages?name=py3-scikit-learn>`__ as
``py3-scikit-learn`` for Python.
It can be installed by typing the following command:
.. prompt:: bash $
sudo apk add py3-scikit-learn
Arch Linux
----------
Arch Linux's package is provided through the `official repositories
<https://www.archlinux.org/packages/?q=scikit-learn>`_ as
``python-scikit-learn`` for Python.
It can be installed by typing the following command:
.. prompt:: bash $
sudo pacman -S python-scikit-learn
Debian/Ubuntu
-------------
The Debian/Ubuntu package is split in three different packages called
``python3-sklearn`` (python modules), ``python3-sklearn-lib`` (low-level
implementations and bindings), ``python3-sklearn-doc`` (documentation).
Note that scikit-learn requires Python 3, hence the need to use the `python3-`
suffixed package names.
Packages can be installed using ``apt-get``:
.. prompt:: bash $
sudo apt-get install python3-sklearn python3-sklearn-lib python3-sklearn-doc
Fedora
------
The Fedora package is called ``python3-scikit-learn`` for the python 3 version,
the only one available in Fedora.
It can be installed using ``dnf``:
.. prompt:: bash $
sudo dnf install python3-scikit-learn
NetBSD
------
scikit-learn is available via `pkgsrc-wip
<http://pkgsrc-wip.sourceforge.net/>`_:
https://pkgsrc.se/math/py-scikit-learn
MacPorts for Mac OSX
--------------------
The MacPorts package is named ``py<XY>-scikits-learn``,
where ``XY`` denotes the Python version.
It can be installed by typing the following
command:
.. prompt:: bash $
sudo port install py39-scikit-learn
Anaconda and Enthought Deployment Manager for all supported platforms
---------------------------------------------------------------------
`Anaconda <https://www.anaconda.com/download>`_ and
`Enthought Deployment Manager <https://assets.enthought.com/downloads/>`_
both ship with scikit-learn in addition to a large set of scientific
python library for Windows, Mac OSX and Linux.
Anaconda offers scikit-learn as part of its free distribution.
Intel Extension for Scikit-learn
--------------------------------
Intel maintains an optimized x86_64 package, available in PyPI (via `pip`),
and in the `main`, `conda-forge` and `intel` conda channels:
.. prompt:: bash $
conda install scikit-learn-intelex
This package has an Intel optimized version of many estimators. Whenever
an alternative implementation doesn't exist, scikit-learn implementation
is used as a fallback. Those optimized solvers come from the oneDAL
C++ library and are optimized for the x86_64 architecture, and are
optimized for multi-core Intel CPUs.
Note that those solvers are not enabled by default, please refer to the
`scikit-learn-intelex <https://intel.github.io/scikit-learn-intelex/latest/what-is-patching.html>`_
documentation for more details on usage scenarios. Direct export example:
.. prompt:: python >>>
from sklearnex.neighbors import NearestNeighbors
Compatibility with the standard scikit-learn solvers is checked by running the
full scikit-learn test suite via automated continuous integration as reported
on https://github.com/intel/scikit-learn-intelex. If you observe any issue
with `scikit-learn-intelex`, please report the issue on their
`issue tracker <https://github.com/intel/scikit-learn-intelex/issues>`__.
WinPython for Windows
-----------------------
The `WinPython <https://winpython.github.io/>`_ project distributes
scikit-learn as an additional plugin.
Troubleshooting
===============
.. _windows_longpath:
Error caused by file path length limit on Windows
-------------------------------------------------
It can happen that pip fails to install packages when reaching the default path
size limit of Windows if Python is installed in a nested location such as the
`AppData` folder structure under the user home directory, for instance::
C:\Users\username>C:\Users\username\AppData\Local\Microsoft\WindowsApps\python.exe -m pip install scikit-learn
Collecting scikit-learn
...
Installing collected packages: scikit-learn
ERROR: Could not install packages due to an OSError: [Errno 2] No such file or directory: 'C:\\Users\\username\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.7_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python37\\site-packages\\sklearn\\datasets\\tests\\data\\openml\\292\\api-v1-json-data-list-data_name-australian-limit-2-data_version-1-status-deactivated.json.gz'
In this case it is possible to lift that limit in the Windows registry by
using the ``regedit`` tool:
#. Type "regedit" in the Windows start menu to launch ``regedit``.
#. Go to the
``Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem``
key.
#. Edit the value of the ``LongPathsEnabled`` property of that key and set
it to 1.
#. Reinstall scikit-learn (ignoring the previous broken installation):
.. prompt:: bash $
pip install --exists-action=i scikit-learn
|