1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
"""
================================================
Categorical Feature Support in Gradient Boosting
================================================
.. currentmodule:: sklearn
In this example, we will compare the training times and prediction
performances of :class:`~ensemble.HistGradientBoostingRegressor` with
different encoding strategies for categorical features. In
particular, we will evaluate:
- dropping the categorical features
- using a :class:`~preprocessing.OneHotEncoder`
- using an :class:`~preprocessing.OrdinalEncoder` and treat categories as
ordered, equidistant quantities
- using an :class:`~preprocessing.OrdinalEncoder` and rely on the :ref:`native
category support <categorical_support_gbdt>` of the
:class:`~ensemble.HistGradientBoostingRegressor` estimator.
We will work with the Ames Iowa Housing dataset which consists of numerical
and categorical features, where the houses' sales prices is the target.
"""
# %%
# Load Ames Housing dataset
# -------------------------
# First, we load the Ames Housing data as a pandas dataframe. The features
# are either categorical or numerical:
from sklearn.datasets import fetch_openml
X, y = fetch_openml(data_id=42165, as_frame=True, return_X_y=True)
# Select only a subset of features of X to make the example faster to run
categorical_columns_subset = [
"BldgType",
"GarageFinish",
"LotConfig",
"Functional",
"MasVnrType",
"HouseStyle",
"FireplaceQu",
"ExterCond",
"ExterQual",
"PoolQC",
]
numerical_columns_subset = [
"3SsnPorch",
"Fireplaces",
"BsmtHalfBath",
"HalfBath",
"GarageCars",
"TotRmsAbvGrd",
"BsmtFinSF1",
"BsmtFinSF2",
"GrLivArea",
"ScreenPorch",
]
X = X[categorical_columns_subset + numerical_columns_subset]
X[categorical_columns_subset] = X[categorical_columns_subset].astype("category")
categorical_columns = X.select_dtypes(include="category").columns
n_categorical_features = len(categorical_columns)
n_numerical_features = X.select_dtypes(include="number").shape[1]
print(f"Number of samples: {X.shape[0]}")
print(f"Number of features: {X.shape[1]}")
print(f"Number of categorical features: {n_categorical_features}")
print(f"Number of numerical features: {n_numerical_features}")
# %%
# Gradient boosting estimator with dropped categorical features
# -------------------------------------------------------------
# As a baseline, we create an estimator where the categorical features are
# dropped:
from sklearn.compose import make_column_selector, make_column_transformer
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.pipeline import make_pipeline
dropper = make_column_transformer(
("drop", make_column_selector(dtype_include="category")), remainder="passthrough"
)
hist_dropped = make_pipeline(dropper, HistGradientBoostingRegressor(random_state=42))
# %%
# Gradient boosting estimator with one-hot encoding
# -------------------------------------------------
# Next, we create a pipeline that will one-hot encode the categorical features
# and let the rest of the numerical data to passthrough:
from sklearn.preprocessing import OneHotEncoder
one_hot_encoder = make_column_transformer(
(
OneHotEncoder(sparse_output=False, handle_unknown="ignore"),
make_column_selector(dtype_include="category"),
),
remainder="passthrough",
)
hist_one_hot = make_pipeline(
one_hot_encoder, HistGradientBoostingRegressor(random_state=42)
)
# %%
# Gradient boosting estimator with ordinal encoding
# -------------------------------------------------
# Next, we create a pipeline that will treat categorical features as if they
# were ordered quantities, i.e. the categories will be encoded as 0, 1, 2,
# etc., and treated as continuous features.
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder = make_column_transformer(
(
OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan),
make_column_selector(dtype_include="category"),
),
remainder="passthrough",
# Use short feature names to make it easier to specify the categorical
# variables in the HistGradientBoostingRegressor in the next step
# of the pipeline.
verbose_feature_names_out=False,
)
hist_ordinal = make_pipeline(
ordinal_encoder, HistGradientBoostingRegressor(random_state=42)
)
# %%
# Gradient boosting estimator with native categorical support
# -----------------------------------------------------------
# We now create a :class:`~ensemble.HistGradientBoostingRegressor` estimator
# that will natively handle categorical features. This estimator will not treat
# categorical features as ordered quantities. We set
# `categorical_features="from_dtype"` such that features with categorical dtype
# are considered categorical features.
#
# The main difference between this estimator and the previous one is that in
# this one, we let the :class:`~ensemble.HistGradientBoostingRegressor` detect
# which features are categorical from the DataFrame columns' dtypes.
hist_native = HistGradientBoostingRegressor(
random_state=42, categorical_features="from_dtype"
)
# %%
# Model comparison
# ----------------
# Finally, we evaluate the models using cross validation. Here we compare the
# models performance in terms of
# :func:`~metrics.mean_absolute_percentage_error` and fit times.
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_validate
scoring = "neg_mean_absolute_percentage_error"
n_cv_folds = 3
dropped_result = cross_validate(hist_dropped, X, y, cv=n_cv_folds, scoring=scoring)
one_hot_result = cross_validate(hist_one_hot, X, y, cv=n_cv_folds, scoring=scoring)
ordinal_result = cross_validate(hist_ordinal, X, y, cv=n_cv_folds, scoring=scoring)
native_result = cross_validate(hist_native, X, y, cv=n_cv_folds, scoring=scoring)
def plot_results(figure_title):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))
plot_info = [
("fit_time", "Fit times (s)", ax1, None),
("test_score", "Mean Absolute Percentage Error", ax2, None),
]
x, width = np.arange(4), 0.9
for key, title, ax, y_limit in plot_info:
items = [
dropped_result[key],
one_hot_result[key],
ordinal_result[key],
native_result[key],
]
mape_cv_mean = [np.mean(np.abs(item)) for item in items]
mape_cv_std = [np.std(item) for item in items]
ax.bar(
x=x,
height=mape_cv_mean,
width=width,
yerr=mape_cv_std,
color=["C0", "C1", "C2", "C3"],
)
ax.set(
xlabel="Model",
title=title,
xticks=x,
xticklabels=["Dropped", "One Hot", "Ordinal", "Native"],
ylim=y_limit,
)
fig.suptitle(figure_title)
plot_results("Gradient Boosting on Ames Housing")
# %%
# We see that the model with one-hot-encoded data is by far the slowest. This
# is to be expected, since one-hot-encoding creates one additional feature per
# category value (for each categorical feature), and thus more split points
# need to be considered during fitting. In theory, we expect the native
# handling of categorical features to be slightly slower than treating
# categories as ordered quantities ('Ordinal'), since native handling requires
# :ref:`sorting categories <categorical_support_gbdt>`. Fitting times should
# however be close when the number of categories is small, and this may not
# always be reflected in practice.
#
# In terms of prediction performance, dropping the categorical features leads
# to poorer performance. The three models that use categorical features have
# comparable error rates, with a slight edge for the native handling.
# %%
# Limiting the number of splits
# -----------------------------
# In general, one can expect poorer predictions from one-hot-encoded data,
# especially when the tree depths or the number of nodes are limited: with
# one-hot-encoded data, one needs more split points, i.e. more depth, in order
# to recover an equivalent split that could be obtained in one single split
# point with native handling.
#
# This is also true when categories are treated as ordinal quantities: if
# categories are `A..F` and the best split is `ACF - BDE` the one-hot-encoder
# model will need 3 split points (one per category in the left node), and the
# ordinal non-native model will need 4 splits: 1 split to isolate `A`, 1 split
# to isolate `F`, and 2 splits to isolate `C` from `BCDE`.
#
# How strongly the models' performances differ in practice will depend on the
# dataset and on the flexibility of the trees.
#
# To see this, let us re-run the same analysis with under-fitting models where
# we artificially limit the total number of splits by both limiting the number
# of trees and the depth of each tree.
for pipe in (hist_dropped, hist_one_hot, hist_ordinal, hist_native):
if pipe is hist_native:
# The native model does not use a pipeline so, we can set the parameters
# directly.
pipe.set_params(max_depth=3, max_iter=15)
else:
pipe.set_params(
histgradientboostingregressor__max_depth=3,
histgradientboostingregressor__max_iter=15,
)
dropped_result = cross_validate(hist_dropped, X, y, cv=n_cv_folds, scoring=scoring)
one_hot_result = cross_validate(hist_one_hot, X, y, cv=n_cv_folds, scoring=scoring)
ordinal_result = cross_validate(hist_ordinal, X, y, cv=n_cv_folds, scoring=scoring)
native_result = cross_validate(hist_native, X, y, cv=n_cv_folds, scoring=scoring)
plot_results("Gradient Boosting on Ames Housing (few and small trees)")
plt.show()
# %%
# The results for these under-fitting models confirm our previous intuition:
# the native category handling strategy performs the best when the splitting
# budget is constrained. The two other strategies (one-hot encoding and
# treating categories as ordinal values) lead to error values comparable
# to the baseline model that just dropped the categorical features altogether.
|